The Structure of the Singular Set of a Two-Phase Free Boundary Problem for Harmonic Measure

Max Engelstein (Joint work with M. Badger and T. Toro)

University of Chicago

March 20, 2016

This research was partially supported by the NSF’s GRF, Grant No. (DGE-1144082).
Singular Sets and Regular Sets

- Common theme in analysis, take an object and divide it into a “regular set” and a “singular set.”
- Hopefully “regular” set has smoothness and is relatively “large”
- Singular set should be relatively small and have structure.

Example (Minimal Hypersurfaces)

Area Minimizing Hypersurfaces: regular part \cup singular part. The regular set is analytic. \dim singular set $\leq n - 7$. Furthermore, is contained in a countable union of dimension $\leq n - 7$ Lipschitz submanifolds.

Plethora of other examples: zero sets of solutions to elliptic PDE (Cheeger-Naber-Valtorta ’15), support of uniform measures (Nimer ’15), solutions to the thin obstacle problem (Garofalo-Petrosyan ’09).
Singular Sets and Regular Sets

- Common theme in analysis, take an object and divide it into a “regular set” and a “singular set.”
- Hopefully “regular” set has smoothness and is relatively “large”
- Singular set should be relatively small and have structure.

Example (Minimal Hypersurfaces)

Area Minimizing Hypersurfaces: regular part \(\cup \) singular part. The regular set is analytic. \(\text{dim singular set} \leq n - 7 \). Furthermore, is contained in a countable union of dimension \(\leq n - 7 \) Lipschitz submanifolds.
Singular Sets and Regular Sets

- Common theme in analysis, take an object and divide it into a "regular set" and a "singular set."
- Hopefully "regular" set has smoothness and is relatively "large"
- Singular set should be relatively small and have structure.

Example (Minimal Hypersurfaces)

Area Minimizing Hypersurfaces: regular part \cup singular part. The regular set is analytic. \dim singular set $\leq n - 7$. Furthermore, is contained in a countable union of dimension $\leq n - 7$ Lipschitz submanifolds.

Plethora of other examples: zero sets of solutions to elliptic PDE (Cheeger-Naber-Valtorta ’15), support of uniform measures (Nimer ’15), solutions to the thin obstacle problem (Garofalo-Petrosyan ’09).
How is this usually accomplished?

Traditional ingredients:
- Monotonicity formula
- Uniqueness of blowups (tangents)
- Control on rate of blowup (tangent)

What if you don’t know any of the above?

New Approach: (Badger-Lewis ’15 (inspired by Preiss ’87)) If you know all the possible (pseudo-) blowups of A, then understanding how these sets “fit together” can give information about A. Use this to understand two-phase problem for harmonic measure.
How is this usually accomplished?

Traditional ingredients:

- Monotonicity formula
- Uniqueness of blowups (tangents)
- Control on rate of blowup (tangent)

What if you don’t know any of the above?
How is this usually accomplished?

Traditional ingredients:
- Monotonicity formula
- Uniqueness of blowups (tangents)
- Control on rate of blowup (tangent)

What if you don’t know any of the above?

New Approach: (Badger-Lewis ’15 (inspired by Preiss ’87)) If you know all the possible (pseudo-) blowups of A, then understanding how these sets “fit together” can give information about $A.$
How is this usually accomplished?

Traditional ingredients:

- Monotonicity formula
- Uniqueness of blowups (tangents)
- Control on rate of blowup (tangent)

What if you don’t know any of the above?

New Approach: (Badger-Lewis ’15 (inspired by Preiss ’87)) If you know all the possible (pseudo-) blowups of A, then understanding how these sets “fit together” can give information about A.

Use this to understand two-phase problem for harmonic measure.
Intuitively, $\omega^X(E)$ is how much a harmonic function “sees” E.

Ex: For the unit disc $\omega^0 = \frac{\sigma}{2\pi}$. All points of the circle look identical.
What is Harmonic Measure?

Intuitively, \(\omega^X(E) \) is how much a harmonic function “sees” \(E \).

Ex: For the unit disc \(\omega^0 = \frac{\sigma}{2\pi} \). All points of the circle look identical.

Given
\[
f \in C(\partial \Omega). \ \exists U_f \in C^2(\Omega) \cap C(\overline{\Omega}) \text{ which satisfies:}
\]
\[
\Delta U_f(x) = 0, \ x \in \Omega
\]
\[
U_f(x) = f(x), \ x \in \partial \Omega.
\]

Harmonic measure at \(X \).

