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Abstract

We present a ray-based finite element method (ray-FEM) for the high-frequency Helmholtz
equation in smooth media, whose basis are learned adaptively from the medium and source.
The method requires a fixed number of grid points per wavelength to represent the wave
field; moreover, it achieves an asymptotic convergence rate of (’)(w_%), where w is the
frequency parameter in the Helmholtz equation. The local basis are motivated by the
geometric optics ansatz and are composed of polynomials modulated by plane waves prop-
agating in a few dominant ray directions. The ray directions are learned by processing
a low-frequency wave field that probes the medium with the same source. Once the lo-
cal ray directions are extracted, they are incorporated into the local basis to solve the
high-frequency Helmholtz equation. This process can be continued to further improve the
approximations for both local ray directions and high-frequency wave fields iteratively. Fi-
nally, a fast solver is developed for solving the resulting linear system with an empirical
complexity O(w?) up to a poly-logarithmic factor. Numerical examples in 2D are presented
to corroborate the claims.
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1. Introduction

We consider the Helmholtz equation:

w?

Hu = —Au(x) — mu(x) = f(x), xeQCR% (1)

plus boundary (or radiation) conditions, where w is the frequency, ¢(x) > 0 is the wave
speed, and f(x) is the source distribution, which we suppose to be compactly supported.
The numerical solution of the Helmholtz equation (1) in the high-frequency regime, i.e.,
w > 1, is notoriously hard to compute. From Shannon’s sampling principle [90], to resolve
a general wave field oscillating at frequency w, a mesh-size h = O(w™1!) is necessary and
sufficient. Hence the number of intrinsic degrees of freedom (DOFs) is O(w?), implying
that the theoretical optimal overall complexity to solve (1) is O(w?). In general, an overall
complexity of optimal order is difficult to achieve due to two typical challenges:

e how to design a discretization that can achieve both accuracy and stability without
oversampling; and

e how to solve the resulting linear system in linear complexity, up to poly-log factors,
as the frequency becomes large.

Methods used to discretize the Helmholtz equation can be broadly categorized depend-
ing on the level of adaptivity that they exploit. We refer to adaptive discretizations as
discretizations that depend on the medium and the source.

Examples of non-adaptive discretization are: standard finite differences [63, 77], stan-
dard continuous or discontinuous finite elements [98, 83, 53, 52, 34], and spectral methods
[100, 79, 101], among many others. They are very general in the sense that they can
be used for a variety of different problems. However, in the case of the Helmholtz equa-
tion they yield either pollution-error!, inducing oversampled sparse discretizations [6, 4]
whose associated linear systems can be solved in optimal complexity [29, 28, 109, 91, 104],
or quasi-optimal sparse discretizations whose associated linear systems are prohibitively
expensive to solve [44, 101] in the high-frequency regime?.

Adaptive methods, on the other hand, aim to leverage a priori knowledge of the solution
of the Helmholtz equation, such as its known oscillatory behavior. In practice, adaptive
methods have mostly focused on adaptivity to the medium, such as polynomial Galerkin
methods with hp refinement [3, 70, 73, 107, 111, 96], specially optimized finite differences
[93, 45, 23, 92, 102] and finite elements [4, 99|, enriched finite elements [32, 30, 33, 31],

! The ratio between numerical error and best approximation error from a discrete finite element space
is w dependent.

?Recent advances such as [100, 79], have lowered the complexity of global spectral methods; however,
they still have a super-linear cost.



plane wave methods [42, 43, 69, 74, 21, 5, 46], generalized plane wave methods [54, 55],
locally corrected finite elements [82, 17, 38], and discretizations with specially chosen basis
functions [76, 7, 8], among many others. They have been especially successful on reduc-
ing the pollution effect by accurately capturing the dispersion relation. However, in the
high-frequency regime, they are either not asymptotically quasi-optimal for heterogeneous
media or they yield linear systems that cannot be solved in quasi-linear time with current
algorithms?.

New advances on adaptive discretizations [41, 78, 14, 49] seem to indicate that quasi-
optimality of the discretization, while still yielding linear systems amenable to fast solvers,
can be achieved if the discretization depends on the medium and the source simultane-
ously. These fully adaptive discretizations aim to leverage analytical knowledge about the
solution, such as asymptotic expansions, which in the case of the solution of the Helmholtz
equation can take the form of the geometric optics ansatz:

u(x) ~ superposition of { A, (x)e™?n )N (2)

in which the phases ¢,,(x) and amplitudes A, (x) depend on the medium, domain boundary,
and source, but they are independent of the frequency.

Indeed, phased-based methods [41, 78, 49] are instances of fully adaptive discretizations.
These methods use (2) to build an approximation space by modulating a polynomial basis
with an oscillatory component using the phase functions, which need to be computed
beforehand.

However, computing the appropriate global phase functions ¢, (x) in the whole domain
is a challenging task for a general medium with varying speed; different phase functions
may be defined in different regions, whose boundaries are difficult to determine a priori;
the error on the solution is proportional to the approximation error of the phase function
4 implying that the phase functions need to be computed extremely accurately,
thus, making the computation of the phase functions the bottleneck in such approaches.

In the present paper, we propose a ray-based method based on the geometric optics
ansatz, in which the phase functions are not explicitly computed, thus bypassing the bot-
tleneck. The method relies on a linear approximation of the phase functions in the form

Gn(%) & Gn(x0) + Vn(x0) - (x = %0) = ¢n(x0) + [Vou(x0)|dn(x0) - (x = x0);  (3)

where an(xo) = % are called the ray directions [12] or the dominant wave directions

times w

[14]. The dominant wave directions are extracted from a low-frequency probing wave field,

3Some of the discretizations mentioned above, in particular plane wave type Trefftz methods with wave
directions in equi-spaced distribution [47], usually yield extremely ill-conditioned systems due to loss of
numerical orthogonality in the basis. In general, the resulting linear system need to be solved using pivoted
QR factorization in super-linear time.

4 If we suppose that the approximation error of computing ¢, is 6¢,, then the approximation error of
the solution is given by |e®¢n — i (#nt3n)| ()56, which is w dependent.



namely, a solution to a low frequency problem, i.e., the Helmholtz equation with the same
medium and source, but at a much lower frequency @ = O(w'/?).

The underpinning property used in this approach is that the phase functions are inde-
pendent of the frequency, and the extraction of their gradient is a stable operation using
signal processing algorithms, such as Numerical Micro Local Analysis (NMLA) [12, 10, 11].
The resulting linear system is sparse and it can be solved efficiently using state of the art
preconditioners such as [29, 28, 109, 91, 104].

1.1. Results

The main result of this paper is an algorithm to solve the Helmholtz equation in the
high-frequency regime with an optimal asymptotic cost O(w?), up to poly-log factors, with
respect to the number of intrinsic degrees of freedom.

The performance of the algorithms owes to the following two ideas:

e we build a fully adaptive discretization based on the geometric optics ansatz and local
linear approximation of the phase functions whose gradients are learned from a low-
frequency problem solved using standard finite elements; the resulting discretization
is stable and asymptotically accurate, in particualr, the error converges to zero as
(’)(wfé), as the frequency increases;

e we solve the resulting linear system using state of the art preconditioners with linear
complexity, up to poly-logarithmic factors.

The adaptive discretization is built by learning the dominant wave directions specific
to the medium and source distribution. In particular, we probe the same medium using
the same source, i.e., solving a low-frequency Helmholtz equation

@2
— Ali(x) — ma(x) = f(x), x€QCR? (4)

plus suitable boundary (or radiation) conditions with the same ¢(x), f(x) and a relative
low frequency w. The computed wave field is post-processed by NMLA or other signal
processing tools to locally estimate the dominant wave directions; both the number of
dominant wave directions and the directions can vary from point to point, thus, providing
the flexibility to deal with general media. The estimated wave directions are then used
to enrich a finite element space, which is used to discretize the original high-frequency
Helmholtz equation.

In particular, we develop a simple ray-based finite element (ray-FEM) method in 2D for
smooth media as a proof of concept study of our proposed approach. We start with a finite
element mesh with mesh-size h satisfying wh = O(1), i.e., a few points per wavelength.
First, the low frequency is chosen by w ~ y/w such that the equation (4) is solved quasi-
optimality on such mesh since @*h = O(1) [71]. Then NMLA [12, 10, 11] (see Section 3)



is applied to the computed low-frequency wave field to estimate the local dominant wave
directions.

The estimated dominant wave directions are then used to enrich the local finite element
basis following (2) in order to discretize the high-frequency Helmholtz equation on the same
mesh.

We develop an efficient preconditioner to solve the resulting linear system iteratively
using GMRES [88]. The preconditioner is based on the method of polarized traces [109].
Numerical experiments show that it is possible to solve the linear system in O(N) com-
plexity with a possible poly-logarithmic factor for a smooth medium, where N is the total
number of unknowns.

Moreover, once a more accurate wave field is computed, it can be used to get a better es-
timation of the dominant wave directions, which can be used to improve the high-frequency
wave field iteratively. If necessary, the solution for the high-frequency Helmholtz equation
can also be processed by NMLA to improve the estimation of local dominant wave direc-
tions which can be used to further improve the high-frequency solution.

1.2. Related work

In this section we briefly review related approaches to solve the Helmholtz equation,
and we compare some of them with the approach proposed in this paper.

