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This paper is an expository account of the relationship between elliptic cohomology and the emerging
subject of derived algebraic geometry. We begin in §1 with an overview of the classical theory of elliptic
cohomology. In §2 we review the theory of E∞-ring spectra and introduce the language of derived algebraic
geometry. We apply this theory in §3, where we introduce the notion of an oriented group scheme and explain
the connection between oriented group schemes and equivariant cohomology theories. In §4 we sketch a proof
of our main result, which relates the classical theory of elliptic cohomology to the classification of oriented
elliptic curves. In §5 we discuss various applications of these ideas, many of which rely upon a special feature
of elliptic cohomology which we call 2-equivariance.

The theory that we are going to describe lies at the intersection of homotopy theory and algebraic
geometry. We have tried to make our exposition accessible to those who are not specialists in algebraic
topology; however, we do assume the reader is familiar with the language of algebraic geometry, particularly
with the theory of elliptic curves. In order to keep our account readable, we will gloss over many details,
particularly where the use of higher category theory is required. A more comprehensive account of the
material described here, with complete definitions and proofs, will be given in [20].

In carrying out the work described in this paper, I have benefitted from the ideas of many people. I
would like to thank Matthew Ando, Mark Behrens, Brian Conrad, Chris Douglas, Dan Freed, Tyler Lawson,
Haynes Miller, Jack Morava, Charles Rezk, John Rognes, Stephan Stolz, Neil Strickland, Peter Teichner,
Bertrand Toen, and Gabriele Vezzosi for helpful discussions. I would also like to thank John Rognes, Scott
Carnahan, and Peter Landweber for offering many corrections to earlier versions of this paper. Most of all,
I would like to thank Mike Hopkins: many of the ideas described in this paper are based on his suggestions.

1 Elliptic Cohomology

1.1 Cohomology Theories

To any topological space X one can associate the singular cohomology groups An(X) = Hn(X;Z). These
invariants have a number of good properties, which may be neatly summarized by the following axioms
(which, in a slightly modified form, are due to Eilenberg and Steenrod: see [10]):

(1) For each n ∈ Z, An is a contravariant functor from the category of pairs of topological spaces (Y ⊆ X)
to abelian groups. (We recover the absolute cohomology groups An(X) by taking Y = ∅.)

(2) If f : X ′ → X is a weak homotopy equivalence (in other words, if it induces a bijection π0(X ′)→ π0(X)
and an isomorphism πn(X ′, x) → πn(X, fx) for every n > 0 and every base points x ∈ X ′), then the
induced map An(X)→ An(X ′) is an isomorphism.

(3) To every triple Z ⊆ Y ⊆ X, there is an associated long exact sequence

. . .→ An(X, Y )→ An(X, Z)→ An(Y, Z) δn

→ An+1(X, Y )→ . . .

Here the connecting morphism δn is a natural transformation of functors.
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(4) Let (Y ⊆ X) be a pair of topological spaces, and U ⊆ X an open subset whose closure is contained in
the interior of Y . Then the induced map

An(X, Y )→ An(X − U, Y − U)

is an isomorphism.

(5) If X is a disjoint union of a collection of spaces {Xα}, then for every integer n the induced map
An(X)→

∏
An(Xα) is an isomorphism.

(6) If X is a point, then

An(X) =

{
0 if n 6= 0
Z if n = 0.

Any collection of functors (and connecting maps δn) satisfying the above axioms is necessarily isomorphic
to the integral cohomology functors (X ⊆ Y ) 7→ Hn(X, Y ;Z). More generally, we can give a similar
characterization of cohomology with coefficients in any abelian group M : one simply replaces Z by M in the
statement of the dimension axiom (6).

A cohomology theory is a collection of functors An (and connecting maps δn) that satisfy the first five
of the above axioms. Every abelian group M gives rise to a cohomology theory, by setting An(X, Y ) =
Hn(X, Y ;M). But there are many other interesting examples; the study of these examples is the subject of
stable homotopy theory.

If A is a cohomology theory, we will write An(X) for An(X, ∅), and A(X) for A0(X). Generally speaking,
we will be interested in multiplicative cohomology theories: that is, cohomology theories for which each of
the groups A∗(X) is equipped with the structure of a graded commutative ring (graded commutativity means
that uv = (−1)nmvu for u ∈ An(X), v ∈ Am(X); we will not take the trouble to spell out the complete
definition).

Arguably the most interesting example of a cohomology theory, apart from ordinary cohomology, is
complex K-theory. If X is a reasonably nice space (for example, a finite cell complex), then K(X) coincides
with the Grothendieck group of stable isomorphism classes of complex vector bundles on X. Complex K-
theory is a multiplicative cohomology theory, with multiplication determined by tensor products of complex
vector bundles.

We observe that the dimension axiom fails dramatically for complex K-theory. Instead of being con-
centrated in degree zero, the graded ring K∗(∗) ' Z[β, β−1] is a ring of Laurent polynomials in a single
indeterminate β ∈ K2(∗). Here β is called the Bott element, because multiplication by β induces isomor-
phisms

Kn(X)→ Kn+2(X)

for every space X and every integer n: this is the content of the famous Bott periodicity theorem (see [5]).
The following definition abstracts some of the pleasant properties of complex K-theory.

Definition 1.1. Let A be a multiplicative cohomology theory. We will say that A is even if Ai(∗) = 0
whenever i is odd. We will say that A is periodic if there exists an element β ∈ A2(∗) such that β is
invertible in A∗(∗) (so that β has an inverse β−1 ∈ A−2(∗)).