Credit Wikipedia
What is Harmonic Measure?

Intuitively, $\omega^X(E)$ is how much a harmonic function “sees” E.

Ex: For the unit disc $\omega^0 = \frac{\sigma}{2\pi}$. All points of the circle look identical.

Given $f \in C(\partial \Omega)$. $\exists U_f \in C^2(\Omega) \cap C(\overline{\Omega})$ which satisfies:

\[
\Delta U_f(x) = 0, \quad x \in \Omega \\
U_f(x) = f(x), \quad x \in \partial \Omega.
\]

For $X \in \Omega$ the harmonic measure ω^X is the Borel measure such that:

\[
\int_{\partial \Omega} f(Q) d\omega^X(Q) = U_f(X).
\]
What is Harmonic Measure?

Intuitively, $\omega^X(E)$ is how much a harmonic function “sees” E.

Ex: For the unit disc $\omega^0 = \frac{\sigma}{2\pi}$. All points of the circle look identical.

Given $f \in C(\partial \Omega)$. $\exists U_f \in C^2(\Omega) \cap C(\overline{\Omega})$ which satisfies:

$$\Delta U_f(x) = 0, \ x \in \Omega$$
$$U_f(x) = f(x), \ x \in \partial \Omega.$$

For $X \in \Omega$ the harmonic measure ω^X is the Borel measure such that:

$$\int_{\partial \Omega} f(Q)d\omega^X(Q) = U_f(X).$$

Maximum principle, $\Rightarrow \omega^X$ is a probability measure.
What is Harmonic Measure?

Intuitively, $\omega^X(E)$ is how much a harmonic function “sees” E.

Ex: For the unit disc $\omega^0 = \frac{\sigma}{2\pi}$. All points of the circle look identical.

Given $f \in C(\partial\Omega)$. \exists $U_f \in C^2(\Omega) \cap C(\overline{\Omega})$ which satisfies:

$$\Delta U_f(x) = 0, \ x \in \Omega$$

$$U_f(x) = f(x), \ x \in \partial\Omega.$$

For $X \in \Omega$ the harmonic measure ω^X is the Borel measure such that:

$$\int_{\partial\Omega} f(Q) d\omega^X(Q) = U_f(X).$$

Maximum principle, $\Rightarrow \omega^X$ is a probability measure.

Harnack inequality $\Rightarrow \omega^X << \omega^Y << \omega^X$. Will omit dependence on pole.
Two-phase Free Boundary Problems

Ω^\pm disjoint, NTA ("quantitatively connected") domains with ω^\pm harmonic measures. $\overline{\Omega^+ \cup \Omega^-} = \mathbb{R}^n$. Also $\Gamma \equiv \partial\Omega^+ = \partial\Omega^-$.

Assume $\omega^+ \ll \omega^- \ll \omega^+$ on Γ. Let $h := \frac{d\omega^-}{d\omega^+}$.

Question: What does the regularity of h tell us about Γ?

Prior work: Kenig-Toro '06, Kenig-Preiss-Toro '09, Badger '11 '12 '13, E. '14, Azzam-Mourgoglou-Tolsa '16.

$\Omega \subset \mathbb{R}^2$, use complex analysis (Garnett and Marshall (chpt 6)).
Two-phase Free Boundary Problems

\(\Omega^{\pm} \) disjoint, NTA ("quantitatively connected") domains with \(\omega^{\pm} \) harmonic measures. \(\overline{\Omega^{+} \cup \Omega^{-}} = \mathbb{R}^{n} \). Also \(\Gamma \equiv \partial \Omega^{+} = \partial \Omega^{-} \).

Figure: A typical two-phase setup. Picture by Matthew Badger

Assume \(\omega^{+} \ll \omega^{-} \ll \omega^{+} \) on \(\Gamma \). Let \(h := d\omega^{-} - d\omega^{+} \).

Question: What does the regularity of \(h \) tells us about \(\Gamma \)?

Prior work: Kenig-Toro '06, Kenig-Preiss-Toro '09, Badger '11 '12 '13, E. '14, Azzam-Mourgoglou-Tolsa '16.
Two-phase Free Boundary Problems

Ω^\pm disjoint, NTA ("quantitatively connected") domains with ω^\pm harmonic measures. $\Omega^+ \cup \Omega^- = \mathbb{R}^n$. Also $\Gamma \equiv \partial \Omega^+ = \partial \Omega^-$.

