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SUMMARY

We present a domain decomposition solver for the 2D
Helmholtz equation, with a special choice of integral trans-
mission condition that involves polarizing the waves into one-
way components. This refinement of the transmission condi-
tion is the key to combining local direct solves into an effi-
cient iterative scheme, which can then be deployed in a high-
performance computing environment. The method involves an
expensive, but embarrassingly parallel precomputation of lo-
cal Green’s functions, and a fast online computation of layer
potentials in partitioned low-rank form. The online part has
sequential complexity that scales sublinearly with respect to
the number of volume unknowns, even in the high-frequency
regime. The favorable complexity scaling continues to hold in
the context of low-order finite difference schemes for standard
community models such as BP and Marmousi2, where conver-
gence occurs in 5 to 10 GMRES iterations.

INTRODUCTION

Fixed-frequency wave scattering in a heterogeneous acoustic
or elastic medium is a hard question in numerical analysis.
It results in large, indefinite systems of equations, which are
poorly handled by off-the-shelf preconditioners. Standard di-
rect methods are not currently scalable to large 3D problems,
while iterative methods require a number of iterations that of-
ten grows with frequency.

Recent progress was made on a few different fronts: Erlangga
et al. (2006) showed how to implement very simple, although
suboptimal, complex-shifted Laplace preconditioners; Engquist
and Ying (2011a,b) proposed a class of sweeping precondition-
ers that have uniform asymptotic complexity scalings with re-
spect to the frequency parameter in smooth 2D and 3D media;
de Hoop et al. (2011) coupled direct multifrontal ideas with
H-matrices to achieve very efficient although asymptotically
suboptimal preconditioners in 2D and 3D; Vion and Geuzaine
(2014) explored approximate transmission boundary conditions
to improve on traditional domain decomposition methods; and
most closely related to the topic of this paper, Stolk (2013) de-
signed a domain decomposition method which realizes inter-
face transmission with an ingenious forcing term, resulting in
linear complexity scalings very similar to those of the sweep-
ing preconditioners. Most of these methods were not only ap-
plied to geophysical imaging, but were designed chiefly for
this purpose.

The picture that emerges is that the novel, sophisticated it-
erative methods (such as most cited above) can handle very
large problems, but are still slower than old, simple, optimized
sparse direct methods when the latter are able to accommodate

problem size. This note seeks to bridge this gap by proposing
a method that leverages existing sparse direct solvers, and at
the same time scales to very large problems in highly parallel
environments. The new point of view also invites to revise the
lower complexity bound for the sequential part of the solver
down from N, the total number of unknowns in the volume, to
O(
√

N), the number of interface unknowns. While we discuss
the 2D problem, there is in principle no obstruction to extend-
ing the method to 3D.

METHOD

Consider a partition of a 2D rectangular domain Ω into L hor-
izontal layers {Ωi}L

i=1 that we call slabs. Let x = (x,z) and
consider the squared slowness m(x) = 1/c(x)2. The (constant-
density, acoustic) Helmholtz equation is H u = f , with the
Helmholtz operator at frequency κ defined as

H =4+mκ
2, (1)

with absorbing boundary conditions on the boundary ∂Ω. Let
fi be the restriction of f to Ωi, and denote by Hi the lo-
cal Helmholtz operator Hi =4+miκ

2, now with absorbing
boundary conditions on the boundary ∂Ωi. The corresponding
local Green’s function Gi(x,x′) obeys HiGi(x,x′) = δ (x−x′).
Using Gi, we can express the solution of H u = f , using the
Green’s representation formula (GRF), locally in each layer as

u(x) = Gi fi(x) (2)

+

∫
∂Ωi

(
Gi(x,x′)

∂u
∂nx′

(x′)dx′− ∂Gi

∂nx′
(x,x′)u(x′)

)
dSx′ ,

for x ∈ Ωi, where nx′ is the exterior normal to Ω at x′ and
Gi fi(x) =

∫
Ωi

Gi(x,x′) fi(x′)dx′.

Denote by Γi,i+1 the interface between Ωi and Ωi+1. Suppos-
ing that Ωi are thin slabs extending to infinity, we can approx-
imate Eq. 2 via

u(x)≈ Gi fi(x)

−
∫

Γi−1,i

(
Gi(x,x′)∂z′u(x′)+∂z′Gi(x,x′)u(x′)

)
dx′

+

∫
Γi,i+1

(
Gi(x,x′)∂z′u(x′)−∂z′Gi(x,x′)u(x′)

)
dx′. (3)