As stated in the prequel, it is difficult to design a sparse discretization that can achieve
both accuracy and stability under the condition wh = O(1) as w becomes large. This
is mainly due to the pollution effect in error estimates for finite element methods [4, 6],
i.e., the ratio between numerical error and best approximation error from a discrete finite
element space is w dependent.

From a physical point of view, the wave-field governed by the Helmholtz equation
contains waves propagating in all directions and satisfying a specific dispersion relation.
As a consequence, numerical errors due to dispersion or interpolation for these propagating
modes will propagate as physical waves to pollute the whole computed wave field. In
particular, a compact stencil on a mesh that is comparable to the wavelength cannot
approximate the dispersion relations for propagating waves in all direction uniformly well
as w — oo [6].

In order to minimize (or eliminate, if possible) the pollution effect, various approaches
have been proposed lately in the literature. Approaches based on polynomial basis coupled
with non-standard variational formulations (such as [75]) have been proposed in order to
approximate the Helmholtz operator so that the resulting discrete problems have better
stability properties. For example, with an appropriate choice of coefficients, low-order com-
pact finite-difference discretizations can effectively reduce the dispersion error [35, 58, 80].
Another instances of such approaches are the generalized finite-element method (GFEM)
[4] and continuous interior penalty finite element method (CIP-FEM) [107, 111], the in-
terpolated optimized finite difference method (IOFD) [93, 94], Galerkin methods with hp



refinement [70, 73, 72], among many others. These methods successfully reduce the pollu-
tion error; however, they require either a more restrictive condition on the mesh size or the
degree of the polynomial approximation to be w dependent, resulting on a large increase in
the size and interconnectivity of the associated linear systems as the frequency increases.

On the other hand, many approaches rely on specially designed basis in order to ac-
curately represent the solution. One of such approaches is the multiscale Petrov-Galerkin
method [38, 17, 82]; the method relies on local corrections, which are numerically computed
in a fine mesh, to the basis functions. This method is stable and quasi-optimal under the
minimal resolution condition wH = O(1) and m = O(logw) for the coarse mesh H and an
oversampling parameter m. However, the condition on the fine mesh size, h, to solve the
local subscale correction is the same as the standard FEM. It requires w®2h = O(1) for
stability [107] and w?h = O(1) for quasi-optimality [71].

Other instances of such approaches are methods that incorporate appropriate oscillatory
behavior into the basis of Galerkin methods. The key issue for this strategy is how to design
the oscillatory basis. Since the Helmholtz solutions locally behave like plane waves, one
approach is to incorporate plane waves with a predetermined equi-spaced distribution in
directions into the basis. For example, products of plane waves with local finite elements
basis are used in the generalized finite element methods (GFEM) [71], partition of unity
finite element methods (PUFEM) [5], virtual element methods (VEM) [81], discontinuous
Galerkin methods (DG) [42, 46, 36] and ultra weak variational formulation (UWVF) [21,
20, 18]. Trefftz-type methods [47] use local solutions of the Helmholtz equation as the basis
functions, which in the case of piece-wise constant media are plane waves.

It is well known that these plane wave based methods need fewer DOFs to achieve
better accuracy than the conventional finite-element methods [47, 64]. A comparison of
these methods can be found in [37, 51, 39, 64]. However, these methods have two caveats:
they normally perform poorly when the source is not zero, and it is not clear how to choose
the number of plane wave directions & priori. In order to achieve a good accuracy, a fine,
w dependent [47], resolution in the angle space is required. This refinement in the angle
space will not only increase the DOF's significantly but also make the resulting linear system
extremely ill-conditioned due to the numerical coherence of the elements of the basis.

Other basis functions can be utilized, such as Bessel functions [67, 68, 49] to improve
the adaptivity to the curvature of the solution’s wavefront and also reduce the linear de-
pendence of the basis. Moreover, generalized plane waves [54, 55, 56] in the form e’ ) with
an appropriate complex polynomial P(x) are developed to achieve high-order convergence
for smooth heterogeneous media. Another instance of methods using other basis functions
is the discontinuous enrichment method (DEM) [31, 32, 33, 97|, which combines Lagrange
multipliers on the mesh interfaces to enforce continuity of the solution with approxima-
tion spaces composed by sums of continuous polynomials and discontinuous plane waves,
leading to a reduction of the number of DOF's.

A more adaptive approach to solve the high-frequency Helmholtz equation is based on
the geometric optics ansatz of the wave field (2). In the ansatz, phases and amplitudes are



independent of frequency and hence are non-oscillatory and smooth except at a measure
zero set, e.g., focus points, caustics, corners in a smooth medium. Once the phase functions
of the wave fronts are available, the oscillatory pattern of the wave field is known, phase-
based numerical methods [41, 78, 14, 49] explicitly incorporate these known phases into
the basis functions to significantly improve both stability and accuracy.

As discussed in the prequel, computing the global phase functions for general media is
a challenging task. Meanwhile, a phase function can be locally approximated by a linear
function with a leading term d,,(xo) - X, where d,,(xg) is the local dominant wave direction
and can be extracted stably by signal processing algorithms. With pre-computed dominant
wave directions by ray tracing [22, 16, 15, 49|, the dominant plane wave method [14]
incorporates them into the local basis to combine the advantages of phase-based methods
and plane wave methods. Since only the dominant directions of wave fronts relevant to
the problem are involved in this approach, the number of degrees of freedom can be kept
minimal, and ill-conditioning of the resulting linear system due to redundancy can be
reduced.

Finally, under the stronger assumption that the medium can be written as a homoge-
neous background plus a compactly supported perturbation, the Helmholtz equation can
be converted to a second-kind integral equation by introducing the Green’s function cor-
responding to the background, resulting in the so-called Lippmann-Schwinger equation.
Recent advances have shown that it is possible to solve the Lippmann-Schwinger equation,
and hence the Helmholtz equation, in optimal time [110]. In this paper, however, we treat
a more general case.

1.3. Outline of the paper

Here is an outline of this paper. We first describe the ray-FEM using the geometric
optics ansatz as the motivation and study its approximation property in Section 2. In
Section 3 we introduce the NMLA with its stability and local ray direction error analyzed
in Appendix A and B. Section 4 provides the full presentation of the numerical algorithm
whose empirical complexity is given in Section 5. Numerical results are presented in Section
6. Conclusions and future works are summarized in Section 7.

2. The Ray-FEM Method

In this section we describe the ray-FEM method for the Helmholtz equation and its
rationale. We explain briefly the geometric optic ansatz and how it is approximated locally
via a superposition of plane waves propagating in a set of dominant directions. We then
proceed to explain how these plane waves are incorporated into the finite element basis
to improve both stability and accuracy of the numerical solution to the high-frequency
Helmholtz equation.



In this section we suppose that the dominant directions are known exactly. In Section
3 we will describe how to learn the dominant wave directions by probing the medium using
low-frequency waves.

We use the following boundary value problem in 2D to illustrate our method,

—Au— kK (x)u=f, in Q, (5)
% +ifk(x)u =g, on 01,

where (2 is an open bounded Lipschitz domain in R?, k(x) = w/c(x) is the inhomogeneous
wave number, f € L?(Q) is the source and g € L?(9f) is the boundary data. Moreover,
we suppose that both source and boundary data are frequency independent. Equation
(5) is usually refered to as the Helmholtz equation with impedance boundary conditions.
This equation was chosen in order to easily impose other types of boundary conditions by
modifying the coefficient 8. Specifically, the Dirichlet boundary condition corresponds to
B = oo and the first order absorbing boundary condition to § = +1. Moreover, it is easy
to extend (5) to incorporate absorbing boundary conditions implemented via PML [13], as
it will be performed in the numerical experiments in Section 6.3.

2.1. Geometric optics ansatz

The standard derivation of the geometric optics ansatz uses WKJB approximation [57,
60, 87] (or the Liineberg-Kline expansion [61]) for the solution to the Helmholtz equation

(1):

U(x) ~ ) i Ag(x) (6)

Wt
=0

By taking w — oo and considering only the first term one has

ux) = A= + 0 (1), 7)

w

where A is usually called the amplitude and ¢ the phase. The key features of the geometric
optics ansatz are:

e A and ¢ are independent of the frequency w;
e A and ¢ depend on the medium, ¢(x), and the source distribution, f(x).

Moreover, except for a small set of points, e.g., source/focus points, caustics, and disconti-
nuities of the medium, A and ¢ are smooth functions satisfying the following PDE system

for f = O(WY),

(cikonal) |Vo| ==,  (transport) 2Vé-VA -+ AAG = 0. (8)
C



As long as the medium is smooth and no caustic occurs, the asymptotic expansion (6)
holds in the sense that the difference between the exact solution of the Helmholtz equation
and an N-term truncation of the expansion (6) can be made arbitrarily smooth for all x
provided N is taken sufficiently large. This has been justified in [62] for oscillatory initial
value problems of hyperbolic equations and further made rigorous in the theory of Fourier
integral operators [48]. In practice, the one-term asymptotic expansion (7), namely, the
so-called geometrical-optics term, usually yields sufficiently accurate asymptotic solutions
[59, 1, 2, 66, 85, 86, 65].

The coefficients {4;} in the asymptotic expansion (6) satisfy a recursive system of
transport equations [1, 2, 86] which are coupled with the eikonal equation. Under the
assumption that the medium is smooth and no caustic occurs, one may solve the transport
equations to estimate the coefficients {A4;} in different formulations [1, 2, 65]. Since the
geometrical-optics term is oscillatory when w # 0, it should be understood in the L? sense
rather than the L°° sense.

