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ABSTRACT

We present a fast solver for the 3D high-frequency
Helmholtz equation in heterogeneous, constant density,
acoustic media. The solver is based on the method of
polarized traces, coupled with distributed linear alge-
bra libraries and pipelining to obtain an empirical on-
line runtime O(max(1, R/n)N logN) where N = n3 is
the total number of degrees of freedom and R is the
number of right-hand sides. Such a favorable scaling
is a prerequisite for large-scale implementations of full
waveform inversion (FWI) in frequency domain.

INTRODUCTION

Efficient modeling of time-harmonic wave scattering in
heterogeneous acoustic or elastic media remains a difficult
problem in numerical analysis, yet it has broad applica-
tion in seismic inversion techniques, as shown by Chen
(1997); Pratt (1999); Virieux and Operto (2009). In the
constant density acoustic approximation, time-harmonic
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B-1348 Louvain-la-Neuve, Belgium
‡ Total E. & P. Research & Technology USA
1201 Louisiana St.,
Houston, TX 77002.
§ Computational Research Division,
Lawrence Berkeley National Laboratory,
1 Cyclotron road,
Berkeley, CA 94720.
¶ University of California Irvine,
Department of Mathematics,
540 Rowland Hall,
Irvine, CA 92963.

wave propagation is modeled by the Helmholtz equation,

4u(x) + ω2m(x)u(x) = fs(x), in Ω (1)

with absorbing boundary conditions, and where Ω is a 3D
rectangular domain, 4 is the 3D Laplacian, x = (x, y, z),
m = 1/c2(x) is the squared slowness for velocity c(x),
u is the wavefield, and fs are the sources, indexed by
s = 1, ..., R. There is no essential obstruction to extending
the techniques presented in this paper to the case of het-
erogeneous density, or to the elastic, viscoelastic or poroe-
lastic time-harmonic equations.

Throughout this paper we assume that Eq. 1 is in the
high-frequency regime, i.e., when ω ∼ n, where n is the
number of unknowns in each dimension. Alternatively,
in the situation where the domain Ω grows and the fre-
quency is fixed, the problem can be rescaled in such a way
that ω grows in proportion to the domain size, which can
also considered to be a “high-frequency” regime. For this
paper, we focus on the former scenario.

Given the importance of solving Eq. 1 in geophysical
contexts, there has been a renewed interest in develop-
ing efficient algorithms to solve the ill-conditioned linear
system resulting from its discretization. Recent progress
toward an efficient solver, i.e., a solver with linear com-
plexity, has generally focused on three strategies:

• Fast direct solvers, such as the ones introduced by
Xia et al. (2010); de Hoop et al. (2011); Gillman et al.
(2014); Amestoy et al. (2015), which couple mul-
tifrontal techniques (e.g., George (1973); Duff and
Reid (1983)) with compressed linear algebra (e.g.,
Bebendorf (2008)) to obtain efficient direct solvers
with small memory footprint. However, they suf-
fer the same sub-optimal asymptotic complexity as
standard multifrontal methods (e.g., Demmel et al.
(1999); Amestoy et al. (2001); Davis (2004)) in the
high-frequency regime.

• Classical preconditioners, such as incomplete factor-
ization preconditioners (e.g., Bollhöfer et al. (2009))
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and multigrid-based preconditioners (e.g., Brandt and
Livshits (1997); Erlangga et al. (2006); Sheikh et al.
(2013); Calandra et al. (2013)), which are relatively
simple to implement but suffer from super-linear asymp-
totic complexity and may need significant tuning to
achieve effective run-times.

• Sweeping-like preconditioners (e.g., Gander and Nataf
(2005); Engquist and Ying (2011a,b); Chen and Xi-
ang (2013a,b); Stolk (2013); Vion and Geuzaine (2014);
Liu and Ying (2015); Zepeda-Núñez and Demanet
(2016)), which are a relatively recent domain de-
composition based approach that has been shown to
achieve linear or nearly-linear asymptotic complex-
ity.

The method in this paper belongs to the third cate-
gory. Sweeping preconditioners and their generalizations,
i.e., domain decomposition techniques coupled with high-
quality transmission/absorption conditions, offer the right
mix of ideas to attain linear or near-linear complexity in
2D and 3D, provided that the medium does not have large
resonant cavities (Zepeda-Núñez and Demanet, 2016). These
methods rely on the sparsity of the linear system to de-
compose the domain in layers, in which classical sparse di-
rect methods are used to compute the interactions within
the layer. Interactions across layers are computed by se-
quentially sweeping through the sub-domains in an itera-
tive fashion.

For current applications, empirical runtimes are a more
practical measure of an algorithm’s performance than asymp-
totic complexity. This requirement has led to a recent
effort to reduce the runtimes of preconditioners with op-
timal asymptotic complexity by leveraging parallelism.
For example, Poulson et al. (2013) introduce a new lo-
cal solver, i.e., a solver for the subproblem defined on
each layer, which carefully handles communication pat-
terns between layers to obtain impressive timings. While
most sweeping algorithms require visiting each subdomain
in sequential fashion, Stolk (2015b) introduced a mod-
ified sweeping pattern, which changes the data depen-
dencies during the sweeps to improve parallelism. Fi-
nally, Zepeda-Núñez and Demanet (2016) introduced the
method of polarized traces, which reduces the solver’s run-
time by leveraging parallelism and fast summation meth-
ods. This paper builds on top of the general framework
of the method of polarized traces, which we elaborate on
in the sequel.

To date, most studies focus on minimizing the paral-
lel runtime or complexity of a single solve with a single
right-hand side. However, in the scope of seismic inver-
sion, where there can be many thousands of right-hand
sides, it is important to consider the overall runtime or
complexity of solving all right-hand sides. In this con-
text, linear complexity is O(RN), where N is the total
number of degrees of freedom (we assume that N = n3

and let n be the number of degrees of freedom in a sin-
gle dimension of a 3D volume) and R is the number of

right-hand sides.
In this paper, we present a solver for the 3D high-

frequency Helmholtz equation with a sublinear online par-
allel runtime, given by

O(α2
pml max(1, R/L)N logN),

where N = n3 is the total number of unknowns, L ∼ n
is the number of subdomains in a layered domain decom-
position, and αpml is the number of points needed to im-
plement a high-quality absorbing boundary condition be-
tween layers. We achieve this complexity by comprehen-
sive parallelization of all aspects of the algorithm, includ-
ing exploiting parallelism in local solves and by pipelining
the right-hand sides. Thus, as long as R ∼ n2 (3D), there
is a mild R/L ∼ n factor impacting the asymptotic com-
plexity. The solver in this paper is based on the method
of polarized traces (Zepeda-Núñez and Demanet, 2016), a
layered domain decomposition method which exploits:

• local solvers, using efficient sparse direct solvers at
each subdomain,

• high-quality transmission conditions between sub-
domains, implemented via perfectly-matched layers
(PML; Bérenger (1994); Johnson (2010)), and

• an efficient preconditioner based on polarizing con-
ditions imposed via incomplete Green’s integrals.

These concepts combine to yield a global iterative method
that converges in a small number of iterations. The method
has two stages: an offline stage, that can be precomputed
independently of the right-hand sides, and an online stage,
that is computed for each right-hand side or by batch pro-
cessing.

One advantage of the method of polarized traces is
that only the degrees of freedom at the interfaces be-
tween layers are needed for the bulk of the computa-
tion, because the volume problem is reduced to an equiv-
alent surface integral equation (SIE) at the interfaces be-
tween layers. Due to this efficiency, the algorithm re-
quires a smaller memory footprint, which helps make fea-
sible pipelining the right-hand sides. Pipelining for do-
main decomposition methods has been previously consid-
ered (Stolk, 2015b), albeit without complexity claims and
without a fully tuned communication strategy between
subdomains. Moreover, we are unaware of any complex-
ity claims within the context of inversion algorithms, in
particular, with focus on full waveform inversion (Taran-
tola, 1984), where there are many right-hand sides that
are strongly frequency dependant.

Complexity claims

Suppose that L, the number of layers in the domain de-
composition, scales as L ∼ n, i.e., each layer has a con-
stant thickness in number of grid points∗. Each layer is

∗This hypothesis is critical for obtaining a quasi-linear complex-
ity algorithm and is related to the complexity of solving a quasi-
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Stage Polarized traces

offline O
(
α3

pmlN
)

online O(α2
pml max(1, R/L)N logN)

Table 1: Runtime of both stages of the algorithm. Note
that typically αpml ∼ logω.

further extended by αpml grid points in order to imple-
ment the PML. It has been documented in Poulson et al.
(2013) that αpml needs to grow with problem frequency,
αpml ∼ logω, in order to obtain a number of Krylov solver
iterations to convergence that scales as logω. Addition-
ally, as above, for the 3D problem it is typical that the
number of sources R ∼ n2, because as frequency and res-
olution increase, the number of sources in both the in-line
and cross-line direction must also increase (Li et al., 2015).