Figure: A typical two-phase setup. Picture by Matthew Badger

Assume $\omega^+ \ll \omega^- \ll \omega^+$ on Γ. Let $h := \frac{d\omega^-}{d\omega^+}$.
Two-phase Free Boundary Problems

Ω^\pm disjoint, NTA ("quantitatively connected") domains with ω^\pm harmonic measures. $\Omega^+ \cup \Omega^- = \mathbb{R}^n$. Also $\Gamma \equiv \partial \Omega^+ = \partial \Omega^-$.

Figure: A typical two-phase setup. Picture by Matthew Badger

Assume $\omega^+ << \omega^- << \omega^+$ on Γ. Let $h := \frac{d\omega^-}{d\omega^+}$.

Question: What does the regularity of h tells us about Γ?
Two-phase Free Boundary Problems

Ω^\pm disjoint, NTA ("quantitatively connected") domains with ω^\pm harmonic measures. $\overline{\Omega^+ \cup \Omega^-} = \mathbb{R}^n$. Also $\Gamma \equiv \partial \Omega^+ = \partial \Omega^-$.

![Figure: A typical two-phase setup. Picture by Matthew Badger](image)

Assume $\omega^+ << \omega^- << \omega^+$ on Γ. Let $h := \frac{d\omega^-}{d\omega^+}$.

Question: What does the regularity of h tells us about Γ?

Prior work: Kenig-Toro ’06, Kenig-Preiss-Toro ’09, Badger ’11 ’12 ’13, E. ’14, Azzam-Mourgoglou-Tolsa ’16.
Two-phase Free Boundary Problems

Ω^\pm disjoint, NTA ("quantitatively connected") domains with ω^\pm harmonic measures. $\overline{\Omega^+ \cup \Omega^-} = \mathbb{R}^n$. Also $\Gamma \equiv \partial \Omega^+ = \partial \Omega^-$.

Figure: A typical two-phase setup. Picture by Matthew Badger

Assume $\omega^- << \omega^+ << \omega^+$ on Γ. Let $h := \frac{d\omega^-}{d\omega^+}$.

Question: What does the regularity of h tells us about Γ?

Prior work: Kenig-Toro ’06, Kenig-Preiss-Toro ’09, Badger ’11 ’12 ’13, E. ’14, Azzam-Mourgoglou-Tolsa ’16.

$\Omega \subset \mathbb{R}^2$, use complex analysis (Garnett and Marshall (chpt 6)).
What are NTA domains?

Jerison and Kenig '82 (quantitatively open and path connected):

Figure: The Corkscrew and Harnack Chain Conditions. Figures from Campogna, Kenig and Lanzani 2005
What are NTA domains?

Jerison and Kenig ’82 (quantitatively open and path connected):

Figure: The Corkscrew and Harnack Chain Conditions. Figures from Campogna, Kenig and Lanzani 2005

Picture Courtesy of Matthew Badger
KEY IDEA: Understand the (pseudo)-blowups of Γ.
Blowup Analysis

KEY IDEA: Understand the (pseudo)-blowups of Γ.

Definition ((Pseudo)-Blowups)

A set, C, is a **pseudo-blowup** of Γ if there exists $Q_i \in \Gamma, r_i \downarrow 0$ such that

$$\frac{\Gamma - Q_i}{r_i} \equiv \Gamma_i \rightarrow C.$$

If $Q_i \equiv Q$, call it a **blowup**.

Figure: Blowing up at a point. Picture courtesy of Matthew Badger.
KEY IDEA: Understand the (pseudo)-blowups of Γ.

Definition ((Pseudo)-Blowups)

A set, C, is a **pseudo-blowup** of Γ if there exists $Q_i \in \Gamma, r_i \downarrow 0$ such that

$$\frac{\Gamma - Q_i}{r_i} \equiv \Gamma_i \rightarrow C.$$

If $Q_i \equiv Q$, call it a **blowup**.

Figure: Blowing up at a point. Picture courtesy of Matthew Badger.

IMPORTANT: May be multiple blowups at a point (for different $\{r_i\}$).
Theorem (Kenig-Toro ’06)

Let $\Omega^\pm \subset \mathbb{R}^n$ be complementary NTA with $\log(h) \in \text{VMO}(d\omega^\pm)$ (almost continuous) then every pseudo-blowup of Γ is actually the zero set of a degree $\leq d_0$ harmonic polynomial, p.