Assuming that the medium is smooth and no caustic occurs, the asymptotic expansion
(7) will not fail as long as the frequency parameter w is not zero, but the resulting difference
between the asymptotic expansion (7) and the exact solution may be large in the L2
norm as the frequency approaches zero [86]. Given an inhomogeneous medium, however,
it is hard to pin down how large w should be so that the asymptotic expansion (7) is
accurate up to a certain specified accuracy, as this is closely related to both fluctuations
and correlation lengths of the normalized propagation speed of the medium [106] and the
frequency parameter w. We refer the reader to [27] for further details on the geometric
optics ansatz.

2.2. Local plane wave approximation

In general, the phase function, ¢, and the amplitude function, A, are multi-valued
functions corresponding to multiple arrivals of wave fronts [9]. Hence one can further
decompose the geometric optics ansatz into a superposition of several wave fronts in the
form:

u(x) = superposition of {An(x)eiwd’"(x)}fj:()f) +0 <1> , 9)
w

where N (x) is the number of fronts/rays passing through x, and the phases ¢,, and ampli-
tudes A,, are single valued functions satisfying the eikonal/transport equations (8), each
defined in a suitable domain with suitable boundary conditions [9].

Based on the above geometric optics ansatz, one can derive a local plane wave approxi-
mation at any point where ¢,, and A,, are smooth with variations on a O(1) scale. Indeed,
using Taylor expansions on a small neighborhood around an observation point xq for the
n-th wave front, we have,

w

u(x) = (An(x0)+ VAn (x0) (x—x0)) (@ (x0)+Ve(x0)-(x=x0)) | (h2+wh2+1> . (10)

9



for |[x — xo| < h < 1.

Define
T Vo (XO)

e |V (xo0)|

as the ray directions of the wave fronts at xg, k(x¢) = w/c(xp), and

= ¢(x0)Vn(x0) (11)

Ba(x) = (An(x0) + VA (x0) (x = x0) ) (=) =Folso)0) (12)

the affine complex amplitude. By replacing (11) and (12) in (10) we have

) = 1
u(x) = By (x)eFxoldnx 4 0 <h2 + wh? + w) : (13)

for |x —xg| < h < 1.

From (9) and (13) we have that u can be approximated locally by a superposition of
plane waves propagating in certain directions with affine complex amplitudes. Moreover, as
w — 00, such that wh = O(1), the asymptotic error for the local plane wave approximation
(13) is O(w™1), which is of the same order as the asymptotic error for the original geometric-
optics ansatz (9). We use (13) as the motivation to construct local finite element basis with
mesh size h = O(w™1), in which an affine function is multiplied by plane waves oscillating
in those ray directions, resulting in local approximations similar to (13).

2.8. Ray-based FEM formulation

We use a finite element method to compute the solution to (5), whose standard weak
formulation is given by

Find u € H'(Q), such that B(u,v) = F(v), Yve HY(Q), (14)
where
B(u,v) := / Vu - VodV — / EundV +iB ¢ kuwdsS, (15)
Q Q oQ
F(v) = / fvdV—i—j{ gudsS. (16)
Q a0

The domain, €2, is discretized with a standard regular triangulated mesh, with mesh-
size h. The resulting mesh is denoted by T, = {K}, where K represents a triangle of
the mesh. Using the aforementioned mesh we define two approximation spaces for the
variational formulation (14):

e the standard FEM (S-FEM), where we use low-order P1 finite elements, i.e., piece-
wise bilinear functions;

e the ray-FEM, where we use P1 finite elements multiplied by plane waves as in (13).

10



For a given element K € 7, we denote by V; and x;,j = 1,2, 3, the vertices of K and
their coordinates, respectively. Moreover, we denote by {y; (x)}?:1 a partition of unity
consisting of piecewise bilinear functions satisfying ¢;(x;) = d;j, i,j = 1,2,3, where 6;; is
the Kronecker delta. The basis given by {goj(x)}?zl is usually called the nodal basis for
Lagrange P1 finite elements. The standard local approximation space is given by

VS(K) = Span{@j(x)ﬂj = ]-a 2a 3}7 (17)
and the global P1 finite element space
Vs(Th) = {v € C°(Q) : v|k € Vs(K), VK € Ty} (18)

To define the ray-FEM we enrich the P1 finite elements by incorporating the ray in-
formation. Letting {djﬁl};z | be n; ray directions at the vertex V;, we define the ray-based
local approximation space by

Viay(K) = span{p;(x)e™ 9™ | = k(x;), j=1,2,3, 1=1,..n;},
and the global ray-FEM space by
VRay(Th) = {v € C%(Q) : v|x € VRay(K),VK € Tp,}.
We can define the standard FEM method by
Find u € Vg(Tr), such that B(u,v) = F(v), Vv e Vg(Th). (19)
Analogously, we define the ray-FEM method by
Find u € VRay(Th), such that B(u,v) = F(v), Yv € VRey(Th). (20)

2.4. Approximation property of ray-FEM with exact ray information

We provide a simple computation to estimate the approximation error of the ray-FEM
space. In particular, we compute an asymptotic bound on inf,, cvy,, (1) llu — unllr2(0),
where wu is the solution to the Helmholtz equation (1). We achieve the bound by estimating
the interpolating error using Vge,(K) as a basis.

In the computation we assume that the ray direction, which is the gradient of the phase
function ¢, and the phase function itself, are exactly known. For simplicity, we assume
N =1 for the asymptotic formula in (9), i.e., only one ray crosses each point of the domain
thus no caustic occur. Similar results can be derived for the multiple-ray crossing case:
N > 1. In addition we suppose that f, the source, is zero inside the domain; otherwise,
singularities in the amplitude may appear. Under those circumstances A and ¢ are smooth.
From the geometric optics ansatz, we have

u(x) = A(x)e™?™ + 0 (W) . (21)

11



We denote by Nj, the total number of vertices on the mesh 7j, by {x; }é\[:hl the coordi-

nates of all mesh nodes, and by {¢;(x) j-vzhl their corresponding nodal basis functions for
the standard P1 element.

We note that e@[?(5)=Vo(x)%5] ig o constant for the nodal basis associated to X; in an
element K. From this observation we can easily deduce that the local ray-FEM space can
be rewritten as

Viay(K) = span{p;(x)e*i4i*} = span{p;(x)e Vo) x}
= Span{goj (x)eiwv¢(xj)‘Xeiw[¢(xj)—v¢(xj)~xj-]},
= span{p; (x)eIPCs) TV (x=x5)]},

Hence the nodal interpolation of the solution can be written as
Np
uy = ZA(X].)%. (X)eiw[¢(Xj)+V¢(Xj)~(X*Xj)}7 (22)
j=1

which, by construction lies within the global ray-FEM space Viray(7h).
Let S; be the support of ¢;(x), and |S;j| ~ O(h?) be the area of S;. Then using the
triangular inequality and the smoothness assumptions we have

lu—urllr2i@) < AP = 3200 A(x;)p; (x)e™C) | 12 q)
HI o5 Axg)ip;(x) (€000) — il +Vo060) el || o ) 4+ O(w ™)
< AG) = X2 Ao (0l 2o
+ Z;,V:hl ||A||Lw(ﬂ)||eiw¢()c) — wlo(x;)+Vo(x;) (x—x;)] ||L2(S]~) + 0w
S W2 Al g2 ) + Z;V:'H | Al| oo (@) wh?||[ V2| oo () |S] + O(w ™)
S W2 Al 2 () + wh?|| Al Lo () V@l oo () + O(w ™).

To be more precise, h%|A| m2(0) comes from the interpolation error estimate [95], and
wh?|| Al oo ()| V2P| oo () comes from the Taylor expansion of ¢(x) near x;j, where the
constant for < is a generic positive constant only depending on the domain 2. This im-
plies that

inf : lu — unllr2(0) S PP Alg2(0) + wh?||All oo ()| V2Bl Loc () + Ow™ ). (23)

UpEVRay (Th
Or, asymptotically,
inf ju— up||p2) = O(h* + wh® + w™). (24)

Uh eVRay (7-h

12



Moreover, if the exact rays are known and the mesh size follows h ~ w™!, then we have

inf uU—Uu = 0w, 25
ot = sy = O ™) (25)

i.e. that the approximation error decays linearly with %, without oversampling.

Remark 1. The ray information can be incorporated into other Galerkin basis in the same
fashion. For example, in the hybrid numerical asymptotic method of [41], the basis functions
are constructed by multiplying nodal piece-wise bilinear functions to oscillating functions
with phase factors; the plane wave DG method of [14] employs the products of small degree
polynomials and dominant plane waves as basis functions; the phase-based hybridizable
DG method of [78] considers basis functions as products of polynomials and phase-based
oscillating functions. Moreover, the phase or ray information in these methods is obtained
from solving the eikonal equation with ray tracing and related techniques.

3. Learning Local Dominant Ray Directions

In Section 2 we use geometric optics to provide the motivation for the ray-FEM by
building an adaptive approximation space that incorporates ray information specific to
the underlying Helmholtz equation. However, the ray directions, which depend on the
medium and source distribution, are unknown quantities themselves, hence they need to
be computed or estimated. One way is to compute the global phase function, by either
ray tracing or solving the eikonal equation, and take its gradient. As discussed in the
introduction, computing the global phase function in a general varying medium can be
extremely difficult.

