HOMEWORK 12

DUE: 5/8/13

Note: Turn in problems 1 and 2. Problems 2 will require Tues's lecture

1. (a) Show that there is a homeomorphism

$$
(X \times Y)^{V \boxplus W} \approx X^{V} \wedge Y^{W}
$$

(b) Deduce that there is a homeomorphism

$$
X^{V \oplus \mathbb{R}^{k}} \approx \Sigma^{k} X^{V}
$$

where \mathbb{R}^{k} is the trivial bundle over X.
2. Show that if V is a vector bundle with a non-vanishing section, then the Euler class $e(V)$ must vanish. (Note: if X were a manifold, then this would be what you would expect from the geometric description I gave you in class.)

Gysin maps

The next two problems investigate a map which goes the "wrong way" in cohomology called the Gysin map. From now on we always work with homology with mod 2 coefficients to avoid having to discuss orientations, and manifolds are assumed to be smooth, connected, closed, and compact.

Let $i: N \hookrightarrow M$ be the inclusion of a submanifold of a manifold M, with $\operatorname{dim} N=n$ and $\operatorname{dim} M=m$. Give the tangent bundle $T M$ a metric, and define $\nu=T N^{\perp}$ to be the normal bundle of N in $T M$. The "tubular neighborhood theorem" of differential topology asserts that there is a tubular neighbor Tube (N) of N in M whose closure $\overline{\operatorname{Tube}}(N)$ is diffeomorphic to the disk bundle $D(\nu)$. Let

$$
P: M \rightarrow \overline{\operatorname{Tube}}(N) / \partial \overline{\operatorname{Tube}}(N) \approx N^{\nu}
$$

be the map which sends all points outside of $\operatorname{Tube}(N)$ to the basepoint. This map is called the Pontryagin-Thom collapse map. It induces, via the Thom isomorphism, a map going in the wrong way called a Gysin map:

$$
i_{!}: H^{*}(N) \cong \widetilde{H}^{*+m-n}\left(N^{\nu}\right) \xrightarrow{P^{*}} H^{*+m-n}(M) .
$$

In particular, we get a $(\bmod 2)$ cohomology class $[N]$ whose dimension is the codimension of N in M :

$$
[N]:=i_{!}(1) \in H^{m-n}(M)
$$

3. Verify that for the inclusion of a point $* \hookrightarrow M$, the class $[*] \in H^{m}(M)$ is dual to the fundamental class $[M] \in H_{m}(M)$.
4. A pair of submanifolds N_{1} and N_{2} of dimensions n_{1} and n_{2}, respectively, are said to be transverse in M if for each point $x \in N_{1} \cap N_{2}$, the tangent space $T M_{x}$
is spanned by the subspaces $\left(T N_{1}\right)_{x}$ and $\left(T N_{2}\right)_{x}$. The implicit function theorem then may be used to show that $N_{1} \cap N_{2}$ is a submanifold of dimension $n_{1}+n_{2}-m$, with tangent bundle $T N_{1} \cap T N_{2} \hookrightarrow T M$.

Verify the formula

$$
\left[N_{1}\right] \cup\left[N_{2}\right]=\left[N_{1} \cap N_{2}\right] \in H^{2 m-n_{1}-n_{2}}(M) .
$$

In other words, for geometric cocycles in general position, the cup product is given by intersection.