$h(x^2_1 + x^2_2 - x^2_3 - x^2_4)$ is a harmonic polynomial s.t. $\{h > 0\}$ and $\{h < 0\}$ are NTA.
Blowups of the Two-Phase Problem

Theorem (Kenig-Toro ’06)

Let $\Omega^\pm \subset \mathbb{R}^n$ be complementary NTA with $\log(h) \in \text{VMO}(d\omega^+)$ (almost continuous) then every pseudo-blowup of Γ is actually the zero set of a degree $\leq d_0$ harmonic polynomial, p.

- d_0 depends on ambient dimension, NTA constants.
- $\{p > 0\}$ and $\{p < 0\}$ are **connected** (actually NTA).
- p depends on Q_i, r_i in the pseudo-blowup (not unique given a $Q \in \Gamma$!).
Theorem (Kenig-Toro ’06)

Let $\Omega^\pm \subset \mathbb{R}^n$ be complementary NTA with $\log(h) \in \text{VMO}(d\omega^+)$ (almost continuous) then every pseudo-blowup of Γ is actually the zero set of a degree $\leq d_0$ harmonic polynomial, p.

- d_0 depends on ambient dimension, NTA constants.
- $\{p > 0\}$ and $\{p < 0\}$ are connected (actually NTA).
- p depends on Q_i, r_i in the pseudo-blowup (not unique given a $Q \in \Gamma$!)

$h(X) = x_1^2 + x_2^2 - x_3^2 - x_4^2$ is a harmonic polynomial s.t. $\{h > 0\}$ and $\{h < 0\}$ are NTA. Credit: Mathematica
The Main Theorem

Theorem (Main Theorem, Badger-E.-Toro ('15))

Let $\Omega^\pm \subset \mathbb{R}^n$ be complementary NTA domains and assume
$\log(\frac{d\omega^-}{d\omega^+}) \in \text{VMO}(d\omega^+)$. $\exists d_0 \in \mathbb{N}$ s.t. $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \ldots \cup \Gamma_{d_0}$, where:

- If $Q \in \Gamma_k$, then any blowup of Γ at Q is the zero set of a degree k homogenous harmonic polynomial (not necessarily unique!).
- $\overline{\dim}_M \Gamma \setminus \Gamma_1 \leq n - 3$. $\Gamma \setminus \Gamma_1$ is the **singular set**.
- For any $k \leq d_0$: $\Gamma_1 \cup \Gamma_2 \cup \ldots \cup \Gamma_k$. is open inside of Γ
- For any $k \leq d_0/2$: $\dim_H \Gamma_2 \cup \Gamma_4 \cup \ldots \cup \Gamma_{2k} \leq n - 4$.

These two examples $x_1^2 + x_2^2 - x_3^2 - x_4^2$ and $x_1^2(x_2^2 - x_3^2) + x_2^2(x_3^2 - x_1^2) + x_2^2(x_1^2 - x_2^2)$ show that the above dimension bounds are sharp. Credit: Mathematica and M. Badger.
The Main Theorem

Theorem (Main Theorem, Badger-E.-Toro ('15))

Let $\Omega^\pm \subset \mathbb{R}^n$ be complementary NTA domains and assume

$$\log\left(\frac{d\omega^-}{d\omega^+}\right) \in \text{VMO}(d\omega^+).$$

\[\exists d_0 \in \mathbb{N} \text{ s.t. } \Gamma = \Gamma_1 \cup \Gamma_2 \cup \ldots \cup \Gamma_{d_0}, \text{ where:} \]

- If $Q \in \Gamma_k$, then any blowup of Γ at Q is the zero set of a degree k homogenous harmonic polynomial (not necessarily unique!).

- $\overline{\text{dim}}_M \Gamma \setminus \Gamma_1 \leq n - 3$. $\Gamma \setminus \Gamma_1$ is the **singular set**.

- For any $k \leq d_0$: $\Gamma_1 \cup \Gamma_2 \cup \ldots \cup \Gamma_k$. is open inside of Γ.

- For any $k \leq d_0/2$: $\text{dim}_H \Gamma_2 \cup \Gamma_4 \cup \ldots \cup \Gamma_{2k} \leq n - 4$.