In the present paper we propose a totally different approach. This novel approach
is based on learning the dominant ray directions by probing the same medium with the
same source but using a relative low-frequency wave. To be more specific, we first solve
the Helmholtz equation (4) with the same speed function ¢(x), right hand side f(x) and
boundary conditions but with a relative low-frequency @ ~ y/w on a mesh with size h =
O(@~?) = O(w™!) with a standard finite element method, which is quasi-optimal in that
regime. Then the local dominant ray directions are estimated based on the computed
low-frequency wave field. The key point is that the low-frequency wave has probed the
medium specific to the problem globally while only local dominant ray directions need to
be learned, which allows us to handle multiple arrivals of wave fronts locally. In particular,
we use numerical micro-local analysis (NMLA), which is simple, stable and robust, to
extract the dominant ray directions locally. However, this is a signal processing task that
can be accomplished using other methods such as Prony’s method [19], Pisarenko’s method
[84], MUSIC [89], matrix pencil [50], wavefront tracking methods [103], among many others.
The main advantage of NMLA is that it was explicitly designed for capturing the dominant
directions, in particular, NMLA was designed to be more robust to perturbations of the
underlying model.
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3.1. NMLA

In this subsection, for the sake of completeness, we provide a brief introduction to
NMLA developed in [12, 11]. If we suppose that a wave-field is locally a weighted superpo-
sition of plane waves having the same wave number and propagating in different directions.
Then the aim of NMLA is to extract the directions and the weights by sampling and pro-
cessing the wave field locally. In the sequel we use a 2D example to illustrate the method,
which can be easily extended to 3D cases [12].

Suppose that a wave field, denoted by u(x), is composed of N plane waves around an
observation point X,

N . 3 ~
= Bpetto)dn - d, | = 1. (26)

We suppose that we can sample the wave field, u(x), and its derivative on a circle S, (%)
centered at x¢ with radius r. The wave field can be written under the model assumption
in (26) as

u(xp +78) Z B, e d", a=kr, scSh (27)

Furthermore, we define the angle variables § = 0(s) and 0, = G(Hn) such that s =
(cos@,sinf), d,, = (cosby,sinb,), and x(0#) = xo + rs(f). Using the angle based nota-
tion we sample the impedance quantity on the circle S, (x),

1
U9) = %&,u(x(ﬂ)) + u(x(0)), (28)
which removes any possible ambiguity due to resonance [11] and improves the robustness
to noise for solutions to the Helmholtz equation. Then we apply the filtering operator B
to the impedance quantity

& (FU)etf

1
BU) = 57— Z; i (Ji(a) — (@)’

(29)

[e3

where L, = max(1,[a], o + (a)% — 2.5]), J; is the Bessel function of order I, J] is its

derivative and
1 2

2
is the [-th Fourier coefficient of U. It is shown in [11] that

(FU), := U(9)e=dg (30)

N
= Z BnSLa (0 - en)v (31)
n=1
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where Sr.(0) = %. As a consequence, we have that if & = kr — oo then
B,, if0=0, (rs=d,);

2
0, otherwise. (32)

lim BU(0) = {
a—r00

Then it is possible to obtain the directions and the amplitudes by picking the peaks in the
filtered data in (31); see details in Algorithm 2.

However, for applications, the measured data are never a perfect superposition of plane
waves; therefore, we provide, for completeness, stability and error estimates for NMLA
from [11] in Appendix A. In principle, for a single wave, as long as the perturbation is
relatively small with respect to the true plane wave signal, say the relative noise level do
not surpass 25%, the estimation error is (9(%) In other words, the larger the radius of
the circle compared to wavelength the more accurate the estimation is.

In our application, the datum is the numerical solution of the Helmholtz equation. In
addition to noises and numerical errors, there are perturbations due to two model errors :

e the geometric-optics ansatz has an asymptotic error of order O(w™!) (see (9));

e in the geometric-optics ansatz the wave field at a point is a superposition of curved
wave fronts. In particular, the curvature of the wave fronts results 1in a compromise
in the choice of the radius of the sampling circle to be of order O(w™2) for the NMLA

in order to achieve the stability and the minimal error of order (’)(w‘é).

A detailed analysis is provided in Appendix B. We mention that the accuracy of NMLA
can be improved by a curvature correction for a single point source; we refer the reader
to Appendix C for details. Below is a summary of the NMLA (plus curvature correction)
algorithm.

Algorithm 1 NMLA
function d, = NMLA((xq, Tp,w, h, c, u)

1:

2 choose 7 ~ w2 > Radius for the sampling circle
3 choose M ~ wr > Number of sampling points
4: AO =27 /M, > Angular discretization
5: for 6 =0: Af: 27 do

6 x(0) = xo + rs(0)

7 Ug) = ic(“’To)aru(x(G)) + u(x(6)) > Sample impedance data
8 F(6)=BU(9) > Apply the filter (29)
9: end for

10: 0=1[0:A0:2x], F=F(0)

11: 0.s: = FindPeaks(0, F)
12: d, = d(0cst)

13: end function
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Algorithm 2 FindPeaks

1: function 6., = FINDPEAKS(0, F)

2 dF =F[2:end] — F[1 : end — 1] > Approximate the differentiation
3 s = sign(dF) > Take the sign
4: ds =s[2:end] —s[l : end — 1]

5 idx =1+ find(ds < 0) > Find the index of local maxima
6 0.5t = O]idx]

7: end function

Algorithm 3 NMLA Curvature Correction

1: function d, = NMLA-CORRECTION(xq, Tp,w, h, c,u)

2 choose r ~ w_%, M ~wr, A =271 /M

3 a = wr/c(xp), Lzmax(l,[a],[a%—(a)% —2.5])

4: for 6 =0: A6 : 27 do

5: x(0) = xo + rs(0)

6 U(0) = 7255y Oru(x(0)) + u(x(0)), F(0) = BU(0)

7 end for

8 0=[0:A0:2n], F=F()

9: Ocst = FindPeaks(0, F) > Get the first angle estimation
10: for{=—-L:Ldo

11: Bi=FFE) > Compute the Fourier coefficients (C.2)
12: Y = Imag(log(%eiwest)) > Compute the imaginary part (C.4)
13: end for

14: 06 = LeastSquare([¢y)i1=—r.1.) > Estimate the coefficient of linear term (C.4)
15: Ocor = Ocst — 00, d, = d(Ocor) > Correct the angle

16: end function

3.2. Approximation property of numerical ray-FEM

In this section we incorporate the errors from the estimation of the ray directions into
the approximation error for the ray-FEM method, in which ray directions are first estimated
by applying Algorithm 1 to the solution of the Helmholtz equation with a relatively low
frequency. The estimated ray directions are then used to generate the approximation space.
With the same assumptions as in Section 2.4, we estimate an upper bound on

inf uU—u , 33
uhe\/ﬁay(ﬁ) H h||L2(Q) ( )

when the ray-FEM space, Vﬁay(ﬁ), is constructed using the estimated ray directions from
high-frequency waves by NMLA.
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From Appendix B, the error estimation of dominant ray directions is O(w~'/2). The
numerical ray-FEM space Vﬁay(ﬁ) is defined similar to Ve, (75) with the exact ray direc-
~ ~h ~ =~k
tions {d;} replaced by the ones {d;} estimated by NMLA and |d; —d;| ~ O(w=1/?).

We denote by
Ny,

. ~h
u'} — Z A(Xj)(pj(X)eW[qﬁ(Xj)Jrl/C(Xj)dj (x=x;)] (34)
j=1

the nodal interpolation of the solution in V}f{ay (71,) analogous to the definition of u; in (22).
Then we have

~h

lur — ubllrz) = | 030 Alx))p;(x) @) (el Vol () _ giw/ele)d; Gy o)

. 3 1 ; A’-l~ X—X;
< S Al oo e ™/ 20 0ems) — g/ )y Coxal| g

~ ~h
S 0 Al oo @whlle™ [l ldj — dj 15,1
S w2 All L @ lle™ | Lo 0)-

Hence,

inf,, evi () lu—unllr2@) < llu—ufll2@) < lu—urllr2@) + lur — w2
S WAl () + Wh? || All oo () I V29l oo () (35)
+w 20| All oo (ol | oo () + O(w ™).

Under the same smoothness assumption as in Section 2.4, the constant for < only depends
on the domain, and more compactly, we have that

inf  Ju—upll2q) = Oh* + wh® + wh +w™). (36)
un€VE,, (Th)
Comparing with (24) and (36), the error in the estimation of dominant ray directions
due to NMLA leads to the extra term w'/2h, which is the leading order in the high-frequency
regime. Specifically, if wh = O(1), then we have

inf Ju— upl|2iq) = OW™/?). (37)
un€VE,, (Th)

We point out that the desirable convergence rate in this case is O(w™!), which has
the same order as the geometric optics ansatz. However, as analyzed in Appendix B,
for a general wave field, the optimal achievable asymptotic error of the estimation of the
dominant wave directions using NMLA is O(w~'/2). This is indeed the bottleneck to
improve the convergence order. In particular, the leading term of the approximation error

~ ~h ~
for the numerical ray-FEM comes from ||u; — U}ILHL2(Q), which is wh|d; — d;[ ~ |dj —
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Hﬁ ~ w2 if wh = O(1). Still, we can obtain a higher order approximation for some
special cases. For example, we can use second order curvature correction version of NMLA
for single point source in homogeneous media to improve the ray estimation to O(w™1),
meaning that we can obtain the optimal convergence order in this special case.