Finally, given that we solve the 3D problem in a high-
performance computing (HPC) environment, we assume
that the number of computing nodes in the HPC cluster
is O(n3 log(n)/M), with L ∼ n layers, O(n2 log(n)/M)
nodes inside each layer, and M is the memory of a single
node. The assumptions on node growth come from the
fact that computing nodes have finite memory, and thus
more nodes are needed to solve larger problems. As nu-
merical examples will show, using more nodes per layer
reduces the runtime per Krylov iteration by enhancing
the parallelism of the solves at each subdomain, provided
that a carefully designed communication pattern is used,
to keep the communication overhead low.

We summarize the asymptotic runtimes in Table 1. Like
other related methods, the offline stage is linear in N and
is independent of the number of right-hand sides. The
online runtime is sub-linear, in the sense that linear com-
plexity would be O(RN).

Related work

Modern linear algebra techniques, in particular nested dis-
section methods (George, 1973) coupled with H-matrices
(Boerm et al., 2006) have been applied to the Helmholtz
problem, yielding, for example: the hierarchical Poincaré-
Steklov solver (Gillman et al., 2014), solvers using hier-
archical semi-separable (HSS) matrices (de Hoop et al.,
2011; Wang et al., 2012, 2013), or block low-rank (BLR)
matrices (Amestoy et al., 2015, 2016).

Multigrid methods, once thought to be inefficient for the
Helmholtz problem, have been successfully applied to the
Helmholtz problem by Calandra et al. (2013) and Stolk
(2015a). Although these algorithms do not result in a
lower computational complexity, their empirical run-times
are impressive due to their highly parallelizable nature.
Due to the possibility for efficient parallelization, there
has been a renewed interest on multilevel preconditioners

2D problem using multi-frontal methods (for further details see En-
gquist and Ying (2011b); Poulson et al. (2013)).

such as the one in Hu and Zhang (2016).
Within the geophysical community, the analytic incom-

plete LU (AILU) method was explored by Plessix and
Mulder (2003) and applied in the context of 3D seismic
imaging, resulting in some large computations (Plessix,
2007). A variant of Kazmarc preconditioners (Gordon and
Gordon, 2010) have been studied and applied to time-
harmonic wave equations by Li et al. (2015). Although
these solvers have, in general, relatively low memory con-
sumption they tend to require many iterations to con-
verge, thus hindering practical run-times.

Domain decomposition methods for solving PDEs date
back to Schwarz (1870), in which the Laplace equation
is solved iteratively (for a more recent treatise, see Lions
(1989)). The application of domain decomposition to the
Helmholtz problem was first proposed by Després (1990).
Cessenat and Després (1998) further refined this approach
with the development of the ultra-weak variational formu-
lation (UWVF) for the Helmholtz equation, in which the
basis functions in each element, or sub-domain, are solu-
tions to the local homogeneous equation. The UWVF ap-
proach motivated a series of related methods, such as the
partition of unity method of Babuska and Melenk (1997),
the least squared method of Monk and Wang (1999), the
discontinuous enrichment method by Farhat et al. (2001),
and Trefftz methods by Gittelson et al. (2009), and Moiola
et al. (2011), among many others. A recent and thorough
review of Trefftz and related methods can be found in
(Hiptmair et al. (2015)).

The results in Lions (1989) and Després (1990) have
inspired the development of various domain decomposi-
tion algorithms, which are now classified as Schwarz al-
gorithms†. However, the convergence rate of such algo-
rithms is strongly dependent on the boundary conditions
prescribed at the interfaces between subdomains. Gander
et al. (2002) introduces an optimal, non-local boundary
condition for domain interfaces, which is then approxi-
mated by an optimized Robin boundary condition. This
last work lead to the introduction of the framework of op-
timized Schwarz methods in Gander (2006) to described
optimized boundary conditions that provides high conver-
gence. The design of better interface approximations has
been studied in Gander and Kwok (2011); Boubendir et al.
(2012); Gander and Zhang (2013, 2014); Gander and Xu
(2016) among many others.

Engquist and Zhao (1998) introduced absorbing bound-
ary conditions for domain decomposition schemes for el-
liptic problems and the first application of such techniques
to the Helmholtz problem traces back to the AILU factor-
ization (Gander and Nataf (2000)). The sweeping precon-
ditioner, introduced in Engquist and Ying (2011a,b), was

†For a review on classical Schwarz methods see (Chan and
Mathew, 1994; Toselli and Windlund, 2005); and for other appli-
cations of domain decomposition methods for the Helmholtz equa-
tions, see (de La Bourdonnaye et al., 1998; Ghanemi, 1998; McInnes
et al., 1998; Collino et al., 2000; Magoules et al., 2000; Boubendir,
2007; Astaneh and Guddati, 2016).
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the first algorithm to show that those ideas could yield
algorithms with quasi-linear complexity. There exists two
variants of the sweeping preconditioner which involved
using either H-matrices (Engquist and Ying, 2011a) or
multi-frontal solvers (Engquist and Ying, 2011b) to solve
the local problem in each thin layer. These schemes are
extended to different discretizations and physics by Tsuji
et al. (2012, 2014); Tsuji and Ying (2012). Since the in-
troduction of the sweeping preconditioner, several related
algorithms with similar claims have been proposed, such
as the source transfer preconditioner (Chen and Xiang
(2013a,b)), the rapidly converging domain decomposition
(Stolk (2013)) and its extensions (Stolk (2015b)), the dou-
ble sweep preconditioner (Vion and Geuzaine (2014)) and
the method of polarized traces (Zepeda-Núñez and De-
manet (2016)).

Organization

The remainder of this paper is organized as follows: we
provide the numerical formulation of the Helmholtz equa-
tion, present the reduction to a surface integral equation,
and introduce the method of polarized traces for solving
the SIE. Next, we elaborate on the parallelization and
communication patterns and examine the empirical com-
plexities and runtimes. Finally, we provide results from
several experiments to support our claims.

FORMULATION

For this study, we discretize Eq. 1 using the standard sec-
ond order finite difference method on a regular mesh of
Ω, with a grid of size nx × ny × nz and a grid spacing
h. Note, the method of polarized traces is not restricted
to second-order finite differences, but using higher-order
finite difference schemes makes the numerical implementa-
tion slightly more complicated‡. Absorbing boundary con-
ditions are imposed via perfectly matched layers (PMLs)
as described by Bérenger (1994) and Johnson (2010).

We describe our PML implementation in detail because
the quality and structure of the PML implementation
strongly impact the convergence properties of the method.
Following Bérenger (1994); Johnson (2010), the PML’s are
implemented via a complex coordinate stretching. First,
we define an extended domain Ω̂ such that Ω ⊂ Ω̂ and we
extend the Helmholtz operator from Eq. 1 to that domain
as follows:

H = 4̂+mω2 in Ω̂, (2)

where m is an extension of the squared slowness to Ω̂
and the extended Laplacian 4̂ is constructed by replac-
ing the partial derivatives in the standard Laplacian 4 =
∂xx + ∂yy + ∂zz with coordinate-stretched partial deriva-

‡Nor is the method applicable only in the context of finite dif-
ferences: finite elements (Taus et al., 2016; Fang et al., 2016) and
integral equations (Zepeda-Núñez and Zhao, 2016) approaches are
also valid.

tives defined on Ω̂:

∂x → βx(x)∂x, ∂y → βy(x)∂y, ∂z → βz(x)∂z. (3)

The complex dilation function βx(x) (and similarly βy(x)
and βz(x)) is defined as

βx(x) =
1

1 + iσx(x)
ω

, (4)

where the PML profile function σx(x) (and similarly σy(x)
and σz(x)) is,

σx(x) =


C
δpml

(
x

δpml

)2

, if x ∈ (−δpml, 0),

0, if x ∈ [0, Lx],

C
δpml

(
x−Lx

δpml

)2

, if x ∈ (Lx, Lx + δpml),

(5)
where Lx is the length of Ω in the x dimension and δpml is
the length of the extension. In general, δpml grows slowly
with the frequency, i.e., δpml ∝ O(logω), in order to ob-
tain enough absorption as the frequency increases. The
constant C is chosen to provide enough absorption. In
practice, δpml and C can be seen as parameters to be
tuned for accuracy versus efficiency.

The extended Helmholtz operator provides the defini-
tion of the global continuous problem,

Hu = fs, in Ω̂, (6)

which is then discretized using finite differences to obtain
the discrete global problem,

Hu = fs. (7)

In the method of polarized traces, Ω is decomposed into
a set of L layers, {Ω`}L`=1. Without loss of generality,
we assume that the decomposition is in the z dimension.
Each subdomain Ω` is extended to include an absorbing
region, as above, yielding the extended subdomain Ω̂`.
For boundaries of Ω̂` shared with Ω̂, the absorbing layer
is considered to be inherited from the global problem. For
the intra-layer boundaries of Ω`, i.e., those due to the par-
titioning of Ω, the extension to the additional absorbing
layers in Ω̂` are necessary to prevent reflections at layer
interfaces which are detrimental to convergence.