These two examples $x_1^2 + x_2^2 - x_3^2 - x_4^2$ and $x_1^2(x_2 - x_3) + x_2^2(x_3 - x_1) + x_3^2(x_1 - x_2) + x_1 x_2 x_3$ show that the above dimension bounds are sharp. Credit: Mathematica and M. Badger
Method of Proof

Kenig-Toro ’06: all of the pseudo-blowups are zero sets of homogenous harmonic polynomials which split space into two NTA components.

Badger-Lewis ’15: main theorem follows if:

- **Detectability:** Let \(k \leq \ell \) and \(C, \delta > 0 \) be uniform constants. If \(p, h \) are harmonic polynomials of degree \(k, \ell \), respectively, \(\{ p = 0 \} \cap B(x, r) \) is within \(\delta r \) of \(\{ h = 0 \} \cap B(x, r) \), then for every \(s \in (0, 1) \) there is a degree \(k \) polynomial, \(p_s \), such that \(\{ p_s = 0 \} \cap B(x, rs) \) is within \(C r s^{1 + 1/k} \) of \(\{ h = 0 \} \cap B(x, rs) \).

- If you are close to a degree \(k \) polynomial at one scale, you get closer at smaller scales. ("improvement of flatness"-type result)

- **Dimension Estimates:** for every \(\delta > 0 \), \(\exists C > 0 \) such that for all harmonic polynomials, \(p \), of degree \(\leq d_0 \), \(\text{Vol}\left(\{ x \in B(0, 1/2) | p(x) = 0 \text{, dist}(x, S(p)) < r \} \right) \leq C r^{3 - \delta} \), where \(S(p) = \{ x_0 | p(x_0) = 0 = Dp(x_0) \} \) is the singular set of \(p \).
Kenig-Toro ’06: all of the pseudo-blowups are zero sets of homogenous harmonic polynomials which split space into two NTA components.

Badger-Lewis ’15: main theorem follows if:

- **Detectability:** Let $k \leq \ell$ and $C, \delta > 0$ be uniform constants. If p, h are harmonic polynomials of degree k, ℓ, respectively, $\{p = 0\} \cap B(x, r)$ is within δr of $\{h = 0\} \cap B(x, r)$, then for every $s \in (0, 1)$ there is a degree k polynomial, p_s, such that $\{p_s = 0\} \cap B(x, rs)$ is within $Cr_s^{3 - \delta}$ of $\{h = 0\} \cap B(x, rs)$.

- If you are close to a degree k polynomial at one scale, you get closer at smaller scales. (“improvement of flatness”-type result)

- **Dimension Estimates:** for every $\delta > 0$, $\exists C > 0$ such that for all harmonic polynomials, p, of degree $\leq d_0$, $\text{Vol}(\{x \in B(0, 1/2) | p(x) = 0, \text{dist}(x, S(p)) < r\}) \leq Cr^{3 - \delta}$, where $S(p) = \{x_0 | p(x_0) = 0 = Dp(x_0)\}$, is the singular set of p.

Kenig-Toro ’06: all of the pseudo-blowups are zero sets of homogenous harmonic polynomials which split space into two NTA components.

Badger-Lewis ’15: main theorem follows if:

- **Detectability:** Let $k \leq \ell$ and $C, \delta > 0$ be uniform constants. If p, h are harmonic polynomials of degree k, ℓ, respectively, \(\{ p = 0 \} \cap B(x, r) \) is within δr of \(\{ h = 0 \} \cap B(x, r) \), then for every $s \in (0, 1)$ there is a degree k polynomial, p_s, such that \(\{ p_s = 0 \} \cap B(x, rs) \) is within $Crs^{1+1/k}$ of \(\{ h = 0 \} \cap B(x, rs) \).
Method of Proof

Kenig-Toro ’06: all of the pseudo-blowups are zero sets of homogenous harmonic polynomials which split space into two NTA components.

Badger-Lewis ’15: main theorem follows if:

- **Detectability:** Let $k \leq \ell$ and $C, \delta > 0$ be uniform constants. If p, h are harmonic polynomials of degree k, ℓ, respectively, \(\{p = 0\} \cap B(x, r) \) is within δr of \(\{h = 0\} \cap B(x, r) \), then for every $s \in (0, 1)$ there is a degree k polynomial, p_s, such that \(\{p_s = 0\} \cap B(x, rs) \) is within $Crs^{1+1/k}$ of \(\{h = 0\} \cap B(x, rs) \).