4. Algorithms

In this section we provide the full algorithm for the ray-FEM including a fast iterative
solver based on a modification of the method of polarized traces for the resulting linear
systems. In order to streamline the presentation and to make the algorithm easier to
understand, we introduce several subroutines.

More specifically, we separate the full algorithm into three conceptual stages:

1. probing the medium by solving a relatively low-frequency Helmholtz equation with
the standard FEM;

2. learning the dominant ray directions from the low-frequency probed wave field by
NMLA;

3. solving the high-frequency Helmholtz equation in the ray-FEM space.

If necessary the second stage can be iteratively applied to the high-frequency wave field
computed in stage 3 to improve the estimation of dominant ray directions and then repeat
stage 3 to obtain more accurate high-frequency wave field.

We remind the reader that the ultimate objective of the algorithm presented in this
paper (i.e., Algorithm 7) is to solve the Helmholtz equation (1) at frequency w with a total
O(w?) (up to poly-logarithmic factors) computational complexity. In order to achieve this
objective, we discretize the PDE with a mesh size h = O(w™!), which leads to a total of
O(w?) number of degrees of freedom and a sparse linear system with O(w?) number of
non-zeros. Then we develop a fast iterative solver with quasi-linear complexity to solve
the resulting linear system after discretization. Below is a more detailed description of
the three stages. Finally, following the notation defined in the prequel, we denote the
triangular mesh by 7p,.

4.1. Probing

We first solve the low-frequency Helmholtz equation (4) with @ ~ y/w in the same
medium and with the same source on 7. The low-frequency problem is solved using the
standard finite element method (S-FEM) with linear elements as prescribed by Algorithm
4.
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Algorithm 4 Standard FEM Helmholtz Solver
function u, ;, = S-FEM(w, h, ¢, f, g)
fori,j=1: Ny do

H; ; = B(yi, ¢j) > Assemble Helmholtz matrix
b; = F(yj) > Assemble right-hand side
end for
u,p = H 'b > Solve linear system

end function

Let ug 5, = S-FEM (W, h, ¢, f, g) denote the S-FEM solution of the low-frequency Helmholtz
equation on 7. Since @?h = O(1), S-FEM is quasi-optimal in the norm | - || :=
IV |l + k| - ||z2 [71], and it has an optimal L? error estimate [107].

4.2. Learning

Once the low-frequency problem has been solved, we extract the dominant ray directions
from ug ;, using NMLA as described in Section 3.1 around each mesh node. We utilize the
smoothness of the phase functions, and hence the smoothness of the ray directions field
to reduce the computational cost. The reduction is achieved by restricting the learning
of the dominant ray directions to vertices of a coarse mesh down-sampled from 7. Such
re-meshed coarse mesh is denoted by T, = {K°}, where h. = O(v/h). The resulting
dominant ray directions are then linearly interpolated onto the fine mesh 7y.

Note that at each vertex of 7j,, the wave field ug ) on the fine mesh 7; is used by
NMLA to estimate the dominant ray directions. There are three sources of errors in the
learning stage:

e numerical errors of ug p;
e model errors in the geometric-optics ansatz;

e interpolation errors.

The numerical error for ug j, by Algorithm 4 in the L? norm [107] is O(wh? + &2h?) =
O(w™1), which is negligible with respect to the model error in the geometric optics ansatz.
The error introduced by the geometric optics approximation and NMLA is (’)((I)_%) as
shown in Section 3.1 and Appendix B. The error due to the linear interpolation on 7p,
to obtain the ray direction estimations at every vertex on 7j, is O(h?) = O(h) = O(w™1),
which is much smaller than the model error in the geometric-optics ansatz. Hence the
overall error in the ray direction estimation based on NMLA on ug} and interpolation is

O(Jﬁ%). The dominant ray direction estimation algorithm is summarized in Algorithm

5. For each node x; on mesh 7}, the number of dominant ray directions is denoted by n;,
J it

dw,h - {dw,h lil'
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Algorithm 5 Ray Learning

: function {di,h}jy:h1 = RAYLEARNING(w, h, he, ¢, uy, 1)
for j=1: N, do
dfv,hc = NMLA(XS, Th,w, h, ¢, u, 1)
end for ‘
{d‘z)’h}j.\ll = LinearInterpolation(T,, Tn, {d, ;. }j\f:hf)
end function

4.8. High-frequency solver

Once the dominant ray directions on 7, have been computed, we can construct the
ray-FEM space Vgqy(7r) and solve the high-frequency Helmholtz equations following (20),
which is implemented in Algorithm 6.

Algorithm 6 Ray-FEM Helmholtz Solver

1: function ug, 5, = RAY-FEM(w, h, c, f,g,{di,h}jy:hl)

2: Ndof =0

3: for j=1:Ny,l=1:n;do

4: Ndof:Ndof+17 m:Ndof

5: P (x) = goj(x)eiw/ olx;)djix > Construct ray-FEM basis functions
6: b= Ym (%) > Nodal values of ray-FEM basis functions
7 end for

8: for m,n =1: Ng,y do

9: H,, , = B(¢m,¥n) > Assemble Helmholtz matrix
10: b, = F(¢n) > Assemble right-hand side
11: end for

12: v=H"1b > Coeflicients of ray-FEM basis functions
13: ug,n =V- z/p\ > Ray-FEM solution on mesh nodes

14: end function

In general, the accuracy of the solution computed by Algorithm 6, using the ray-FEM
method depends on the accuracy of the computed dominant wave directions. From section
4.2, the accuracy order of the learning stage from the low-frequency wave field is (’)(fu_%),
and following the error analysis of section 3.2, the consequent ray-FEM solution has the
same order of accuracy. However, the iterative ray-FEM Helmholtz solver, as presented in
Algorithm 7, provides a way to improve approximations for both dominant ray directions
and the high-frequency wave field.

Remark 2. Extensive numerical experiments and Appendiz A indicate that the NMLA
process in learning dominant ray directions stage is remarkably stable even for noisy plane
wave data. Hence, the iterative process in Algorithm 7 usually needs very few iterations to
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Algorithm 7 Iterative Ray-FEM High-Frequency Helmholtz Solver

1: function ug, = ITERRAY-FEM(w, ¢, f, g)

2 @N\/@,hww_l,hcww_%

3 ugp = S-FEM(W, h,c, f, ) > Low-frequency waves

4: {dz 1} = RayLearning(w, h, he, c,ug p,) > Low-frequency ray learning
5: ua, n = Ray-FEM(w, h,c, f,g9,{dz1n}) > High-frequency waves
6
7
8
9

tol = 1, niter = 0, ui h = Udgh
while tol > € or niter > maz_iter do
{dwr} = RayLearning(w, h, h., c, ui,h) > High-frequency ray learning
U, n = Ray-FEM(w, h, ¢, f,9,{dun}), u2 ), = ua, n
10: tol = |lug,;, — v pllz20) /10 jllz20)
11: niter = niter + 1, u&hh = ui,h
12: end while
13: end function

reach the desired accuracy. Typically, we only need one or two iterations in our numerical
tests.

Remark 3. Since NMLA can not be used to estimate ray directions near the point source, a
slight modification of Algorithm 7 is used for solving a point source inside domain problem.
First, we approximate the right hand side with the associated column of the mass matriz
(normalized by mesh size h). Moreover, we use a standard finite element basis function
at the source point. For vertices near the source, we apply the radial directions (exact ray
directions in homogeneous medium) in the construction of the approximation space for the
ray-FEM method. Meanwhile, for vertices away from the source, we find the dominant ray
directions by NMLA. Under this modification, ray-FEM can capture the phase accurately
and it will be demonstrated numerically in Section 6.2.

4.4. Fast linear solver

To achieve the quasi-linear overall complexity mentioned in the introduction, it is nec-
essary to solve the linear system resulting from both standard and ray-based FEMs, which
we write in a generic form as

Hu = f, (38)

in a linear complexity (up to poly-logarithmic factors). This solver is, in fact, the compu-
tational bottleneck of Algorithms 4 and 6.

For a smooth medium, this can be achieved by modifying the method of polarized traces
[109], of which we provide a brief review here. For further details we refer the interested
readers to [109]. The method of polarized traces is a domain decomposition method that
encompasses the following aspects:
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layered domain decompositions;

absorbing boundary conditions between subdomains implemented via PML [13];

e transmission conditions issued from a discrete Green’s representation formula;

efficient pre-conditioners arising from localization of the waves via an incomplete
Green’s formula.

The first two aspects can be effortlessly implemented. Consider a layered partition of
Q into L slabs, or layers {Qf}le. Define f¢ as the restriction of f to Qf, i.e., f¢ = fxqe;
and define the local Helmholtz operators as

Hou = (—A —w?/c*)u in QF, (39)

with absorbing boundary conditions implemented via PML around the slabs.

The method of polarized traces aims at solving the global linear system in (38) by
solving the local systems H, which are the discrete version of (39).

In order to solve the global system, or in this case, to find a good approximate solution,
we need to “glue” the subdomains together. This is achieved via a discrete Green’s integral
formula deduced by imposing discontinuous solutions.

In the original formulation of the method of polarized traces [109], the Green’s represen-
tation formula was used to build a global surface integral equation (SIE) at the interfaces
between slabs. The SIE was solved using an efficient preconditioner coupled with a mul-
tilevel compression of the discrete kernels to accelerate the on-line stage of the algorithm.
The original algorithm had an embarrassingly parallel superlinear off-line complexity which
was amortized among a large number of right-hand sides, which represents a typical situ-
ation in exploration geophysics.