Then, the local Helmholtz problem is

H`v` := 4`v`(x) +m`ω2v`(x) = f `s(x) in Ω̂`, (8)

where m` and f ` are the local restrictions of the model pa-
rameters and source functions to Ω̂`, generated by extend-
ing mχΩ` and fχΩ` to Ω̂`, where χΩ` is the characteristic
function of Ω`. The local Laplacian 4` is defined using
the same coordinate stretching approach as above, except
on Ω̂`. As before, δpml, and thus αpml, must scale as logω
to obtain the convergence rate claimed in this paper.

We discretize the local problem in Eq. 8 resulting in the
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⌦ ⌦̂

⌦̂1⌦1

⌦2

⌦3 ⌦̂3

⌦̂2

Figure 1: Sketch in 2D of the partition of the domain in
layers. The domain Ω is extended to Ω̂ by adding the PML
nodes (orange). After decomposition into subdomains Ω`,
the internal boundaries are padded with extra PML nodes
(light blue) resulting in the subdomains Ω̂`.

discrete local Helmholtz system

H`v` = f `s . (9)

For the finite difference implementation in this paper,
we assume a structured, equispaced Cartesian mesh with
mesh points xi,j,k = (xi, yj , zk) = (ih, jh, kh). Assuming
the same ordering Zepeda-Núñez and Demanet (2016), we
write the global solution in terms of the depth index,

u = (u1,u2, ...,unz ), (10)

where uk is a plane sampled at constant depth zk, or in
MATLAB notation,

uk = (u:,:,k). (11)

Let u` be the local restriction of u to Ω`, i.e., u` =
χΩ`u. Following the above notation, u`k is the local solu-
tion trace in the plane at local depth z`k. For notational
convenience, we renumber the local depth indices so that
u`1 and u`n` are the top and bottom planes of the bulk
domain. Points due to the PML are not considered§. Fi-
nally, let

u =
(
u1
n1 ,u2

1,u
2
n2 , ...,uL−1

1 ,uL−1
nL−1 ,u

L
1

)t
, (12)

be the vector of interface traces for all L layers.
To map solution vectors at fixed depth planes back to

the discretized whole volume of Ω`, we define the Dirac
delta at a fixed depth,

(δ(z − zp)vq)i,j,k =

{
0 if k 6= p,

(vq)i,j
h3 if k = p.

(13)

This definition of the numerical Dirac delta is specific to a
classical finite difference discretization. If the discretiza-

§With this renumbering the local depth index z`k maps to the

global depth index zn`
c+k where n`

c =
∑`−1

j=1 n
j .

tion changes, it is still possible to define a numerical Dirac
delta using the approach developed in Zepeda-Núñez and
Demanet (2015).

Accuracy

Solving the Helmholtz equation in the high-frequency regime
is notoriously because:

• it is difficult to efficiently discretize the PDE, and

• the resulting linear system is difficult to solve in a
scalable and efficient fashion.

In this paper, we focus on the second issue. However, for
completeness, we provide a brief overview of difficulties
associated to the discretization.

From the Shannon-Nyquist sampling theorem, an os-
cillatory function at frequency ω requires O(ωd) degrees
of freedom to be accurately represented, without aliasing.
For example, to accurately represent the solution of Eq. 1,
only O(ω3) degrees of freedom are required. Obviously,
accuracy is still limited by the error in the discretization
of the differential operator. Even if the medium is very
smooth, standards methods based on finite differences and
finite elements are subject to pollution error, i.e., the ra-
tio between the error of the numerical approximation and
the best approximation cannot be bounded independently
of ω (Babuska et al., 1995; Ihlenburg and Babuska, 1995;
Babuska and Banerjee, 2012).

The direct consequence of pollution error is that the
approximation error, i.e., the error between the analyti-
cal and the numerical solution to the linear system, in-
creases with the frequency, even if n ∼ ω. Thus, to obtain
a bounded approximation error independent of the fre-
quency, it is required to oversample the wavefield, relative
to the Shannon-Nyquist criterion, i.e., n needs to grow
faster than ω. Unfortunately, oversampling provides dis-
cretizations with a suboptimal number of degrees of free-
dom with respect to the frequency. To alleviate pollution
error, several new approaches have been proposed, which
can be broadly classified into two groups:

1. methods using standard polynomial bases with mod-
ified variational formulations (Goldstein, 1986; Me-
lenk and Sauter, 2011; Melenk et al., 2013; Moiola
and Spence, 2014; Graham et al., 2015);

2. methods based on well known variational formula-
tions but using non-standard basis, such as plane
waves (Hiptmair et al., 2015; Perugia et al., 2016),
polynomials modulated by plane waves (Betcke and
Phillips, 2012; Nguyen et al., 2015), or other spe-
cially adapted functions.

Even though the methods mentioned above have been
successful in reducing pollution error, the resulting linear
systems cannot, in general, be solved in quasi-linear time
or better because the matrices either have a high degree of
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interconnectivity or are extremely ill-conditioned. How-
ever, some new fast algorithms have recently been pro-
posed for solving the Helmholtz equation without pollu-
tion error with quasi-linear complexity for media that are
homogeneous up to smooth and compactly supported het-
erogeneities (Zepeda-Núñez and Zhao (2016); Fang et al.
(2016); and references therein). In the case of highly het-
erogeneous media the accuracy of finite elements has not
been extensively studied, although methods of efficient
discretizations for highly heterogeneous media, coupled
with fast algorithms are emerging (Taus et al., 2016).

In this paper, we assume that waves will propagate in
very general and highly heterogeneous media, thus, we do
not have a theoretical framework to assess the accuracy.
Instead, we use numerical experiments to check the ac-
curacy of the solution. Our numerical experiments show,
for the cases considered in this paper, using 10 points per
wavelength results in roughly 1 digit of accuracy at the
highest frequency considered.

Reduction to a surface integral equation

The global solution is related to the local layer solutions by
coupling the subdomains using the Green’s representation
formula (GRF) within each layer. The resulting surface
integral equation (SIE), posed at the interface between
layers, effectively reduces the problem from the global do-
main Ω to the interfaces between layers. The resulting
SIE has the form

Mu = f , (14)

where M is formed by interface-to-interface Green’s func-
tions, u is defined in Eq. 12, and f is the right-hand-side,
formed as in Line 8 of Alg. 2.

The matrix M is a block banded matrix (Fig. 2, left) of
size 2(L−1)n2×2(L−1)n2. Theorem 1 of Zepeda-Núñez
and Demanet (2016) gives that the solution of Eq. 14 is
exactly the restriction of the solution of Eq. 7 to the in-
terfaces between layers.

Following Zepeda-Núñez and Demanet (2016), if the
traces of the exact solution are known, then it is possible
to apply the GRF to locally reconstruct exactly the global
solution within each layer. Equivalently, the reconstruc-
tion can be performed by modifying the local source with
a measure supported on the layer interfaces and solving
the local system with the local solver, as seen in lines 11-
12 of Alg. 2, where a high-level sketch of the algorithm to
solve the 3D high-frequency Helmholtz equation is given.

To efficiently solve the 3D problem, it is critical that the
matrix M is never explicitly formed. Instead, a matrix-
free approach (Zepeda-Núñez and Demanet, 2015) is used
to apply the blocks of M via applications of the local
solver, using equivalent sources supported at the interfaces
between layers, as shown in Alg. 3. Moreover, as seen
in Alg. 3, the application of M is easily implemented in
parallel, with a small communication overhead. The only
non-embarrassingly parallel stage of Alg. 2 is the solution
of Eq. 14, which is inherently sequential.

Figure 2: Sparsity pattern of the SIE matrix in Eq. 14
(left), and the polarized SIE matrix in Eq. 18 (right) .

Given that M is never explicitly formed, an iterative
method is the natural choice for solving Eq. 14. In prac-
tice, the condition number of M is very large and it has a
wide spectrum is the complex plane, which implies that a
large number of iterations are required to achieve conver-
gence. To alleviate this problem, we apply the method of
polarized traces, as an efficient preconditioner for Eq. 14,
which we describe below.

Algorithm 1. Offline computation

1: function [L`, U `] = Factorization(m, ω)
2: for ` = 1 : L do
3: H` = 4` +m`ω2 . Build the local system
4: L`U` = H` . Compute the LU factorization
5: end for
6: end function

Algorithm 2. Online computation using the SIE reduc-
tion

1: function u = Helmholtz solver( f )
2: for ` = 1 : L do
3: f ` = fχΩ` . partition the source
4: end for
5: for ` = 1 : L do
6: v` = (H`)−1f ` . solve local problems
7: end for
8: f =

(
v1
n1 ,v2

1,v
2
n2 , . . . ,vL1

)t
. form r.h.s.