- If you are close to a degree k polynomial at one scale, you get closer at smaller scales. ("improvement of flatness"-type result)
Kenig-Toro '06: all of the pseudo-blowups are zero sets of homogenous harmonic polynomials which split space into two NTA components.

Badger-Lewis '15: main theorem follows if:

- **Detectability:** Let $k \leq \ell$ and $C, \delta > 0$ be uniform constants. If p, h are harmonic polynomials of degree k, ℓ, respectively,
 \[
 \{p = 0\} \cap B(x, r) \text{ is within } \delta r \text{ of } \{h = 0\} \cap B(x, r),
 \]
 then for every $s \in (0, 1)$ there is a degree k polynomial, p_s, such that
 \[
 \{p_s = 0\} \cap B(x, rs) \text{ is within } Crs^{1+1/k} \text{ of } \{h = 0\} \cap B(x, rs).
 \]
 - If you are close to a degree k polynomial at one scale, you get closer at smaller scales. ("improvement of flatness"-type result)

- **Dimension Estimates:** for every $\delta > 0$, $\exists C > 0$ such that for all harmonic polynomials, p, of degree $\leq d_0$,
 \[
 \text{Vol}(\{x \in B(0, 1/2) \mid p(x) = 0, \text{dist}(x, S(p)) < r\}) \leq Cr^{3-\delta},
 \]
 where $S(p) = \{x_0 \mid p(x_0) = 0 = Dp(x_0)\}$, is the singular set of p.
Proof of Detectability

- **Key Tool**: Łojasiewicz inequality. Need to understand how harmonic polynomials grow near the zero set.
Proof of Detectability

- **Key Tool**: Łojasiewicz inequality. Need to understand how harmonic polynomials grow near the zero set.

- $\exists c > 0$ such that if $x_0 \in B(0, 1)$ and q is a degree k harmonic polynomial, then

$$q(x_0) \geq c\|q\|_{L^\infty(B(0,1))}\text{dist}(x_0, \{q = 0\})^k. \quad (1)$$
• **Key Tool:** Łojasiewicz inequality. Need to understand how harmonic polynomials grow near the zero set.

• \(\exists c > 0 \) such that if \(x_0 \in B(0,1) \) and \(q \) is a degree \(k \) harmonic polynomial, then

\[
q(x_0) \geq c \| q \|_{L^\infty(B(0,1))} \text{dist}(x_0, \{ q = 0 \})^k.
\]

(1)

• Let \(p \) be a degree \(\ell \) harmonic polynomial. When \(q \) is the first \(k \) terms of the Taylor series of \(p \) around \(x_0 \), then (1) controls the geometry of \(\{ p = 0 \} \) near \(x_0 \) by the geometry of \(\{ q = 0 \} \).
Proof of Detectability

- **Key Tool:** Łojasiewicz inequality. Need to understand how harmonic polynomials grow near the zero set.
- \(\exists c > 0 \) such that if \(x_0 \in B(0, 1) \) and \(q \) is a degree \(k \) harmonic polynomial, then

\[
q(x_0) \geq c \| q \|_{L^\infty(B(0,1))} \text{dist}(x_0, \{ q = 0 \})^k. \tag{1}
\]

- Let \(p \) be a degree \(\ell \) harmonic polynomial. When \(q \) is the first \(k \) terms of the Taylor series of \(p \) around \(x_0 \), then (1) controls the geometry of \(\{ p = 0 \} \) near \(x_0 \) by the geometry of \(\{ q = 0 \} \).
- Compactness argument shows that if \(\{ p = 0 \} \) is very close to some degree \(k \) harmonic polynomial, then it must be near the first \(k \) terms of its Taylor series.
Theorem (Cheeger-Naber-Valtorta '15)

If \(u : B(0,1) \rightarrow \mathbb{R} \) is a harmonic function with \(u(0) = 0 \) and
\[
\int_{\partial B(0,1)} |\nabla u|^2 \, dx \leq \Lambda,
\]
then for every \(\eta > 0 \) and \(k \leq n - 2 \),
\[
\text{Vol}\left(\{ x \in B(0,1/2) | \text{dist}(x, S_k \eta, r(u)) \} \right) \leq C(n, \Lambda, \eta) r^{n-k-\eta}.
\]

- \(S_k \eta, r(u) \) are the points at which \(u \) "depends" on more than \(n-k \) variables at small scales (i.e. has \(k \) or more translational symmetries).

- "Regular points" depend on only one direction at infinitesimal scales.