In the context of the present paper, the linear systems issued from the ray-based FEM
depend on the source distribution, making it impossible to amortize a super-linear off-line
cost. In order to reduce the off-line cost we use a matrix-free formulation (see Chapter 2
in [108]) with a domain decomposition in thin layers. In this case, the cost per iteration
is linear with respect to the number of degrees of freedom, depending on the growth or
the auxiliary degrees of freedom corresponding to the PML’s. Finally the convergence is
normally achieved in O(logw) iterations, as it will be shown in the sequel.

5. Complexity

In this section we provide an overall complexity analysis of our algorithm for the high-
frequency Helmholtz equation (1) in terms of w, it is summarized in Table 1. The overall
complexity includes the complexity in learning ray directions by NMLA (shown in Table
2) and the complexity of the linear solver for the discretized systems from both standard
FEMs for low-frequency, and ray-FEMs for high-frequency Helmholtz equations.
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Methods S-FEM Learning Ray-FEM | Iterative Ray-FEM
Frequency Vw Vw or w w w
Complexity || O(w?log® w) O(w?) O(wlogw) O(wlog? w)

Table 1: Overall computational complexities with respect to w given that the mesh size scaled as h =

O(w™).

5.1. Ray learning

As described in Section 4.2, Algorithm 5 applies NMLA to computed wave fields with
low-frequency w ~ y/w or high-frequency w. It first estimates ray directions at vertices on a

down-sampled coarse mesh T, , and then interpolates the ray directions to the vertices on
a fine mesh 7;,. We remind the reader the following scalings: h = O(w™!), h. = O(Vh) =

O(w_%) . These scalings allow us to strike a balance among the number of observation
points at which NMLA is used to estimate ray directions, the radius of the sampling circle,
and the corresponding number of sampling points on the circle so as to resolve the wave
field to reach the optimal accuracy of NMLA with desired total computational complexity.

The dominant computational cost of the ray learning is coming from the application
of NMLA to the high-frequency wave field. Here we analyze its complexity in 2-D case.
As shown in Appendix B, the least error that can be achieved by NMLA is (’)(w_%) when
the radius r of the sampling circle centered at an observation point is (’)(w_%). Hence
the number of points sampled on the circle to resolve the wave field with frequency w is
M, = O(wr) = O(w%). Since NMLA is a linear filter based on the Fourier transform in
the angle space, the corresponding computational complexity is O(M,, log M,,) [12]. The
number of observation points that we need to perform NMLA is the number of vertices on
the coarse mesh which is O(h_?) = O(w). Hence the computational cost to obtain the ray
directions at the vertices on the coarse mesh by NMLA is O(w% logw). Finally, the ray
directions estimated at the vertices on the coarse mesh by NMLA are linearly interpolated
onto the fine mesh 7. Interpolation is a linear operation and hence its computational
complexity is O(w?).

Table 2 provides the complexity of ray learning stage for both high-frequency and low-
frequency wave fields, where d is the dimension and Cnarra, Cray,he, Crnt, and Chryy p, are
the computation complexity of NMLA at a single vertex, NMLA on the under-sampled
coarse mesh, interpolation of local ray directions to the fine mesh, and the full algorithm
for learning local ray directions at frequency w on the fine mesh Ty, respectively.

5.2. Helmholtz Solver

The most computationally intensive component in the whole ray-FEM algorithm is
solving the linear systems after discretization of the Helmholtz equation. Algorithm 7
solves both ugj = S-FEM(@, h,c, f,g) and uqg, , = Ray-FEM(w, h,c, f,g,{d. h};y:hl) on
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Fl“eqllency r Mw CNMLA Cvray,hC Clnt Cray,h
_1 d—T1 da—T d—1L d d
w w2 |w? |we logw | w 2logw | w w
= T [ <dI | <d=I. <~ | <g_LI, =~
O~yVvw |72 w2 |02 logw | @% 2logw | w? w?

Table 2: Computational complexities of estimating ray directions on a coarse mesh 75, with h. = O(wié)
and a fine mesh 75, with h = O(w™").

the same mesh 7;,. Each solver is composed of three steps: the assembling step, the setup
step, and the iterative solve step.

Since the basis functions are locally supported, the resulting matrix is sparse. The
complexity of the assembling step is of the same order as the degrees of freedom N, =
O(w?).

In the setup stage, the computational domain is decomposed into subdomains of thin
layers whose width is comparable to the characteristic wavelength. The local problems in
each subdomain are factorized® using a multifrontal method [26] coupled with a nested dis-
section ordering [40] in O(y/Ny,) time for the high-frequency problem (or O(v/Nj, log® Ny,)
time for the low-frequency problem, depending on the width of the auxiliary PML for each
subdomain in terms of the wavelength). Given that the layers are O(1) elements thick, we
have to factorize O(y/Nj,) subsystems, which results in a total O(Ny) (or O(Ny, log® Ny,)
for the low frequency problem) asymptotic complexity for the setup step.

Finally, for the iterative solve step, each application of the preconditioner involves 6
local solves per layer, each one performed with O(v/Ny) (‘or O(v/Ny log? Ny,)) complexity.
Given that we have O(v/Ny) layers, we have an overall O(Ny,) (or O(Np,log Ny,) for the
low frequency problem) complexity per iteration. Extensive numerical experiments suggest
that the number of iterations to converge is O(log Ny) for both high- and low-frequency
solves for smooth media. Hence, the empirical overall complexity is O(Nj log Nj) for the
high-frequency solve and O(Ny, log3 Np) for the low-frequency one, which as stated before
in Table 1.

6. Numerical Experiments

In this section we provide several numerical experiments to test the proposed ray-FEM
and corroborate our claims. For all cases, the domain of interest is Q = (—1/2,1/2)? with
different source terms and boundary conditions. €2 is discretized using a standard traingular
mesh. The integrals to assemble the mass and stiffness matrices in (15), the right hand side
in (16), and the L? errors of the ray-FEM solutions are numerically computed by using a

5The solver was implemented in MATLAB, thus the underlying sparse solver is UMFPACK [25].
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high-order Gaussian quadrature rule®.

The algorithm described in this paper was implemented in MATLAB and the numerical
experiments were executed used MATLAB 2015b in a dual socket server with 2 Intel Xeon
E5-2670 with 384 GB of RAM.

6.1. Convergence tests

In the first test, the exact solution to the Helmholtz equation with the Robin boundary
condition is the wave field (normalized by the frequency w) corresponding to a point source
outside the domain. It is given by

e (2, ) = Vo H (wy/(z = 2)2+ (y — 2)2). (40)

Numerically we choose a mesh size to solve the Helmholtz equation (1) with wave speed
¢(x) = 1, source f(x) = 0 and exact impedance boundary data such that the number of
points per wave length (NPW) is 6 for different w’s. We test convergence for both the ray
direction estimation by NMLA and the final numerical solution by the ray-FEM.

First, a probing wave with low-frequency @ = /w is solved by the standard FEM.
Then NMLA is applied to the low-frequency probing wave to get an estimation of the
local dominant ray directions dg. Instead of using the regular NMLA for the plane wave
decomposition, we use NMLA with curvature correction (see details in Algorithm 3 and
Appendix C) to estimate the ray information of a circular wave front. The estimated local
ray directions are then used in the ray-FEM to produce the first numerical solution uq, to
the high-frequency Helmholtz equation.

We employ one more iteration in the framework of the iterative ray-FEMs by applying
NMLA to ug, to get an improved local ray direction estimation d,, and then use it again
in the ray-FEM to get a more accurate numerical solution uq, to the high-frequency
Helmholtz equation.

Table 3 and the left column of Figure 1 show that the NMLA and ray-FEM algorithm
are stable, and the error for both the ray estimation and the numerical solution by the
ray-FEM with fixed NPW, i.e., wh = O(1), asymptotically decreases as the frequency
increases. Moreover, they show that one more iteration using the iterative ray-FEM can
improve the accuracy of final numerical solution to the order of O(w™!), which is of the
same order when the exact ray direction d., is used in the ray-FEM, due to the asymptotic
error of the geometric-optics ansatz.

NMLA with curvature correction plays an important role to achieve the above optimal
convergence orders. As discussed in Appendix C, it can improve the angle estimation
for a perfect point source solution from (’)(w‘l/ 2) to a much higher convergence order

5Given the expression of the mass and stiffness matrices, which are polynomials times a plane wave, it
is possible to compute the integral analytically [81]. However, the right hand side of the linear system and
the L? error of the ray-FEM solution can only be computed numerically for a general source term f(x).
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O(w™3). However, the noise level coming from low-frequency problem solved by S-FEM,
together with the interpolation error, which are all O(w™!), dominate the overall error. As
a consequence, the low-frequency ray estimation error ||dg — des|| is O(w™?). Using similar
estimate in Section 3.2, one can show that the approximation error for the high-frequency
numerical ray-FEM space is at least O(w™!) if dg is incorporated into the high-frequency
basis functions. Again we apply NMLA with curvature correction to the numerically
computed high frequency ray-FEM solution to get ray estimation d,, with ||dy — dez|| =
O(w™!) and further get the final ray-FEM solution ug, with ||u — up |20y = O(w™1).

w/2m 20 40 80 160
1/h 120 240 480 960

16(ds) — beallz2 || 7.50e-04 | 4.26e-04 | 1.96e-04 | 1.07¢-04
16(dey) — Bez|lz2 || 1.82e-04 | 7.99¢-05 | 4.43e-05 | 2.10e-05

|tua, — texllrz || 4.36-05 | 1.92¢-05 | 9.03¢-06 | 4.69¢-06
ltuq, — tezllzz || 3.15e-05 | 1.47e-05 | 7.57e-06 | 3.73¢-06

| g, — veallze || 29705 | 1.49e-05 | 7.47-06 | 3.74e-06 |

Table 3: Errors of one point source problem for fixed NPW = 6. 6., is the exact ray angle, 6(dz) and
0(d.,) are ray angle estimations using low and high-frequency waves, respectively; ua, ua, and uq,, are
ray-FEM solutions using low-frequency ray estimation dg, high-frequency ray estimation d.,, and exact ray
d.., respectively.