9: u = (M)
−1

f . solve Eq. 14
10: for ` = 1 : L do

11:
g` = f ` + δ(z1 − z)u`−1

n`−1 − δ(z0 − z)u`1
−δ(zn`+1 − z)u`n` + δ(zn` − z)u`+1

1

12: u` = (H`)−1g` . inner solve
13: end for
14: u = (u1,u2, . . . ,uL−1,uL)t . concatenate
15: end function

Algorithm 3. Application of the boundary integral ma-
trix M

1: function u = Boundary Integral( v )
2: f̃1 = −δ(zn1+1 − z)v1

n` + δ(zn1 − z)v2
n1

3: w1 = (H1)−1f̃1

4: u`n` = w`
n` − v`n`

5: for ` = 2 : L− 1 do
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6:
f̃ ` = δ(z1 − z)v`−1

n`−1 − δ(z0 − z)v`1
−δ(zn`+1 − z)v`n` + δ(zn` − z)v`+1

1

7: w` = (H`)−1f̃ ` . inner solve
8: u`1 = w`

1 − v`1; u`n` = w`
n` − v`n`

9: end for
10: f̃L = δ(z1 − z)vL−1

nL−1 − δ(z0 − z)vL1
11: wL = (HL)−1f̃L

12: uL1 = wL
1 − vL1

13: end function

METHOD OF POLARIZED TRACES

Reducing the Helmholtz problem to a SIE allows us to
efficiently parallelize most of the computation required to
solve Eq. 7. The only remaining sequential bottleneck
is the solution of Eq. 14. Given the size and the dis-
tributed nature of M, iterative methods, such as GM-
RES (Saad and Schultz (1986)) or Bi-CGSTAB (van der
Vorst (1992)), are the logical approach for solving Eq. 14.
However, numerical experiments indicate that the con-
dition number of M scales as O(h−2), or as O(ω2) in
the high-frequency regime (Zepeda-Núñez and Demanet,
2016). The number of iterations required for schemes like
GMRES to converge is proportional to the condition num-
ber of the system, yielding poor scalability for solving the
SIE at high frequencies. To alleviate this problem, we
use the method of polarized traces to convert the SIE
to an equivalent problem, which is easily preconditioned.
This preconditioned system only requires O(logω) GM-
RES iterations¶, i.e., it is comparatively independent of
the frequency. Here, we provide a high-level review of the
method of polarized traces and its implementation and we
direct the reader to Zepeda-Núñez and Demanet (2016)
for a detailed exposition.

Preconditioner

As seen in the previous discussion, Eq. 14 is the result of
decomposing the domain into a set of layers and reducing
the Helmholtz problem to an equivalent SIE on the inter-
faces between the subdomains. To precondition the SIE
with the method of polarized traces, the solution at the
interfaces is decomposed in up- and down-going compo-
nents such that

u = u↑ + u↓, (15)

which defines the polarized wavefield

u =

(
u↓

u↑

)
. (16)

By introducing the polarized wavefield, we have deliber-
ately doubled the unknowns and produced an underdeter-
mined system. To close the system, we impose annihila-
tion, or polarizing, conditions (see Section 3 of Zepeda-
Núñez and Demanet (2016)) that are encoded in matrix

¶This scaling is empirically deduced , under the assumption that
no large resonant cavities are present in the media.

form as
A↑u↑ = 0, and A↓u↓ = 0. (17)

Requiring that the solution satisfies both Eq. 14 and
the annihilation conditions yields another equivalent for-
mulation,

M u = f
s
, (18)

where

M =

[
M M

A↓ A↑

]
, and f

s
=

(
fs
0

)
. (19)

Following a series of basic algebraic operations and per-
mutations (see Zepeda-Núñez and Demanet (2016) for the
full details), we obtain an equivalent formulation of the
polarized SIE matrix in Eq. 18, given by

M =

[
D↓ U

L D↑

]
. (20)

There exist straightforward, parallel algorithms for apply-
ing the block matrices D↓, D↑, L, and U. By construction
D↓ and D↑ can be easily inverted using block forward and
backward substitution because they are block triangular
with identity blocks on their diagonals. The blocks that
appear in the sparsity pattern of M (Fig. 2; right) are
a direct manifestation of interactions between the layer
interfaces.

While the resulting block linear system can be solved us-
ing standard matrix-splitting iterations, such as block Ja-
cobi iteration or block Gauss-Seidel iteration (Saad, 2003),
it is natural to continue to use GMRES to solve the sys-
tem due to the parallel nature of applying the constituent
blocks of M. However, the structure of M is convenient
for using a single iteration of Gauss-Seidel as a precondi-
tioner,

PM u = Pf
s
, (21)

where the preconditioning matrix is

P =

(
D↓ O

L D↑

)−1

. (22)

In the subsequent sections, we will elaborate on the phys-
ical and numerical meanings of the constituent blocks of
M and P.

Polarization

The main novelty of the method of polarized traces is
due to the polarization conditions, which are encoded in
the matrices A↑ and A↓. The polarizing conditions pro-
vide a streamlined way to define an iterative solver using
standard matrix splitting techniques, and thus an efficient
preconditioner for Krylov methods, such as GMRES.

The polarization conditions are constructed by project-
ing the solution on two orthogonal sets, physically given
by waves traveling upwards and downwards. Similar con-
structs are well-known to the geophysics community, as
methods that decompose wavefields into distinct down-
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and up-going components are the backbone of several imag-
ing techniques (see Zhang (2006) and references therein).
Commonly, the decomposition is obtained using discretiza-
tions of pseudo-differential operators, which can be inter-
preted as separating the wavefield into a set of wave-atoms
traveling in the different directions which are then propa-
gated accordingly. Methods for decomposing and locally
extrapolating directionally decomposed wavefields are well
documented (Wu (1994); Collino and Joly (1995); Ristow
and Ruehl (1997); de Hoop et al. (2000)).

In our case, we rewrite the decomposition condition as
an integral relation between the Neumann and Dirichlet
data of the wavefield, which ultimately leads to the an-
nihilation conditions in Eq. 17. The pair composed of
the Neumann and Dirichlet traces should lie within the
null space of an integral operator defined on an interface,
which allows the decomposition of the total wavefield into
the up- and down-going components, with each having a
clear physical interpretation. In particular, an up-going
wavefield is a wavefield generated by a source located be-
neath the interface and it satisfies a radiation condition
at positive infinity and a down-going wavefield is a wave-
field generated by a source located above the interface and
it satisfies a radiation condition at negative infinity. As
detailed in Zepeda-Núñez and Demanet (2016), defining
the decomposition in this manner allows us to extrapolate
each component in a stable manner using an incomplete
Green’s integral.

The extrapolation of up-going components is performed
algorithmically by the inversion of D↑ and in the same
fashion the extrapolation of down-going components is
performed by the inversion of D↓. Moreover, the appli-
cation of the operator L isolates the up-going reflections
due to down-going waves interacting with the material in
each subdomain, and similarly for the operator U.

The application of the preconditioner to a decomposed
wavefield,

P

(
v↓

v↑

)
=

(
(D↓)−1v↓

(D↑)−1r

)
, (23)

for r =
(
v↑ − L(D↓)−1v↓

)
, can be physically interpreted

as follows:

1. (D↓)−1v↓: extrapolate the down-going components
by propagating them downwards,

2. r =
(
v↑ − L(D↓)−1v↓

)
: compute the local reflec-

tion of the extrapolated field and add them to the
up-going components,

3. (D↑)−1r: extrapolate the up-going components by
propagating them upwards.

Algorithms

As with the application of M in Alg. 3, we construct
matrix-free methods for solving (D↓)−1 and (D↑)−1 (Algs. 4

and 5), where local solves are applied in an inherently
sequential fashion. To complete the preconditioner, a
matrix-free (and embarrassingly parallel) algorithm for
applying L is given in Alg 6. Similar algorithms for ap-
plying U, D↑, and D↓, as well as the complete matrix-free
algorithm for applying M, are provided in the Appendix.

In solving the systems for (D↓)−1 and (D↑)−1, each ap-
plication of the local solver is local to each layer, which
means that some communication is required to transfer
solution updates from one layer to the next. The sequen-
tial nature of the method for solving these systems implies
that only one set of processors, those assigned to the cur-
rent layer, are working at any given stage of the algorithm.
This is illustrated in Fig. 3, where each block represents a
local solve and the execution path moves from left to right.
As explained in Zepeda-Núñez and Demanet (2016), it is
possible to apply D↓ and L simultaneously, thus decreas-
ing the number of local solves per layer.