As in many domain decomposition methods for the Helmholtz
equation (see Després (1990), Hsiao et al. (2000), Hiptmair
and Jerez-Hanckes (2012)) the solution is computed from in-
formation at the interfaces of the subdomains. In our formu-
lation, the problem is reduced to finding the traces u and ∂zu
on Γi,i+1 and then mapping them to u(x) for x ∈ Ωi locally in
each slab via Eq. 3. In the sequel, we write ui(x) for u(x)
when x ∈Ωi.
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We now decompose ui by polarization as Gi fi+u↑i +u↓i , where
u↑i approximates the field generated by sources located below
slab Ωi, and u↓i approximates the field generated by sources
located above slab Ωi. We characterize u↑i and u↓i from trans-
mission conditions expressed as incomplete Green’s integrals:∫

Γi−1,i

(
Gi(x,x′)∂z′u

↑
i (x
′)−∂z′Gi(x,x′)u

↑
i (x
′)
)

dx′ = 0,∫
Γi,i+1

(
Gi(x,x′)∂z′u

↓
i (x
′)−∂z′Gi(x,x′)u

↓
i (x
′)
)

dx′ = 0,

for x ∈ Ωi. We then construct a preconditioner by assigning
the four remaining terms of Eq. 3 in an upwind fashion to u↑i
and u↓i :

u↑i (x) =
∫

Γi,i+1

(
Gi(x,x′)∂z′u

↑
i (x
′)−∂z′Gi(x,x′)u

↑
i (x
′)
)

dx′,

(4)

u↓i (x) =−
∫

Γi−1,i

(
Gi(x,x′)∂z′u

↓
i (x
′)−∂z′Gi(x,x′)u

↓
i (x
′)
)

dx′,

(5)

for x ∈Ωi. These equations imply interface-to-interface prop-
agation rules, obtained by using x ∈ Γi,i+1 for u↓i in Eq. 5,
and x ∈ Γi−1,i for u↑i in Eq. 4. Moreover, by superposition,
the respective traces of Gi fi on Γi−1,i and Γi,i+1 become ad-
ditional contributions to the polarized traces u↑i−1 and u↓i+1 of
the neighboring slabs. Algorithm 1 embeds these propagation
rules in a sweeping-like iteration.

From the knowledge of the polarized traces, we can then re-
combine the field everywhere in Ωi as ui = Gi fi + u↓i + u↑i ,
where the polarized components obey Eq. 4 and Eq. 5. The
following figure helps keep track of the various indices and
quantities.
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Figure 1: The light-shaded layer around Ωi represents the ab-
sorbing boundary condition.

ALGORITHM

We now describe a preconditioner, i.e., an approximation of
H −1. It involves the following layer potentials:

S↓i w(x) =
∫

Γi−1,i

Gi(x,x′)w(x′)dx′, x ∈ Γi,i+1, (6)

D↓i w(x) =
∫

Γi−1,i

∂z′Gi(x,x′)w(x′)dx′, x ∈ Γi,i+1, (7)

(D↓i )
∗w(x) =

∫
Γi−1,i

∂zGi(x,x′)w(x′)dx′, x ∈ Γi,i+1, (8)

N↓i w(x) =
∫

Γi−1,i

∂z∂z′Gi(x,x′)w(x′)dx′, x ∈ Γi,i+1. (9)

We also write S↑i ,D
↑
i ,(D

↑
i )
∗, and N↑i for the corresponding four

operators where the roles of x and x′ are reversed, namely x ∈
Γi−1,i and x′ ∈ Γi,i+1.

We now define the preconditioner ṽ = Pg, for any source g, as
follows.

Algorithm 1. Preconditioner associated to {Ωi}L
i=1

1: function ṽ = P(g)
2: for i = 1:L do . Local solves
3: gi = restriction of g to Ωi
4: vgi = Gigi
5: end for
6: v↓1 = ∂zv

↓
1 = v↑L = ∂zv

↑
L = 0

7: for i = 2:L do on Γi−1,i . Downward Sweep
8: v↓i =−S↓i−1∂zv

↓
i−1 +D↓i−1v↓i−1 + vgi−1 |Γi−1,i

9: ∂zv
↓
i =−D∗,↓i−1∂zv

↓
i−1 +N↓i−1v↓i−1 +∂zvgi−1 |Γi−1,i

10: end for
11: for i = L-1:1 do on Γi,i+1. . Upward Sweep
12: v↑i = S↑i+1∂zv

↑
i+1−D↑i+1v↑i+1 + vgi+1 |Γi,i+1

13: ∂zv
↑
i = D∗,↑i+1∂zv

↑
i+1−N↑i+1v↑i+1 +∂zvgi+1 |Γi,i+1

14: end for
15: for i = 1:L do x ∈Ωi . Recombination
16: vi =vgi

−
∫

Γi−1,i

(
Gi(x,x′)∂z′v

↓
i (x
′)+∂z′Gi(x,x′)v

↓
i (x
′)
)

dx′

+

∫
Γi,i+1

(
Gi(x,x′)∂z′v

↑
i (x
′)−∂z′Gi(x,x′)v

↑
i (x
′)
)

dx′

17: end for
18: ṽ = [v1, . . . ,vL]

T . Concatenation
19: end function

KRYLOV ITERATION

We use Generalized Minimum Residual (GMRES) as an iter-
ative solver. Within this framework, we right-precondition the
system as

H Pv = f , u = Pv, (10)

i.e., solve the first system for v, then get u as Pv. After the
first iteration, the only nonzero contribution to the residual
f −H P f occurs at the interface and is due to the concate-
nation of the vi to form ṽ. This observation enables crucial
computational savings: (i) the differential operator H needs
only be applied at these interfaces to obtain the residual, hence
(ii) the result of the preconditioner is needed only in a very
small neighborhood of the slab boundaries.