Next we show that our method can handle multiple wave fronts by probing the whole
domain and extracting dominant ray directions locally. The setup is exactly as above
except that there are four point sources. The exact solution is given by

teal,y) = VI H (wy/(@+20)7 + (y + 20)%) + 2V@H{ (wy/(z = 2017 + (y = 20)°)
+0.5y/wH (wy/(z + 20)% + (y — 20)2) — VwH (wy/(z — 20)% + (y + 20)2).

(41)
The main difficulty of this example compared to the single-point source case is that the
low-frequency wave solution by the standard FEM contains multiple wave fronts at each
point due to the interference of multiple sources. The numerical results are shown in the
right column of Figure 1. In this case, the NMLA with curvature correction does not
apply so that we have to use the the standard NMLA for the plane wave decomposition as
described in Section 3.1 to estimate local dominant ray directions. As analyzed in Section
3.2 and Appendix B, the expected error for ray direction estimation and numerical solution
is of order O(w™1/2) due to the curved wave fronts. The numerical results show that the
ray-FEM meets the expected asymptotic error as the frequency increases.
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Figure 1: Tests with point source/sources outside the domain, NPW = 6. Left: one point source; Right:
four point sources. Top: ray direction errors; Middle: errors of ray-FEM solutions with ray directions
estimated by NMLA; Bottom: errors of ray-FEM solutions with exact ray directions.

6.2. Phase errors

Here we show that the ray-FEM method can capture the phase and satisfy the dis-
persion relation more accurately. We test our algorithm with a point source inside the
domain, given its importance in many practical applications, in particular, in exploration
geophysics, in which the sources are often modeled as point sources. Moreover, in appli-
cations oriented towards inverse and imaging problems, having a numerical method that
produces the correct phase in the far field is of great importance in order to properly locate
features in the image.

In this experiment we focus our attention on the far-field since our current method
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can not deal with singularities in amplitude and phase at source points. We test a point
source located at xg = (—0.4, —0.4) with frequency w = 807 in a homogeneous medium.
Following Remark 3, we use radial directions (exact directions in homogeneous medium)
for vertices x near the source with |x — x| < 0.1 and estimate ray directions for other
vertices; see the left part of Figure 2 for the ray-direction field.

To demonstrate the accurate phase of the numerical solutions, we plot the real part
of computed wave field on a 90 degree part of an annulus [93], with the radial coordinate
varying on an interval of about two wavelengths. The location where the real part is
maximal or minimal, according to the exact solution, is indicated by a straight line; see
the right part of Figure 2.
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Figure 2: One point source inside a homogeneous medium, w = 80w, NPW = 6. Left: ray directions
captured by NMLA; Right: polar plot of the ray-FEM solution, r/A: the number of wavelengths away from
the source.

Next we fix the frequency w = 2507 and use radial directions as ray directions in
the source neighborhood {x : |x — xg| < 0.064}. When the number of grid points per
wavelength is increased, Figure 3 depicts the behavior of both the ray-FEM solution and
the standard FEM solution. From the figure we can easily observe the superiority of the
ray-FEM on minimizing the phase error, even using relatively coarse meshes.

In a heterogeneous medium, a ray-FEM solution is given by Figure 4 with the source
located inside. We also provide an experiment where we show the ability of the method
introduced in this paper to handle wave fields with caustics; see Figure 5. Again radial
directions are used for local ray directions near the source point within {x : [x —x¢| < 0.1}.

6.3. Complezity tests
In this subsection we test the computational complexity for the ray-FEM. A key step
of the algorithms presented is solving the sparse linear systems generated by the ray-FEM
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Figure 3: Polar plots of the ray-FEM solution and the s-FEM solution with w = 2507. 7/A: the number of
wavelengths away from the source.

using iterative methods with a performant preconditioner, e.g., domain decomposition
techniques coupled with high-quality absorbing/transmission boundary conditions. In our
tests, we use a modification of the method of polarized traces to solve the linear systems
resulting from both the standard FEM and ray-FEM as described in Section 4.4.

We solve the Helmholtz equation with a point source in both a homogeneous and
heterogeneous medium. We compute for many different frequencies, using Algorithm 7
with only one iteration of the ray-FEM, the solution to the Helmholtz equation posed on {2
with absorbing boundary conditions implemented via PML. For each frequency we report
the execution time of the low and high-frequency problems and the time spent in processing
the data using NMLA to extract the dominant ray information.

As explained in Section 4, in order to process the data using NMLA we need to solve the
low-frequency problem in a slightly larger domain. The size of the larger domain is given
by the sampling radius of the NMLA. For the sake of simplicity, we use a low-frequency
subdomain, Qo = (—1,1) X (=1, 1), i.e., four times bigger than the original domain. The
size can be reduced in order to lower the computational cost for the low-frequency problem.
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Figure 4: One point source inside a heterogeneous medium with the Gaussian wave speed c(z,y) = 3 —
2.56_((“H'O'125)2+(y_0'1)2)/0'82, w = 80w, NPW = 10. Left: ray directions captured by NMLA; Right: wave

field computed by ray-FEM.
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Figure 5: One point source inside a heterogeneous medium with the sinusoidal wave speed c(z,y) =
1+ 0.5sin(27z), w = 80w, NPW = 10. Left: wave speed; Right: wave field computed by ray-FEM.
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The main issue with the low-frequency solver in our case is related to the PML, since the
PML may not be very effective given that each thin slab contains less than one wavelength
across. In order to decrease the number of iterations to converge, we increase the number
of PML points logarithmically with the frequency. This implies a slightly more expensive
setup cost and solve cost as shown in Figures 6 left and 7 left.

Figure 6 shows the runtime for solving the Helmholtz equation with a point source
inside a homogeneous medium. We can observe that the overall cost is O(N) up to poly-
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logarithmic factors as shown in our complexity study. The low-frequency solver has a
slightly higher asymptotic cost in this case, given the ratio between the width of the PML
and the characteristic wavelength inside the domain.

Figure 7 shows the runtime for solving the Helmholtz equation with a point source

inside a heterogenous medium. We can observe the same scaling as before, albeit with
slightly larger constants.
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Figure 6: Runtime for solving the Helmholtz equation with a homogeneous wave-speed using GMRES
preconditioned with the method of polarized traces. The tolerance was set up to 1077. Left: runtime

for solving the low-frequency problem. Right: Runtime for solving the high-frequency problem with the
adaptive basis.
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Figure 7: Runtime for solving the Helmholtz equation with a heterogeneous wave-speed using GMRES
preconditioned with the method of polarized traces. The tolerance was set up to 10~7. Left: runtime

for solving the low-frequency problem. Right: runtime for solving the high-frequency problem with the
adaptive basis.
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7. Conclusion

In this work we present a numerical method, the ray-FEM, for the high frequency
Helmholtz equation in smooth media based on learning problem-specific basis functions
to represent the wave field. The key information, local ray directions, is extracted from
a relatively low-frequency wave field that has probed the whole domain. These local ray
directions are then incorporated into the basis to improve both stability and accuracy in
the computation for a high-frequency wave field. Moreover, both local ray directions and
the high-frequency wave field can be further improved through more iterations. Numerical
tests suggest that our method only requires a fixed number of points per wavelength with
an asymptotic convergence as the frequency becomes large. By designing a fast solver for
the discretized linear systems an overall complexity of order O(w? log? w) is achieved.

However, the ray-FEM cannot handle singularities of both the amplitude and phase on
a given mesh. We will develop a hybrid method that combines a local asymptotic expansion
near the source and the ray-FEM away from the source in our future work.
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Appendix A. Stability and error analysis for NMLA

In this section we summarize the stability result and error estimate from [11] for com-
pleteness. We remind the reader that B is the filter operator defined by (29), w is the fre-
quency, k = w/c is the wave number and r is the radius of the sampling circle. For simplicity
we use the single wave case, i.e., N = 1. Moreover, we assume that the measured datum
is a perturbation to the perfect plane wave datum of the form U(f) = UP™¢(0) + §U(6),
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where UP!"¢ denotes a single plane wave datum in the form of (27). Let #* denote the
angle for which 6 — BU () is maximum. Assuming that the noise level satisfies
1
16Ullze < | Bals (A1)
where B* <1 is a pure constant independent of w and Bj is the complex amplitude of the
plane wave. Then the error in the angle estimation is given by

2w 1
0 — 0| < ———— ~ O(— = kr ~ oo. A2
00" < G ~ O(5) a= ke (4.2)
Similar results can be derived for multiple waves N > 1. We remark that ﬁ > 0.25,

which implies that if the relative noise level does not surpass 25% the angle will be detected
within an error of order O(%) In Benamou’s work [11], an analysis of a point source shows
that |#; — 0*| decreases like O(w~'/2) when the point xq is far away from the source and
the radius of the observation circle is chosen like r ~ w™'/2 for large w. We obtain similar
accuracy order for general noisy plane waves under some smoothness conditions; see details
in Appendix B.