Algorithm 4. Downward sweep, application of (D↓)−1

1: function u↓ = Downward Sweep( v↓ )
2: u↓,1n1 = −v↓,1n1

3: u↓,1n1+1 = −v↓,1n1+1
4: for ` = 2 : L− 1 do
5: f̃ ` = δ(z1 − z)u↓,`−1

n`−1 − δ(z0 − z)u↓,`−1
n`−1+1

6: w` = (H`)−1f̃ `

7: u↓,`
n` = wn` − v↓,`

n`

8: u↓,`
n`+1

= wn`+1 − v↓,`
n`+1

9: end for

10: u↓ =
(
u↓,1n1 ,u

↓,1
n1+1,u

↓,2
n2 , ...,u

↓,L−1
nL−1 ,u

↓,L−1
nL−1+1

)t
11: end function

Algorithm 5. Upward sweep, application of (D↑)−1

1: function u↑ = Upward sweep( v↑ )
2: u↑,L0 = −v↑,L0

3: u↑,L1 = −v↑,L1

4: for ` = L− 1 : 2 do
5: f̃ ` = −δ(zn`+1 − z)u↑,`+1

0 + δ(zn` − z)u↑,`+1
1

6: w` = (H`)−1f̃ `

7: u↑,`1 = w`
1 − v↑,`1

8: u↑,`0 = w`
0 − v↑,`0

9: end for

10: u↑ =
(
u↑,20 ,u↑,21 ,u↑,30 , ...,u↑,L0 ,u↑,L1

)t
11: end function

Algorithm 6. Upward reflections, application of L

1: function u↑ = Upward Reflections( v↓ )
2: for ` = 2 : L− 1 do

3:
f ` = δ(z1 − z)v↓,`0 − δ(z0 − z)v↓,`1

−δ(zn`+1 − z)v↓,`+1
0 + δ(zn` − z)v↓,`+1

1

4: w` = (H`)−1f `

5: u↑,`1 = w`
1 − v↓,`1

6: u↑,`0 = w`
0

7: end for
8: fL = δ(z1 − z)v↑,L0 − δ(z0 − z)v↑,L1

9: wL = (HL)−1fL

10: u↑,L1 = wL
1 − v↓,L1
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11: u↑,L0 = wL
0

12: u↑ =
(
u↑,20 ,u↑,21 ,u↑,30 , ...,u↑,L0 ,u↑,L1

)t
13: end function

Physical intuition

We deliberately present the preconditioner in a purely al-
gebraic fashion, as it is instructive for implementing the
method. However, there is a physical interpretation of the
steps in the preconditioner, which we describe below.

As alluded to previously, the application of the precon-
ditioner, and in particular the block back-substitution in
Algs. 8 and 9, can be seen as a sequence of depth extrapo-
lation steps. Indeed, lines 4 and 5 in Alg. 4 are the discrete
counterpart of the incomplete Green’s integral defined by

u↓(x) =

∫
Γ`−1,`

(
G`(x,y)∂zu

↓(y)− ∂zG`(x,y)u↓(y)
)
dSy,

(24)
which is equivalent to the Rayleigh integral used to extrap-
olate a wavefield measured in surface towards the interior
of the Earth by Berkhout (1980). Likewise, Lines 4 and
5 of Alg. 5 are the discrete counterpart to an up-going
discrete Green’s integral.

The quality of the extrapolation depends directly on the
quality of the approximation of the local Green’s function
G` with respect to the global Green’s function. In the
reductive case, if the local Green’s function is precisely
the global Green’s function, the method will converge in
two iterations, see Gander (2006). However, this is equiv-
alent to solving the global problem, which is prohibitively
expensive. Instead, we compute a local approximation of
the Green’s function such that the Green’s representation
formula is valid within the layer only, not globally. As
expected with domain decomposition methods, incorrect
local approximations introduce numerical artifacts, which
are typically due to truncating the domain in a manner
that is inconsistent with the underlying physics. In the
method of polarized traces, these issues are mitigated with
judicious use of high-order absorbing boundary conditions
in the form of PML’s. As a physical consequence, the lo-
cal Green’s function can only see local features within a
particular layer. Far-field interactions, reflections induced
by material changes in the other layers, will not be ob-
served by the local Green’s function and must be handled
iteratively, by sequentially sweeping through the domains.

An important consequence of the Green’s integral rep-
resentation is that it completely eliminates the difficul-
ties that most domain decomposition methods have with
seamlessly connecting sub-domains together. Rather than
assigning data dependent boundary conditions, the cou-
pling is performed using potentials defined on the physical
interfaces, and the absorbing boundary conditions in an
extended domain effectively dampen spurious reflections.
The transmission conditions given by the discrete Green’s
representation formula are algebraically exact, thus there
is no need for tuning parameters.

PARALLELIZATION STRATEGIES

The computational effort needed to solve industrial scale
3D problems requires aggressive parallelization and op-
timization of the algorithm. To obtain a scalable im-
plementation, the algorithm and code must be designed
to balance the utilization and occupancy of three key re-
sources: CPU, memory, and communication network. In
this section, we describe our parallel implementation of
the method of polarized traces, with a focus on maximiz-
ing the utilization of these resources.

In the previous section, we formally introduced a matrix-
free approach for preconditioning the SIE system on layer
interfaces. However, this approach still relies on local
solves that are implemented using a direct solver. It is
possible to use specially designed iterative local solvers by
nesting the method of polarizes traces within each layer
(Zepeda-Núñez and Demanet, 2015) or a recursive ver-
sion of the sweeping factorization (Liu and Ying, 2015).
However, such approach would require a complicated code
with a very carefully implemented communication pat-
tern. For simplicity, and to broaden the portability of
the framework, we use a hybrid approach, where the local
solves use off-the-shelf numerical linear algebra libraries
and the polarization is matrix-free. We will address the
parallelism on two fronts: parallelism by layer and paral-
lelism within the layers.

Pipelining

First, we address parallelism due to the layer decomposi-
tion. Primarily, the parallelism across layers is due to the
SIE and the preconditioner used to help solve it. There
are five trivially parallel (by layer) applications of the local
solver: four due to M and one due to the appearance of L
in the preconditioner. However, in the preconditioner ap-
plication there are sequential bottlenecks due to the appli-
cations of (D↑)−1 and (D↓)−1 via block back-substitution.
Despite the trivial parallel nature of the other local solver
applications, applying the preconditioner using Algs. 4
and 5 permits work to be done on only one layer at a
time, thus forcing the majority of the computer to remain
idle. This is illustrated in the top half of Fig. 3, where
each blue box represents a local solve and algorithm exe-
cution moves from left to right. Supposing that each local
solve costs γ(n) time, then following Fig. 3, each GMRES
iteration can be performed in 5γ(n) + 2Lγ(n), ignoring
communication costs.

To alleviate the sequential bottleneck, we leverage the
fact that seismic problems have thousands of right-hand
sides and introduce pipelining. Pipelining allows us to
process multiple right-hand sides simultaneously, each at
different levels of progress through the sweeps, which helps
balance the computational load on the layers, reducing
the idle time and increasing the computational efficiency.
The pipelining principle is demonstrated in the bottom
half of Fig 3, where the boxes represent a local solve and
the blue, green, and orange colors indicate distinct right-
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Figure 3: Sketch of the load of each node in the GMRES
iteration.

hand sides. Pipelining allows the layers to perform work
for different right-hand sides simultaneously. Indeed, as
long as there are at least 2L right-hand sides, the pipeline
can be completely full and all available compute resources
will be occupied. For the pipelined algorithm, again dis-
regarding communication costs, the runtime of a GMRES
iteration is 5Rγ(n)+2(L+R)γ(n). Recalling that L ∼ n,
R ∼ n, and γ(n) = O(α2

pmln
2 log n), the cost ratio for

solving R right-hand sides compared to one right-hand
side is constant,

5Rγ(n) + 2(L+R)γ(n)

5γ(n) + 2Lγ(n)
= O(1). (25)

One of the advantages of the method of polarized traces
is that the memory requirement to store the intermediate
representation of solution is lower than other methods,
because it requires solutions for the degrees of freedom
involved in the SIE only. Thus, for each right-hand side,
only N/q data need to be stored, where q is the thickness
of the interface. This reduction in storage, when combined
with the reduced storage due to the relatively small num-
ber of GMRES iterations required for convergence, yields
a smaller memory footprint for the outer GMRES itera-
tion than methods requiring to update the full volume.
It is possible to further reduce the memory footprint by
using Bi-CGSTAB instead of GMRES, keeping the com-
putational cost almost constant (Zepeda-Núñez and De-
manet, 2015).

Local Solves: Parallel Multi-frontal Meth-
ods

The method polarized traces is a highly modular frame-
work for solving the Helmholtz equation: in practice, one
can use any existing algorithm or package for solving lin-
ear equations to perform the local solves, including the
method of polarized traces itself (Zepeda-Núñez and De-
manet, 2015). To obtain good parallel performance, we

use a high-performance distributed linear algebra library
to solve the local problems within each layer. Due to the
sparsity pattern of the linear system at each layer, a typ-
ical recipe for the local solves is to re-order the degrees
of freedom to increase stability and reduce numerical fill-
in, perform a multi-frontal factorization, and solve the
resulting factorized system with forward- and backward-
substitution, often called triangular solves. There exists a
myriad of techniques to parallelize the multi-frontal fac-
torization and the triangular solves (see Davis et al. (2016)
for a recent and extensive review of different techniques
for solving sparse systems). A popular approach is to use
supernodal elimination trees (see Ashcraft et al. (1987))
defined through nested dissection, which results in highly
scalable factorizations (Gupta et al., 1997), albeit with
less efficient triangular solves Joshi et al. (1997). To avoid
the poor scalability of dense triangular solves due to this
approach, Raghavan (1998) introduced a scheme called se-
lective inversion, which is applied by Poulson et al. (2013)
specifically for the Helmholtz problem. Although very effi-
cient, using the techniques mentioned before would require
lengthy and complex code, we use instead off-the-shelf li-
braries, which can be effortlessly changed if necessary.