To ensure well-posedness of the local problems, the residuals
must be supported on the slab interiors only, which we accom-
modate by generating a second partition, staggered with re-
spect to the first partition. Staggered partitions are used in the
context of overlapping Schwarz methods, and were applied in
the scope of Helmholtz solvers in Stolk (2013).

Define the second layered partition of the domain Ω as {Ω̃}L
i=1,

and define the interface Γ̃i,i+1 in the same way as before. The
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slabs are staggered (or interlaced) when they have different
interfaces, namely, Γi,i+1 ∩ Γ̃ j, j+1 = φ , ∀i, j. We extend the
definition of the interface operators to the new partition in
the obvious way and, similarly, we define the preconditioner
P̃. Following the same reasoning, f −H P̃ f is supported on
{Γ̃i,i+1}L−1

i=1 . To retain the property that residuals are defined
on the slab interiors, subsequent iterations alternate between P
and P̃.

It is convenient to present one iteration of the full precon-
ditioner as two steps involving P and P̃ in succession. The
method is initialized by computing P f . Thus, the problem is
reduced to solving

H ψ = f −H P f , (11)

where the right-hand-side is supported on {Γi,i+1}L−1
i=1 . The

solution is then obtained as u = P f +ψ . To solve Eq. 11, we
define the dual-partition preconditioner in Alg. 2.

Algorithm 2. Dual partition Preconditioner
1: function u = P( f )
2: u1 = P̃( f )
3: r = f −H P̃ f . Compute the residual
4: u2 = P(r)
5: u = u1 +u2 . One step of iterative refinement
6: end function

Finally, we solve the preconditioned reduced system

H Pw = f −H P f , ψ = Pw, (12)

using GMRES, where w is supported on {Γi,i+1}L−1
i=1 . To stress

the fact that all the operations are interface-to-interface, each
application of H P is called an “inner iteration” in this note.

NUMERICAL DISCRETIZATION

We discretize the Helmholtz operator using the usual second
order, five point stencil. The absorbing boundary conditions
are imposed via a PML, following Bérenger (1994). It is very
important that the realization of the ∂z derivatives at the inter-
faces is consistent with the discrete Helmholtz equation, hence
we resort to a discrete version of Green’s representation for-
mula to obtain the correct formulas for the discrete layer po-
tentials.

Precomputation
To extract the Green’s functions and to compute the local solu-
tions, a pivoted sparse LU factorization is performed for each
slab, and the LU factors were saved in memory. The LU fac-
tors are independent across slabs, so they can be stored in dif-
ferent cluster nodes (within an MPI environment). The local
solves require no communication between nodes. This step is
independent of f and is performed once.

Compression
Call N the total number of unknowns in the volume. All oper-
ations within the inner loop of the preconditioner are interface-
to-interface. Once discretized, they are reduced to matrix-
vector multiplications where the vector has size O(

√
N). Al-

though the discretized counterparts of Eq. 6 – 9 involve dense

matrices, for which direct summation requires O(N) opera-
tions, it is known from the work of Demanet and Ying (2012)
that these kinds of matrices can be compressed and applied fast
in partitioned low-rank (PLR) form (see Jones et al. (1994)).
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Figure 2: Illustration of the compressed Green’s matrix under
PLR form (ranksub-blocks ≤ 5, ε = 10−6). Each color represent
the numerical rank of each block.

For a desired accuracy ε and maximum rank Rmax, the matrices
resulting from the discretization of the interface-to-interface
operators are compressed using an adaptive block partitioning
along a quadtree until the ε-rank of the leaf blocks is less than
or equal to Rmax.

Fig. 2 illustrates a PLR matrix for the discrete operator S↑i . We
observe that the blocks tend to be larger outside the diagonal,
in part because of the presence of the PML. Once the matrices
are compressed in PLR form, the matrix-vector multiplication
is simple and fast.

