HOMEWORK 2

DUE THURSDAY, FEB 20, 2014, SINCE TUESDAY IS AN MIT MONDAY

Turn in the following for credit:

1. Verify the following isomorphisms:
(a) For $X, Y \in \mathrm{Top}_{*}$, show that the adjunction

$$
\operatorname{Map}_{*}(\Sigma X, Y) \cong \operatorname{Map}_{*}(X, \Omega Y)
$$

descends to an adjunction of homotopy classes of maps:

$$
[\Sigma X, Y]_{*} \cong[X, \Omega Y]_{*} .
$$

Deduce there is an isomorphism

$$
\pi_{n-1}(\Omega X) \cong \pi_{n}(X)
$$

(b) Let X be an unbased space. The unreduced suspension $\operatorname{Susp}(X)$ is the space obtained from $X \times I$ by identifying all of the points in $X \times\{0\}$ and all of the points in $X \times\{1\}$. We do not identify points in $X \times\{0\}$ with points in $X \times\{1\}$. Show that there is an isomorphism

$$
H_{n+1}(\operatorname{Susp} X) \cong H_{n}(X)
$$

for n greater than or equal to 1 .
2. Hopf fibration. The purpose of this problem is to verify that there exists a nontrivial element of $\pi_{3}\left(S^{2}\right)$. The Hopf fibration is a map $\eta: S^{3} \rightarrow S^{2}$. It is defined by viewing S^{2} as $\mathbb{C} P^{1}$, and S^{3} as the unit sphere in \mathbb{C}^{2}. The map η is then defined by

$$
\eta(x, y)=[x: y]
$$

(Here, $[x: y]$ denotes the complex line in \mathbb{C}^{2} spanned by the vector (x, y).)
(a) Let X be the CW complex given by attaching a 4 -disk along η.

Show that X is homeomorphic to $\mathbb{C} P^{2}$.
(b) Show that if η is null homotopic, then X is homotopy equivalent to $S^{2} \vee S^{4}$.
(c) Deduce that η cannot be null homotopic by computing the cup product structure on $H^{*}(X)$.

Do the following problems - but they do not need to be turned in.
3. (problem 3 on p358 of Hatcher) For an H-space (X, x_{0}) with multiplication $\mu: X \times X \rightarrow X$, show that the group operation in $\pi_{n}\left(X, x_{0}\right)$ can also be defined by the rule $(f+g)(x)=\mu(f(x), g(x))$. (For the notion of an H-space, consult section 3.C of Hatcher, p281.)
4. (problem 1 on p69 of May) Show that, if $n \geq 2$, then $\pi_{n}(X \vee Y)$ is isomorphic to $\pi_{n}(X) \oplus \pi_{n}(Y) \oplus \pi_{n+1}(X \times Y, X \vee Y)$.
5. For a CW pair (X, A), is there an isomorphism $\pi_{*}(X, A) \cong \pi_{*}(X / A)$? Justify your answer.
6. Compute the homotopy groups of the quasi-circle (the "circle" containing $\sin (1 / x)$ defined on $p 79$, problem 7 of section 1.3 of Hatcher). Deduce that the inclusion of a point on the quasicircle is a weak equivalence. Show the inclusion is not a homotopy equivalence.