For the results in this paper, we use STRUMPACK
(Rouet et al., 2015) to perform the local solves. STRUMPACK
is a state-of-the-art distributed sparse linear solver library
that relies on supernodal factorizations,‖ a 2D block-cyclic
distribution of the matrix, and a static mapping tech-
nique to assign task to MPI processes based on propor-
tional mapping (Pothen and Sun, 1993) to achieve good
parallel performance. The implementation is competi-
tive with other distributed linear algebra solvers with lib-
eral licenses, such as SuperLU-DIST (cf. Li and Demmel
(2003)) and MUMPS (cf. Amestoy et al. (2001)), while
providing the user more freedom to arrange the distri-
bution of the matrix and right-hand sides, within a dis-
tributed memory enviroment, in a manner that is optimal
for specific applications.

A strong advantage of STRUMPACK is that the factor-
ization and solve processes can be accelerated using com-
pressed linear algebra, in particular HSS compression with
nested bases, using randomized sampling techniques. In
general, using compressed formulations allows a reduced
memory footprint and in some cases faster algorithms.
For the high-frequency regime, it is known that solvers
based on compression techniques do not provide a lower
asymptotic complexity, due to the fact that the ranks of
the off-diagonal blocks are frequency dependent (Engquist
and Zhao, 2014). However, these solvers still tend to pro-
vide smaller memory footprints for the cases we consider
in this paper, albeit, with much bigger runtimes. There-
fore, we deliberately do not considered the performance
of the adaptive compression in this paper and leave such
treatment for future work.

The STRUMPACK solver addresses parallelism within

‖It uses a ULV factorization when the compression is turned on
(Chandrasekaran et al., 2006; Xia, 2013)
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Figure 4: Sketch of the decomposition of the degrees of
freedom of the slabs in cubes.

layers in two ways: classical distribution of tasks with
MPI and synchronous processing within each task with
OpenMP, which we exploit for the results presented in
our numerical results. STRUMPACK’s hybrid parallelism
model allows us to maximize the utilization of computa-
tional resources. We have designed the distribution of
MPI tasks to exploit highly asynchronous communication
patterns, thus reducing the communication time subtan-
tially.

Finally, in most of the experiments shown in the se-
quel, we process at most one right-hand side per layer.
It is possible to solve more than one right-hand side per
layer, and take advantage of BLAS3 routines. Moreover,
a quick inspection to the algorithms within the precondi-
tioner, shows that the right-hand sides are sparse. Indeed,
the sources are supported on the interfaces, and the so-
lutions are only needed at the boundaries. In principle,
it is possible to take advantage of the sparsity of the so-
lution and the right-hand-side to reduce the constants by
removing some branches from the elimination tree. These
techniques would certainly reduce the constants but they
would have little impact on the asymptotic scaling; hence,
they were not explored in this study.

Communication

As is common in massively parallel applications, there is
a bottleneck due to the communication between paral-
lel tasks, which is strongly dependent on the distribution
of the tasks on the cluster. For this implementation, we
assume a very simple topology for the distribution of un-
knowns. We distribute the parallel tasks following the
layer structure. For each slab of unknowns, we assign
O(n2) tasks, and using MPI directives enforce that the
tasks are contiguous within physical computing nodes.
Each slab is divided into O(n2) cubes, as illustrated in
Fig. 4, and the parallel tasks associated with that slab are
divided evenly and contiguously amongst the cubes. Each
cube contains a contiguous block of the solution, as shown
in Fig. 4, and the associated entries of the local matrix.

Within the slab, the topology is designed so that each
cube only communicates with its neighboring cubes in the
same slab, generally inside the local solver. Across slabs,

layer l � 1

layer l

Figure 5: Sketch of the asynchronous communication be-
tween slabs.

cubes only communicate with the cube in the same posi-
tion on the adjacent slabs immediately above and below
it, as illustrated in Fig. 5. Under this particular topology,
we can distinguish two main communications bottlenecks:

• the communication between parallel tasks within the
distributed linear algebra solver, and

• the communication of the boundary data between
slabs, during the application of the preconditioner.

As a consequence of using third-party distributed linear
algebra solvers, we have little control over the communi-
cation pattern, particularly because STRUMPACK uses
MC64 (Duff and Koster, 2001), for enhancing stability
and ParMetis (Karypis and Kumar, 1998) to optimally
reorder the matrix in order to reduce fill-in during the
factorization. To have the desired distribution of the de-
grees of freedom among the cubes, we reorder the matrix
with a Z ordering, so that smallest division corresponds
exactly to the degrees of freedom within a cube. Then, the
matrix is then assembled and passed to the linear solver
in a distributed fashion.

Communication between slabs is a product of the ap-
plication of the preconditioner in Eq. 22, in which back-
and forward-substitution are used to apply (D↑)−1 and
(D↓)−1. Algs. 8 and 9) require a local solve in each slab,
followed by communication of the trace information to the
next slab, in which another local solve is performed. This
operation is repeated until all the slabs are visited within
the sweep.

By dividing the slabs into cubes, the communication
of the trace information between slabs is very efficient.
Given that each cube communicates with the cube directly
above and below, it is possible to perform asynchronous
point-to-point communication between the cubes of two
adjacent slabs as shown in Fig. 5. This allows the com-
munication to be performed in nearly constant time, up
to saturation of the network. Moreover, the trace infor-
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mation is already distributed for distributed assembly of
the right-hand side within the subsequent slab. As stated
before, it is possible to use topologies better suited for
the multi-frontal solver, such as the one due to Poulson
et al. (2013). However, such an implementation requires a
very precise understanding of the re-ordering mechanism
within the solver, which we do not have for black-box
solvers.

COMPLEXITY OF POLARIZED TRACES

The run-time complexity of the polarized traces precon-
ditioner is driven by the costs of computation and com-
munication. Achieving optimal performance requires del-
icately balancing the parallel distribution of the problem
depending on the characteristics of the target HPC sys-
tem. In this section we develop models for computation
and communication costs, which guide problem parameter
selection in HPC environments.

Computation

As before, each layer has O((nz +αpml)×n2) grid points,
i.e., they are nz grid points thick with αpml additional
points due to the PML. We have that nz = O(1) because
L ∼ n, which implies that we are solving a quasi-2D prob-
lem. The additional cost is due only to the points used
to implement the absorbing boundary conditions. When
applying 2D nested dissection to the quasi-2D problem
we have O(αpmln) degrees of freedom in the biggest front,
thus leading to a complexity of O(α3

pmln
3) for the factor-

ization of the systems local to each layer andO(α2
pmln

2 log n)
for the application of the triangular solve (Duff and Reid,
1983). Sequentially, the complexity of Alg. 1 isO(α3

pmlN
4/3),

but given that the loop in line 2 of Alg. 1 is embarrass-
ingly parallelizable, Alg. 1 can be performed in O(α3

pmlN)
time∗∗. Due to the sequential nature of Algs. 4 and 5,
applying the preconditioner requires 2L local solves per
iteration, applied sequentially. Consequently, the total
complexity for the application of the preconditioner is
O(α2

pmlN logN). For αpml ∼ log n, at most O(log n) iter-
ations are empirically needed to converge, thus the com-
plexity of the solver is linear (up to poly-logarithmic fac-
tors), provided that L ∼ n and that the number of itera-
tions for convergence grows slowly.

It is possible to relax the restriction that L ∼ n, instead
allowing L ∼ nb where b < 1. However, in this regime,
maintaining the overall linear complexity requires that we
exchange the multi-frontal solver for an iterative solver
(Liu and Ying, 2015; Zepeda-Núñez and Demanet, 2015).
The main disadvantage of this approach is that it reduces
the possible parallelism due to using multi-frontal solvers,
which makes an efficient implementation of the pipelin-
ing difficult and makes the communication patterns more
complicated.

∗∗As it will be shown in the numerical experiments, this scaling
can be further reduced due to the parallelism at the level of the
multi-frontal solver.

Pipelining

We introduced pipelining of R right-hand sides to allevi-
ate the sequential nature of applying the preconditioner.
To understand the run-time impact of pipelining multiple
right-hand sides, we consider its impact on the complex-
ity of applying M and applying the preconditioner. Given
that the run-time cost of each local solve isO(α2

pmln
2 log n)

and recalling that applying M is embarrassingly parallel,
the cost of applying M toR right-hand sides isO(α2

pmlRn
2 log n).

As long as R ∼ L ∼ n, applying the preconditioner costs
O(Lα2

pmln
2 log n). However, when R & L, the additional

right-hand-sides are treated sequentially, resulting in a
cost of O(α2

pmlRn
2 log n). Using the fact that L ∼ n

and that N = n3, we obtain the advertised runtime of
O(α2

pml max(1, R/L)N logN)).