So if \(k < n-1 \) we are looking at singular points.

- We show: Singular points \(S(p) \subset S(n-3, r) \) for all \(r \) and \(\eta \) small enough.

- Proof: Blow-up argument and no homogenous harmonic polynomial splits \(\mathbb{R}^2 \) into two connected components.
If $u : B(0, 1) \rightarrow \mathbb{R}$ is a harmonic function with $u(0) = 0$ and

$$\frac{\int_{B(0,1)} |\nabla u|^2 \, dx}{\int_{\partial B_1} u^2 \, d\sigma} \leq \Lambda,$$

then for every $\eta > 0$ and $k \leq n - 2$,

$$\text{Vol}(\{x \in B(0,1/2) \mid \text{dist}(x, S_{\eta,r}^k(u))\}) \leq C(n, \Lambda, \eta) r^{n-k-\eta}.$$
Singulär Punkte in Harmonischen Polynomen

Singular Points in Harmonic Polynomials

Theorem (Cheeger-Naber-Valtorta ’15)

If \(u : B(0, 1) \rightarrow \mathbb{R} \) is a harmonic function with \(u(0) = 0 \) and

\[
\frac{\int_{B(0,1)} |\nabla u|^2 \, dx}{\int_{\partial B_1} u^2 \, d\sigma} \leq \Lambda,
\]

then for every \(\eta > 0 \) and \(k \leq n - 2 \),

\[
\text{Vol}(\{ x \in B(0, 1/2) \mid \text{dist}(x, S^k_{\eta, r}(u)) \}) \leq C(n, \Lambda, \eta) r^{n-k-\eta}.
\]

- \(S^k_{\eta, r}(u) \) are the points at which \(u \) “depends” on more than \(n - k \) variables at small scales (i.e. has \(k \) or more translational symmetries).
Theorem (Cheeger-Naber-Valtorta ’15)

If \(u : B(0, 1) \to \mathbb{R} \) is a harmonic function with \(u(0) = 0 \) and
\[
\frac{\int_{B(0,1)} |\nabla u|^2 dx}{\int_{\partial B_1} u^2 \, d\sigma} \leq \Lambda,
\]
then for every \(\eta > 0 \) and \(k \leq n - 2 \),
\[
\text{Vol}(\{x \in B(0, 1/2) \mid \text{dist}(x, S^k_{\eta, r}(u))\}) \leq C(n, \Lambda, \eta)r^{n-k-\eta}.
\]

- \(S^k_{\eta, r}(u) \) are the points at which \(u \) “depends” on more than \(n - k \) variables at small scales (i.e. has \(k \) or more translational symmetries).
- “Regular points” depend on only one direction at infinitesimal scales. So if \(k < n - 1 \) we are looking at singular points.
Singular Points in Harmonic Polynomials

Theorem (Cheeger-Naber-Valtorta ’15)

If \(u : B(0, 1) \rightarrow \mathbb{R} \) is a harmonic function with \(u(0) = 0 \) and
\[
\frac{\int_{B(0,1)} |\nabla u|^2 \, dx}{\int_{\partial B_1} u^2 \, d\sigma} \leq \Lambda,
\]
then for every \(\eta > 0 \) and \(k \leq n - 2 \),
\[
\text{Vol}(\{x \in B(0, 1/2) \mid \text{dist}(x, S^k_{\eta,r}(u))\}) \leq C(n, \Lambda, \eta) r^{n-k-\eta}.
\]

- \(S^k_{\eta,r}(u) \) are the points at which \(u \) “depends” on more than \(n - k \) variables at small scales (i.e. has \(k \) or more translational symmetries).
- “Regular points” depend on only one direction at infinitesimal scales. So if \(k < n - 1 \) we are looking at singular points.
- **We show:** Singular points \(S(p) \subset S^{n-3}_{\eta,r} \) for all \(r \) and \(\eta \) small enough.
Singular Points in Harmonic Polynomials

Theorem (Cheeger-Naber-Valtorta ’15)

If $u : B(0, 1) \rightarrow \mathbb{R}$ is a harmonic function with $u(0) = 0$ and
\[
\frac{\int_{B(0,1)} |\nabla u|^2 dx}{\int_{\partial B_1} u^2 d\sigma} \leq \Lambda,
\]
then for every $\eta > 0$ and $k \leq n - 2$, \[
\text{Vol}(\{x \in B(0, 1/2) | \text{dist}(x, S_{\eta, r}^k(u))\}) \leq C(n, \Lambda, \eta) r^{n-k-\eta}.
\]

• $S_{\eta, r}^k(u)$ are the points at which u “depends” on more than $n - k$ variables at small scales (i.e. has k or more translational symmetries).