COMPLEXITY

We summarize the complexity of each step in Table 1, in which
L is the number of slabs in the partition, N is the total number
of unknowns, and n =

√
N. For the five-point discretization

of the 2D Laplacian, the sparse LU factorization with nested
dissection is known to have α = 3/2, and back-substitution is
known to have linear complexity up to logarithmic factors (see
George (1973)), so β ≈ 1. The value for γ depends on the
scaling κ(n). Indeed, it can be shown that if κ ∼ n (constant
number of points per wavelength) then a perfectly discretized
Green’s matrix can be compressed so that γ = 3/4. However,
we only have access to an approximation of the Green’s func-
tion; the numerical errors present in that approximation hinder
the compressibility of the operators for large κ .

The second-order five point stencil scheme has a truncation er-
ror dominated by h2(∂ 4

x + ∂ 4
y )u ∼ (κ/c)4h2 , and given that

h ∼ 1/n, we need κ ∼
√

n in order to have a bounded error
in the approximation of the Green’s function. In general, the
scaling needed for a p-th order scheme to obtain a bounded
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Step Nnodes Complexity per node
LU factorizations O(L) O((N/L)α )

Green’s functions O(nL) O((N/L)β )

Local solves O(L) O((N/L)β )
Sweeps 1 O(LNγ )

Recombination O(L) O((N/L)β )

Table 1: Complexity of the different steps of the precondi-
tioner. α > 1 and β > 1 are parameters depending on the
factorization algorithm used and in the sparsity pattern of the
matrix. γ < 1 for all of our experiments.

truncation error is κ ∼ n
p

p+2 . If κ ∼
√

n then it can be shown
that γ = 5/8. In that case, the estimate O(N0.625) for the se-
quential complexity is sublinear with respect to N.

Within an HPC environment, it is possible to achieve sublinear
complexity for the online part of the solver (i.e., ignoring the
precomputation of the LU factors). If L scales as a fractional
power of N, i.e., if L ∼ Nδ , then the overall execution time
is O(Nmax(δ+γ,(1−δ )β )). For γ = 5/8 and 0 < δ < 3/8, the
algorithm runs in sublinear time.

NUMERICAL EXPERIMENTS

Smooth Media
For a random smooth medium with contrast cmax/cmin = 5, we
benchmark the solver implemented in Matlab. The number of
iterations required for a reduction of the residual by 10−4 re-
mained between 4 and 5 independent of κ/cmin and L (keeping
the physical width of the PML constant).

We recorded the execution time of the inner iteration, for dif-
ferent scalings of the frequency with respect to n. Fig. 4 shows
that for κ ∼

√
n the execution time scales almost as O(

√
N),

which is sublinear. For κ ∼ n2/3 the scaling is higher although
it remains sublinear. However, for κ ∼ n we can observe that
as N increases, the complexity deteriorates. For large N the
scaling becomes almost linear, due to the inaccurate approx-
imation of the Green’s functions, which introduces high fre-
quency numerical errors, hindering the compressibility of the
blocks.

Rough Media

For experiments in rough media we chose the left side of the
BP model (Billette and Brandsberg-Dahl (2005)). The origi-
nal model was downsampled without any smoothing. Table 2
shows the number of iterations required to reduce the relative
residual to 10−6 and the execution time for one inner iteration.
Table 2 shows that in rough media the number of iterations is
weakly dependent on the frequency and on the number of sub-
domains; and that the execution time scales sublinearly with
respect to the number of unknowns. The same experiment was
performed for the Marmousi2 model (G. Martin and Marfurt
(2006)), obtaining the same behavior: sublinear execution time
and no more than 5 iterations for convergence, for a large range
of frequencies and number of sub-domains.

N ωmax[Hz] L = 5 L = 15 L = 25
2632 1.89 (5) 1.299 (7) 3.727 (7) 6.438
5262 2.64 (5) 2.501 (7) 5.854 (7) 11.39

10512 3.77 (5) 5.779 (8) 7.841 (8) 15.03
21002 5.40 – (7) 19.22 (9) 24.59
21002 10.9 – (9) 32.72 (11) 38.23

Table 2: Number of inner iterations (bold) required to reduce
the relative residual to 10−6, along with execution time (in sec-
onds) for different N and L. Solver is applied to the left side of
BP model and frequency is scaled such that ω ∼ κ ∼

√
n. The

matrices are compressed using ε = 10−6 and rankrmax = 5.
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Figure 3: (left) Patch of the BP model used, (right) wavefield
generated at 10.9[Hz] with L = 25 and N = 21002.
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Figure 4: Execution time for one application of the precondi-
tioner, for different scalings κ ∼ n1/2, κ ∼ n2/3 and κ ∼ n.

DISCUSSION

The numerical method described in this note handles inter-
face data in a manner loosely analogous to other methods such
as Engquist and Ying (2011a,b), and most importantly Stolk
(2013), but results in a preconditioner that effectively switches
the computational burden from a sequential iteration to a com-
pletely parallel precomputation of local Green’s functions. The
sublinear complexity for the online step is unlike that of any
other method, as far as the authors are aware.
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