Communication

We treat the distributed linear algebra solver as a black
box, and therefore do not analyze the costs of communi-
cation within the local solve. Thus, we only consider the
cost of communication due to the global solve, that is the
costs of communicating between subdomains across lay-
ers. We assume that that each subdomain has fast access
to its corresponding patch of both the R wavespeeds and
the R sources. Moreover, we assume that each subdomain
assembles and stores its portion of the global solution∗.

The offline stage of the algorithm, assembly of the lo-
cal matrices and the local factorizations, is embarrassingly
parallel under the assumptions described above. The on-
line part, has three stages:

• the preparation of the right-hand side (Lines 2-8 in
Alg. 2);

• the solve of the SIE (Lines 9 in Alg. 2); and

• the assembly of the global solution (Lines 10-14 in
Alg. 2).

Of these, the first and third stages require no communi-
cation under the above assumptions.

Solving the SIE has two main phases: the application
of M and the application of the preconditioner. Apply-
ing M, as shown in Alg. 3, is an embarassingly parallel
operation with zero communication. On the other hand,
applying the preconditioner, which is fully sequential, re-
quires communication of O(n2) unknowns from one layer
to the next. In our implementation, these unknowns are
distributed evenly between O(n2) MPI tasks. Using a
point-to-point communication strategy, each of the MPI
tasks assigned to a layer only communicates with one
corresponding MPI task in the adjacent (above and be-
low) layers, as illustrated in Fig. 5. Thus, by exploit-
ing asynchronous communication, the communication be-
tween layers can be performed in O(1) time up to satura-
tion of the bandwidth, which is asymptotically negligible

∗As a consequence, computation of imaging conditions can be
performed without incurring in extra communication cost.
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with respect to solving the local linear systems. This com-
munication must be performed O(L) times during each
sweeping operation in Algs. 4 and 5. Consequently, to-
tal communication cost of applying the preconditioner is
O(n), up to saturation of the bandwidth.

NUMERICAL EXPERIMENTS

In this section, we present the results of several numer-
ical experiments used to verify the complexity described
above. In particular, we demonstrate the performance of
the 3D preconditioner in various heterogeneous media for
a single source and then illustrate the impact of pipelin-
ing on parallel performance. Our polarized traces imple-
mentation is written in C and compiled with the 2015
Intel compiler suite. The current implementation is uses
IEEE double precision floating point. To perform the local
solves, we use STRUMPACK v1.1.0 with Intel MKL sup-
port for fast linear algebra operations. The preconditioner
is parallelized with MPI and STRUMPACK is parallelized
with both MPI and OpenMP. The experiments were per-
formed on Total’s “Laure” SGI ICE-X cluster, where each
computing node contains two 8-core Intel Sandy Bridge
processors, 64GB of RAM, and are connected with an In-
finiband interconnect.

Homogeneous media

First, we demonstrate the effectiveness of the precondi-
tioner by solving the Helmholtz problem in homogeneous
media. With no reflectors in the medium, the convergence
of the algorithm is only dependent on the frequency and
the quality of the absorbing boundary condition at the
layer interfaces. In this experiment, as well as the subse-
quent experiments, we hold αpml constant, with sufficient
points to minimize artificial reverberations while simulta-
neously keeping the number of iterations low. For higher
frequencies, to preserve the low iteration count we would
need to scale αpml as O(log n).

In this experiment, we test 4 problem sizes, n = 50,
100, 200, and 400, which corresponds to frequencies of 8,
16, 32, and 64 Hz. Source frequency is scaled with prob-
lem size to stay in the high-frequency regime and sources
are assumed to be point sources. The number of layers is
also scaled with the problem, L = 5, 10, 20, and 40. Due
to memory limitations on the computing node, in some
cases the nodes were saturated before all cores could be
assigned to an MPI task. For these cases, we allow the
remaining cores to be used for vectorized processing with
OpenMP. The outer GMRES iteration is run until the
residual is reduced to 10−7, which is excessive in a pro-
duction, single-precision environment; however, it shows
the favorable behavior of the solver under more challeng-
ing conditions. Lower tolerances can produce misleading
results when frequencies are not high enough, thus only
revealing a pre-asymptotic behavior. For each configura-
tion, we report the wall-clock times for initialization, ma-
trix assembly, matrix factorization, and total online time

Figure 6: Solution of the Helmholtz equation, at 64 Hz,
in constant wavespeed.

for R = 1 and R = L with pipelining. Additionally, we
track the number of GMRES iterations required to achieve
the desired convergence.

The solution at 64 Hz is provided in Fig. 6. The full
results of the experiment are given in in Table 2 and the
observed run-times, compared to the theoretical run-times
for R = 1 and R = L pipelined right-hand sides are shown
in Fig. 7 and Fig. 8, respectively. Only when R ≥ L does
the theoretical scalability break the linear threshold, how-
ever, in both cases, the method of polarized traces scales
better than the theoretical scaling, which we attribute
to optimizations and parallelism in the local solver. Of
note in Table 2, the number of GMRES iterations grows
very slowly with the frequency, even when we do not scale
αpml optimally. In the experiments where hybrid paral-
lelism (MPI-OpenMP) is used, the run-times are reduced
almost linearly for medium-sized problems, however the
improvements fade as the size of the problem increases.
This behavior is due to the linear solver, where for large
problems the memory access time in the triangular solves
becomes dominant, reducing the parallelism.

Smooth heterogeneous media

Using the same configurations as above we solve the Helmholtz
problem in the smoothed random media shown in Fig. 9
in order to demonstrate the effectiveness of the solver in
heterogeneous media. This test demonstrates that the
method is particularly robust to media where the rays can
bend and develop caustics. The solution for the configu-
ration equivalent to that of Fig. 6 is given in Fig. 10. In
Fig. 10, it is clear that the features of the model are com-
parable to the wavelength used, thus the solution presents
interference, caustics, non-spherical wavefronts. Table 3
contains the complete experimental results, where we ob-
serve that the variation in the media has little real effect
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N 503 1003 1003 2003 2003 4003 4003 4003

L 5 10 10 20 20 40 40 40
MPI Tasks 5 10 10 80 80 640 640 640

OpenMP Threads per Task 1 1 2 1 2 1 2 3
Total Cores 5 10 20 80 160 640 1280 1920
Total Nodes 1 1 2 5 10 80 80 128
Single rhs

# GMRES Iterations 4 4 4 5 5 6 6 6
Initialization [s] 0.2 1.0 0.9 6.9 4.4 18.9 18.9 18.4
Factorization [s] 4.1 41.1 21.9 153.2 78.3 320.5 200.1 148.6

Online [s] 4.0 39.2 22.6 182.0 109.7 696.6 401.4 315.5
Average GMRES [s] 0.9 8.4 4.8 32.0 19.2 103.5 59.3 46.6

Pipelined rhs
R (number of rhs) 5 10 10 20 20 40 40 40

Online [s] 15.8 189.4 106.2 1255.5 668.5 3994.2 2654.4 1878.1
Average GMRES [s] 3.4 40.6 22.7 223.8 118.6 599.9 401.0 283.0

Online per rhs [s] 3.2 18.9 10.6 62.8 33.4 99.9 66.4 47.0
Average GMRES per rhs [s] 0.7 4.1 2.3 11.2 5.9 15.0 10.0 7.1

Table 2: Runtime (in seconds) for one and several right-hand sides for the solution of the Helmholtz equation using an
homogeneous model.

on the run-time or convergence properties. In this case,
even if the rays bend, the preconditioner does a remark-
able job at tracking the rays in the correct direction and
propagating them accordingly. The timings are given in
in Figs. 7 and Fig 8.

Fault model

In general, iterative methods are very sensitive to discon-
tinuous media. At high frequency, interaction with short-
wavelength structures, such as discontinuities, increases
the number of reflections. Each additional reflection re-
quires additional iterations to convergence, hindering the
efficiency of iterative methods.

Using the same configuration as for the homogeneous
model, with the discontinuous velocity given in Fig. 11,
we demonstrate that the method of polarized traces de-
teriorates only marginally as a function of the frequency
and number of subdomains. A solution at 64 Hz is given
in Fig. 12 and the run-time scalability is again given in
Figs. 7 and 8. As shown in Table 4, we observe the same
behavior as in the previous cases and that the strong re-
flection is handed efficiently by the transmission and po-
larizing conditions.

SEAM model

Beyond mere sensitivity to discontinuities of the medium,
iterative solvers are highly sensitive to the roughness and
heterogeneity of the velocity model, due to the great amount
of interactions, reflections, and drastic changes of direc-
tion of waves due to high gradients in the wavespeed.
However, the performance method of polarized traces de-
grades only marginally for highly heterogeneous media,

excepting resonant cavities. We demonstrate this desir-
able performance on the SEAM Phase I velocity model
(Fig. 13). In this experiment, we test 3 problem sizes,
N = 0.65M, 5.16M, and 41.2M degrees of freedom, which
use L = 12, 24, and 48 layers, respectively. The remainder
of the experimental setup is unchanged.