• “Regular points” depend on only one direction at infinitesimal scales.

So if $k < n - 1$ we are looking at singular points.

• We show: Singular points $S(p) \subset S_{\eta, r}^{n-3}$ for all r and η small enough.

• Proof: Blow-up argument and no homogenous harmonic polynomial splits \mathbb{R}^2 into two connected components.
Some Open Questions/Future Work

1. Ongoing work: what if \(\log\left(\frac{d\omega^-}{d\omega^+}\right) \in C^{0,\alpha} \)?
 - We can prove uniqueness of blowup.

2. Does the regular set have locally finite measure (connected to the work of Azzam-Mourgoglou-Tolsa '16)?

3. Unique blowups at points?

4. Is \(\Gamma_k \) closed?

5. We need to understand better the zero sets of harmonic polynomials which split space into two NTA components.
Some Open Questions/Future Work

1. Ongoing work: what if $\log\left(\frac{d\omega^-}{d\omega^+}\right) \in C^{0,\alpha}$?
 - We can prove uniqueness of blowup.
 - Singular sets are contained in countable union of dimension $\leq n - 3$ $C^{1,\beta}$-submanifolds.
1. Ongoing work: what if $\log\left(\frac{d\omega^-}{d\omega^+}\right) \in C^{0,\alpha}$?
 - We can prove uniqueness of blowup.
 - Singular sets are contained in countable union of dimension $\leq n - 3$ $C^{1,\beta}$-submanifolds.
 - Mixes approach above with monotonicity formulae.
Ongoing work: what if \(\log \left(\frac{d\omega^-}{d\omega^+} \right) \in C^{0,\alpha} \)?

- We can prove uniqueness of blowup.
- Singular sets are contained in countable union of dimension \(\leq n - 3 \) \(C^{1,\beta} \)-submanifolds.
- Mixes approach above with monotonicity formulae.
- Still don’t know if singular set fills out the manifolds.
Some Open Questions/Future Work

1. Ongoing work: what if \(\log(\frac{d\omega_-}{d\omega_+}) \in C^{0,\alpha} \)?
 - We can prove uniqueness of blowup.
 - Singular sets are contained in countable union of dimension \(\leq n - 3 \) \(C^{1,\beta} \)-submanifolds.
 - Mixes approach above with monotonicity formulae.
 - Still don’t know if singular set fills out the manifolds.
 - Can we give local parameterizations around points \(Q \in \Gamma_k \)?
Some Open Questions/Future Work

1. Ongoing work: what if $\log(\frac{d\omega^-}{d\omega^+}) \in C^{0,\alpha}$?
 - We can prove uniqueness of blowup.
 - Singular sets are contained in countable union of dimension $\leq n - 3$ $C^{1,\beta}$-submanifolds.
 - Mixes approach above with monotonicity formulae.
 - Still don’t know if singular set fills out the manifolds.
 - Can we give local parameterizations around points $Q \in \Gamma_k$?

2. $\log(\frac{d\omega^-}{d\omega^+}) \in C^0$
 - Does the regular set have locally finite measure (connected to aforementioned work of Azzam-Mourgoglou-Tolsa ’16)
Some Open Questions/Future Work

1. Ongoing work: what if $\log\left(\frac{d\omega^-}{d\omega^+}\right) \in C^{0,\alpha}$?
 - We can prove uniqueness of blowup.
 - Singular sets are contained in countable union of dimension $\leq n - 3$ $C^{1,\beta}$-submanifolds.
 - Mixes approach above with monotonicity formulae.
 - Still don’t know if singular set fills out the manifolds.
 - Can we give local parameterizations around points $Q \in \Gamma_k$?

2. $\log\left(\frac{d\omega^-}{d\omega^+}\right) \in C^0$
 - Does the regular set have locally finite measure (connected to aforementioned work of Azzam-Mourgoglou-Tolsa '16)

3. $\log\left(\frac{d\omega^-}{d\omega^+}\right) \in \text{VMO}$
 - Unique blowups at points?
 - Is Γ_k closed?
 - We need to understand better the zero sets of harmonic polynomials which split space into two NTA components.
Thank You For Listening!