HOMEWORK 11

DUE: THURS, MAY 1

Turn in problems 1 and 4

1. Suppose that

$$\alpha:G\to G$$

is an inner automorphism (conjugation by an element of G). Show that the induced map

$$\alpha_*:BG\to BG$$

is homotopic to the identity.

2. Show that for complex line bundles L_i over a space X, $c_1(L_1 \otimes L_2) = c_1(L_1) + c_1(L_2)$. (Hint - consider the "universal example": the external tensor product $L_{univ} \otimes L_{univ}$ over $\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$).

Most functors on the category of complex vector spaces extend to constructions in the category of complex vector bundles over a space X. For instance, given complex vector bundles V and W, there exist vector bundles $V \otimes W$ and $\operatorname{Hom}(V,W)$. The fibers over a point $x \in X$ are given by

$$(V \otimes W)_x = V_x \otimes_{\mathbb{C}} V_y$$

 $\operatorname{Hom}(V, W)_x = \operatorname{Hom}_{\mathbb{C}}(V_x, W_x).$

These constructions are easily produced locally using a trivializing cover. Functoriality can than be used to give transition functions.

- 3. Suppose that L is a complex line bundle on a paracompact space. Let \overline{L} denote the *conjugate bundle*, where the fibers are given the conjugate action of \mathbb{C} .
- (a) Show that there is a bundle isomorphism $\overline{L} \cong \operatorname{Hom}(L, \mathbb{C})$, where \mathbb{C} denotes the trivial line bundle.
- (b) Conclude that there is a bundle isomorphism $L \otimes \overline{L} \cong \mathbb{C}$.
- (c) Deduce that $c_1(\overline{L}) = -c_1(L)$.
- 4. Let \mathcal{L} be the restriction of the universal line bundle on $\mathbb{C}P^{\infty}$ to $\mathbb{C}P^n$.
- (a) Show that the tangent bundle $T\mathbb{C}P^n$ to $\mathbb{C}P^n$ can be identified with the bundle $\mathrm{Hom}(\mathcal{L},\mathcal{L}^\perp)$. Here, \mathcal{L}^\perp is the perpendicular bundle of dimension n over $\mathbb{C}P^n$, whose fiber over a line L in \mathbb{C}^{n+1} is the perpendicular space L^\perp .
- (b) Use the axioms of Chern classes (i.e. the Cartan formula) to deduce that

$$c_i(T\mathbb{C}P^n) = (-1)^i \binom{n+1}{i} x^i$$

where $x \in H^2(\mathbb{C}P^n)$ is the generator given by $c_1(\mathcal{L})$. Hint: show that there is an isomorphism

$$T\mathbb{C}P^n\oplus\mathbb{C}\cong T\mathbb{C}P^n\oplus(\overline{\mathcal{L}}\otimes\mathcal{L})\cong \mathrm{Hom}(\mathcal{L},\mathbb{C}^{n+1}).$$