As seen in the data in Table 5 and plotted in Figs. 15
and 16, the run-times are sub-linear with respect to the
total number of unknowns. Interestingly, we also observe
a sub-linear run-time in the offline stages of the algorithm,
which we attribute to the parallelism in the multi-frontal
factorization. This is expected, as the factorization is
more computationally intensive than memory intensive.
In the more memory-intensive, and thus less parallel, solve
phase, we still see an improvement over the theoretical
curve, but the improvement is less pronounced.

Finally, for the largest test case, we demonstrate the
impact of pipelining by comparing the scalability of our
method with the theoretical scalability, as a function of
R. As shown in Fig. 17, experimental results indicate
that we obtain the expected scalability. Slight divergence
from the theoretical curve is expected once the pipeline is
fully saturated because the theoretical curve does not take
into account the cost of filling and flushing the pipeline.

Finally, Fig. 17 depics the behavior of the pipelining as
we increase the number of right-hand sides. As expected,
as we add more and more righ-hand sides to be solved
simultaneously the runtime per right-hand side decreases,
until the pipeline is full, when the average runtime remains
almost constant.
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N 503 1003 1003 2003 2003 4003 4003 4003

L 5 10 10 20 20 40 40 40
MPI Tasks 5 10 10 80 80 640 640 640

OpenMP Threads per Task 1 1 2 1 2 1 2 3
Total Cores 5 10 20 80 160 640 1280 1920
Total Nodes 1 1 2 5 10 80 80 128
Single rhs

# GMRES Iterations 5 5 5 5 5 6 6 6
Initialization [s] 0.2 1.1 1.0 7.3 4.6 21.3 21.2 20.8
Factorization [s] 3.8 41.1 21.8 156.0 79.4 323.7 204.5 151.5

Online [s] 4.6 45.9 26.1 202.2 106.9 717.0 400.1 314.5
Average GMRES [s] 0.8 8.1 4.6 35.5 18.7 106.4 59.2 46.5

Pipelined rhs
R (number of rhs) 5 10 10 20 20 40 40 40

Online [s] 17.1 225.1 118.8 1260.9 650.2 4085.0 2714.8 1872.1
Average GMRES [s] 3.0 39.8 20.9 223.6 115.6 613.3 409.2 281.9

Online per rhs [s] 3.4 22.5 11.9 63.0 32.5 102.1 67.9 46.8
Average GMRES per rhs [s] 0.6 4.0 2.1 11.2 5.8 15.3 10.2 7.0

Table 3: Runtime (in seconds) for one and several right-hand sides for the solution of the Helmholtz equation for the
smooth model in Fig. 9.

N 503 1003 1003 2003 2003 4003 4003 4003

L 5 10 10 20 20 40 40 40
MPI Tasks 5 10 10 80 80 640 640 640

OpenMP Threads per Task 1 1 2 1 2 1 2 3
Total Cores 5 10 20 80 160 640 1280 1920
Total Nodes 1 1 2 5 10 80 80 128
Single rhs

# GMRES Iterations 4 5 5 5 5 6 6 6
Initialization [s] 0.4 1.1 1.0 7.3 4.7 20.4 20.3 21.0
Factorization [s] 3.8 40.4 22.1 152.2 79.9 317.6 199.5 152.5

Online [s] 3.7 46.2 26.2 188.5 109.8 713.2 395.8 315.6
Average GMRES [s] 0.8 8.1 4.6 33.0 19.2 106.2 58.7 46.5

Pipelined rhs
R (number of rhs) 5 10 10 20 20 40 40 40

Online [s] 13.7 226.7 122.4 1222.7 647.1 4031.6 2710.6 1838.9
Average GMRES [s] 2.9 40.1 21.6 216.5 114.7 605.0 409.9 276.3

Online per rhs [s] 2.7 22.7 12.2 61.1 32.4 100.8 67.7 46.0
Average GMRES per rhs [s] 0.6 4.0 2.2 10.8 5.7 15.1 10.2 6.9

Table 4: Runtime (in seconds) for one and several right-hand sides for the solution of the Helmholtz equation for the
fault model.
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N 6.51 · 105 5.16 · 106 4.12 · 107 4.12 · 107

L 12 24 48 48
MPI Tasks 12 48 384 384

OpenMP Threads per Task 1 2 2 3
Total Cores 12 96 768 1152
Total Nodes 1 6 77 77
Single rhs

# GMRES Iterations 4 5 6 6
Initialization [s] 0.6 2.3 10.4 10.7
Factorization [s] 15.2 46.5 111.4 97.9

Online [s] 21.4 85.6 269.8 228.4
Average GMRES [s] 4.6 14.9 40.0 33.7

Pipelined rhs
R (number of rhs) 12 24 48 48

Online [s] 106.3 474.8 1527.1 1415.4
Average GMRES [s] 22.8 83.9 229.4 212.9

Online per rhs [s] 8.8 19.8 31.8 29.5
Average GMRES per rhs [s] 1.9 3.5 4.8 4.4

Table 5: Runtime (in seconds) for one and several right-hand sides for the solution of the Helmholtz equation for the
SEAM model.

CONCLUSION

We have presented a new and efficient solver for the 3D
high-frequency Helmholtz equation in heterogeneous me-
dia. The solver achieves a sub-linear runtimes by lever-
aging the solution of batches of right-hand sides properly
pipelined and parallelism. The method presented in this
paper broadens the applicability of parallel direct methods
by embedding them in a domain decomposition method,
whose rate of convergence is independent of the frequency.

Finally, the main limitations of the present method are
large resonant cavities presenting high contrasts, for which
the number of reflections can be large implying that the
number of iterations for convergence can still be high.
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Zepeda-Núñez, L., and H. Zhao, 2016, Fast alternating
bidirectional preconditioner for the 2D high-frequency
Lippmann–Schwinger equation: SIAM Journal on Sci-
entific Computing, 38, B866–B888.

Zhang, Y., 2006, The theory of true amplitude one-way
wave equation migrations: Chinese Journal of Geo-
physics, 49, 1267–1289.

APPENDIX: MATRIX-FREE ALGORITHMS

The application of the polarized system defined in Eq. 18
is achieved by applying each block as shown in Alg. 7.

Algorithm 7. Application of M

1: function u = Application Polarized( v )
2: (v↓,v↑) = v

3: u↓ = D↓v↓ + Uv↑

4: u↑ = D↑v↑ + Lv↓

5: u = (u↓,u↑)
6: end function

To apply the blocks in a matrix-free fashion, we use
Algs. 8 and 6 in line 4 of Alg. 7, and we use Algs. 9 and
10 in line 5 of Alg. 7. All algorithms in this section are
embarrasingly parallel at the level of the layers as depicted
in Fig. 3.

Algorithm 8. Application of D↓

1: function u↓ = Downward Sweep( v↓ )

2: u↓,1n1 = −v↓,1n1

3: u↓,1n1+1 = −v↓,1n1+1
4: for ` = 2 : L− 1 do
5: f̃ ` = δ(z1 − z)v↓,`−1

n`−1 − δ(z0 − z)v↓,`−1
n`−1+1

6: w` = (H`)−1f̃ `

7: u↓,`
n` = wn` − v↓,`

n`

8: u↓,`
n`+1

= wn`+1 − v↓,`
n`+1

9: end for

10: u↓ =
(
u↓,1n1 ,u

↓,1
n1+1,u

↓,2
n2 , ...,u

↓,L−1
nL−1 ,u

↓,L−1
nL−1+1

)t
11: end function

Algorithm 9. Upward sweep, application of (D↑)−1

1: function u↑ = Upward sweep( v↑ )
2: u↑,L0 = −v↑,L0

3: u↑,L1 = −v↑,L1

4: for ` = L− 1 : 2 do
5: f̃ ` = −δ(zn`+1 − z)v↑,`+1

0 + δ(zn` − z)v↑,`+1
1

6: w` = (H`)−1f̃ `

7: u↑,`1 = w`
1 − v↑,`1

8: u↑,`0 = w`
0 − v↑,`0

9: end for

10: u↑ =
(
u↑,20 ,u↑,21 ,u↑,30 , ...,u↑,L0 ,u↑,L1

)t
11: end function

Algorithm 10. Downwards reflections, application of U

1: function u↑ = Upward Reflections( v↓ )
2: for ` = 2 : L− 1 do

3:
f ` = δ(z1 − z)v↓,`0 − δ(z0 − z)v↓,`1

−δ(zn`+1 − z)v↓,`+1
1 + δ(zn` − z)v↓,`+1

0

4: w` = (H`)−1f `

5: u↑,`1 = w`
1 − v↓,`1

6: u↑,`0 = w`
0

7: end for
8: fL = δ(z1 − z)v↑,L0 − δ(z0 − z)v↑,L1

9: wL = (HL)−1fL

10: u↑,L1 = wL
1 − v↓,L1

11: u↑,L0 = wL
0

12: u↑ =
(
u↑,20 ,u↑,21 ,u↑,30 , ...,u↑,L0 ,u↑,L1

)t
13: end function