Appendix B. Error analysis of wave field as a perturbed plane wave datum

As introduced in Section 3.1, NMLA is a tool to process a signal that is (approximately)
a superposition of plane waves with frequency w and to extract each plane wave component
by sampling the signal on a circle/sphere with radius r around a reference point. As
displayed in Appendix A, provided that the perturbation of the signal is relatively small
compared to the signal, the estimation of the plane wave directions converges and the error
is (’)(%) In this application, we use NMLA to process a wave-field datum, which is the
numerical solution to the Helmholtz equation, to extract the directions of dominant wave
fronts based on the geometric optics ansatz (9) in the high-frequency regime. Hence it is
important to study the wave field data as a perturbation of plane wave data locally and
estimate the error in the ray directions obtained from NMLA. In particular, this analysis
allows us to find the optimal choice of the radius of the sampling circle/sphere, in order
to achieve the minimal asymptotic error for the ray direction estimation in terms of the
frequency w of the Helmholtz equation which generates the wave-field datum. The result
is crucial for both error analysis and implementation of the ray-FEM. Since the wave
field datum in our application is the numerical solution to the Helmholtz equation, its
perturbation is composed of the sum of three components:

1. numerical errors in solving the Helmholtz equation and interpolation errors in ob-
taining data on the sampling circle/sphere for NMLA from the numerical solution on
a fixed mesh;

2. asymptotic errors in the geometric optics ansatz;
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3. local approximation errors of a smooth curved wave front by a planar wave front.

On a mesh with mesh size h = O(w™!), the last component, which we call the phase
error, is the dominant factor among the three. We present below an analysis of the phase
error, in which, for simplicity, we only consider one wave front.

Consider a single wave front, u(x) = A(x)e™?™). Following the notation used through-
out the paper, we assume the reference point to be xg, and the small sampling circle around
xg to be {x|x — x¢ = 18}, V(xg) = nodo, where r < 1,[8] = 1, no = 1/c(x0), |do| = 1.
We have by the Taylor expansion,

A(x) = A(xo) + VA(x0) - (x —x0) + O ((x — X0)2) = A(xo) + 7 (VA(xg)-8)+ O (7’2) ,
B(x) = d(x0) + V(xo) - (x — x0) + 5 (x — x0)" V2¢(x0) (x — x0) + O ((x — %0)*)
= 6(x0) + 1m0 (do ) + 17? (8T V20(x0)8) + O (1%) .

Denoting ¢o(x) = ¢(xo) + Vé(xo) - (x = Xo), uo(x) = A(x0)e?), we have
Su(x) = u(x) — ug(x)
= A(x)e@?X) — A(xq)ePo)
= [A(x0)e™?™) +r (VA(x0) - 8) €™ + O (r?)] — A(xq)e™?0>)
_ A(Xo)eiw¢o(x) (eiw[%ﬂ(§Tv2¢(xo)§)+0(r3)] - 1) + 7 (VA(x) - 5) eiwd(x) 4 O (r2) 7

2 (Gu(x)) = 2 (A()e ) — A(xo)eitlx))

— (VA(x0) -8 4+ O(r)) €50 4 A(x)ei?) g, :m(ao 8) 4+ (gTv2¢(xo)§) + 0(7«2)}
— A(xq)e™0x0)jwung(dy - 8)

= (VA(x0) -8+ O(r)) €709 1 A(x)e“? iy [ (87 V2(x0)8) + O(r2)]

+ (A(x)eiw¢(x) — A(Xo)ei“¢°(x0)) iwno(ag -8)

— (VA(xo) -§ + O(r)) e¢) 1 A(x)e™dX) iy, :7" (§Tv2¢(xo)§) n 0(r2)]

+iwno(do - 8)du(x).
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Then

5U (x) :( ! gﬂ) Su(x)

wno

wo

= i (VAG0) -8+ 0(r) €90 4 LAG)e o) |1 (§7V26(x0)8 ) + O(r2)]

+(dy - s)u(x) + du(x)

= o (VA(x0) -8+ O(r)) €909 4 L A(x)ei) [7‘ <§TV2¢(XU)§> + 0(7«2)}

(o -5+ 1) { Alxg)eiroto (el (T 00} 0()] _ 1)

+r (VA(xo) - 8) ewoX) 4 O (7“2)} .

Hence

10U (%))

- (iwlm 2+ 1) 6u(x)’

< |V A(x0)|+O0(r) + [A(x)] <T ‘/S\TVQQS(X())/S\‘ +O(7’2))

X
wTlo 70

2] A(xo) w (3287 V20(x0)8] + O(®) ) + 20V AGxo) + OG2)  (B1)
= (s +20) IV AGxo) | + (L0 4 | Ao ) [§7V20(x0)8]

G O(12) 4 20| A(x0)|O(13) + O(r2).

70

As shown in Appendix A, on one hand §U has to be small compared to U. On the other
hand, the error in direction estimate from NMLA is O(-1). Assuming the smoothness of
A(x) and ¢(x), i.e., boundedness of VA(x), A(x) and V2¢(x), the leading term in U is

wr?| A(xo)| §TV2¢(X0)§‘ as w — 0o, where 87 V2¢(x0)8 is the curvature of the wave front.

Hence the radius of the sampling circle can at most be chosen r ~ (’)(ﬁ) as w — 00. Let

r=05 IVA®I<C,  A®)| <G, STVP0(x)s| < G, (B.2)
Then
SUG0)| < 202Cs | Alxo)| + 0 () (B.3)

By choosing C, such that 2C2C5 < 1, the perturbation §U(x) satisfies the condition
A.1 for w large enough, which implies that the error in the ray direction estimate by NMLA
is O(w™2).
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Remark 4. The above analysis also shows that NMLA can not be used to estimate ray
directions within a few wavelengths away from the point source since the curvature of the
wave front there is of order O(w).

Appendix C. Second order curvature correction for a point source

Appendix B shows that the angle estimation property (A.2) does not yield the same
accuracy order O(w™!) as the geometric optics ansatz for a general wave front such as
waves near a point source. We also know that the curvature term after linearization is
responsible for this loss of accuracy. Roughly speaking, the estimation is in O(w™?) for a
plane wave and O(w~'/2) for a point-source wave. The second-order curvature correction
in [11] shows that it is possible to identify the curvature to improve the angle estimation.
A summary of the correction process is provided in this section.

We consider a normalized point-source solution in a homogeneous medium

i
u(x) = \/Eng”(mx —x1)).
When the radius r of the sampling circle is smaller than the distance from the observation

point xg to the source point x1, that is, r < |x1 — x|, we use the Graff Addition Theorem
[24, page 66] on the sampling circle, then we have

. 4o
~ 1 il(0—
u(xo +18) = Vi > HY (kR

l=—00
where R; := |x; — Xg| is the reciprocal of the curvature of the wave front at point xg, and
6 and 6, are the angles such that § = (cos6,sin6), |§1:§3\ = (cos 01,sin6;).

The impedance quantity is

Uroint(g) = (i&‘ + Du(xg + r3)

= S S Gk R) (=) (i) — i (kr))e 000,

- |
Ci(kRy) =it #wm HY (kRy).

By applying the filter operator B defined in (29) we get

where

by Lir 100 . etk R
Z Cl(k’Rl)el( 1), with b; =

BUPO(f) = 1 S —
©) = 5L, +1 - V=8t R,

(C.1)
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Then we can get the first estimate of the true angle §; by using Algorithm 2 on BUP°"(9),

which Ais denoted by 6.s:. Meanwhile, we have an analytical formula for the Fourier coeffi-
cient f; of BUP™ (), which is

R by

- - —il60y 9
Bi 5L T 1Cl(kR1)e . (C.2)
We shift the phase,
B\leilaest — LC (kR ) il(Best—601) __ LCl(le)e_Zl50
2Lkr + 1 2Lkr + 1 )

where 00 := 0.5 — 01 is the error that we make on the angle estimation.
It is important to notice that when kR; is large enough Cj(kR;) is a perturbation of 1
due to the asymptotic expansion [105, page 198],

(412 — 12)(41%2 — 3%)...(41% — (2m — 1)?)

(kRy) ~1 ith(l,m) =
Ci(kE) + Z 21kR1 Coikgyyme Vith(m) 22mm)
(C.3)
Now we use the first two terms of the expression
121
CkRy) = — 20 oL
! )= 21 1 + k 377
- gmpt PR
and obtain )
~ by Loa 1 1
5l61leest — e 2kR; - + O( ).
2L +1 2—1 .1 kR;)3
pr (1- (k:Rl)2)4 (kF1)
We then consider
1= T (log(Ae™ ) — log o)) = 190 + L + O(——) ()
' 2k R, (kRy)3" ’

where Z stands for the imaginary part.

We see that 1); is close to a parabolic function of the mode number [ so that it can
be fitted by a least-squares approximation. The estimated parabola coefficient d6.4; then
provides a correction on the angle, which we call it the second order curvature correction.
It improves the accuracy of angle estimation to a great extent. This process is only valid
for a single point source in a smooth medium.
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