Complex K-theory is the prototypical example of an even periodic cohomology theory, but there are many
other examples. Ordinary cohomology H∗(X;R) with coefficients in a commutative ring R is obviously even,
but not periodic: in fact, we have Hn(∗;R) = 0 for n 6= 0. However, we can correct this problem by enforcing
periodicity: namely, define

An(X) =
∏
k∈Z

Hn+2k(X;R).

Then A is an even periodic cohomology theory: we refer to this theory as periodic cohomology with coefficients
in R. We will meet more exotic examples of even periodic cohomology theories in §1.3.
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1.2 Formal Groups from Cohomology Theories

Let A be a cohomology theory, and X a topological space. The Atiyah-Hirzebruch spectral sequence allows
one to compute the A-cohomology groups of the space X in terms of the A-cohomology groups of a point
and the ordinary cohomology groups of the space X. More specifically, there is a spectral sequence with

Epq
2 = Hp(X;Aq(∗))⇒ Ap+q(X).

In general, the Atiyah-Hirzebruch spectral sequence can be quite complicated. However, if A is an even
periodic cohomology theory, and X is a space whose ordinary cohomology is concentrated in even degrees,
then the situation simplifies drastically: the Atiyah-Hirzebruch spectral sequence degenerates at E2, since
there are no possible differentials for dimensional reasons. The most important example is the case in which
X is the infinite dimensional complex projective space CP∞; in this case one can compute that

A(CP∞)

is (noncanonically) isomorphic to a formal power series ring A(∗)[[t]] in one variable over the commutative
ring A(∗).

There is an analogous computation for the ordinary cohomology ring of CP∞: we have

H∗(CP∞;Z) = Z[t],

where t ∈ H2(CP∞,Z) is the first Chern class of the universal line bundle O(1) on CP∞. We have used the
2-periodicity of the cohomology theory A to shift the generator from degree 2 to degree 0.

Remark 1.2. The reader might object that the analogy is imperfect, since the ordinary cohomology ring
H∗(CP∞,Z) is a polynomial ring, rather than a power series ring. However, this is dependent on our
procedure for extracting an ordinary ring from a positively graded ring {Rn}n≥0. The usual convention is to
define R = ⊕n≥0R

n; however, one could instead consider the product
∏

n≥0 Rn. The latter is more natural
in the present context, because it can also be interpreted as the (degree zero) periodic cohomology of the
space CP∞, which is a power series ring rather than a polynomial ring.

By analogy with the case of ordinary cohomology, we may view the parameter t in the isomorphism
A(CP∞) ' A(∗)[[t]] as the first Chern class of the universal line bundle O(1). In fact, once we fix a choice
of the parameter t, we can use t to define the first Chern class of any complex line bundle L on any space
X. The space CP∞ is a classifying space for complex line bundles: that is, for any complex line bundle L

on a (paracompact) space X, there is a classifying map φ : X → CP∞ and an isomorphism L ' φ∗ O(1).
The map φ is unique up to homotopy, so we may define

c1(L) = φ∗t ∈ A(X).

This gives rise to a reasonably well-behaved theory of the first Chern class in A-cohomology. (By elaborating
on this construction, one can construct a theory of higher Chern classes as well, but we will not need this.)

In ordinary cohomology, there is a simple formula that describes the first Chern class of a tensor product
of two line bundles:

c1(L⊗L′) = c1(L) + c1(L′).

There is no reason to expect this formula to hold in general, and in fact it does not.

Example 1.3. In complex K-theory, there is an even simpler theory of Chern classes for line bundles.
Namely, if L is a complex line bundle on a space X, then we may regard L itself as representing an element
of K(X); we will denote this element by [L]. We now define c1(L) = [L]−1. (The reason for the subtraction
is that we wish to normalize, so that the trivial line bundle has first Chern class equal to zero.) Now a simple
computation shows that

c1(L⊗L′) = c1(L) + c1(L′) + c1(L)c1(L′).
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Returning to the general case, what we can assert is that there is always some formula which expresses
c1(L⊗L′) in terms of c1(L) and c1(L′). To see this, it suffices to consider the universal example: that is, let
X be the classifying space CP∞×CP∞ for pairs of complex line bundles. Like CP∞, this is a space with
only even-dimensional cohomology, so a relatively simple computation shows that

A(CP∞×CP∞) ' A(∗)[[t1, t2]].

Here we can take t1 = π∗1t and t2 = π∗2t, where π1 and π2 are the projections from the product CP∞×CP∞

onto the first and second factor, respectively. Phrased another way, the power series generators t1 and t2 are
the first Chern classes of the universal line bundles π∗1 O(1) and π∗2 O(1) on CP∞×CP∞. We now observe
that

c1(π∗1 O(1)⊗ π∗2 O(1)) = f(t1, t2) ∈ A(∗)[[t1, t2]]

for some (uniquely determined) power series f . Roughly speaking, we can assert that, by universality, we
have c1(L⊗L′) = f(c1(L), c1(L′)) for any pair of complex line bundles (L,L′) on any space X.

Remark 1.4. The above assertion is not quite correct, since it is not clear how to evaluate a formal power
series on a pair of elements in the commutative ring A(X). However, if X admits a finite cell decomposition,
then for any line bundle L on X, the element c1(L) ∈ A(X) is nilpotent (more specifically, c1(L)n = 0 as
soon as L is generated by n sections). For such spaces X, it does make sense to evaluate the formal series
f(c1(L), c1(L′)), and one obtains c1(L⊗L′).

The power series f(u, v) is not arbitrary; it necessarily satisfies certain identities which reflect the prop-
erties of complex line bundles under multiplication:

(L1) Since the first Chern class of the trivial bundle is zero, we have the identities

f(t, 0) = f(0, t) = t.

(L2) Since the tensor product operation on complex line bundles is commutative up to isomorphism, we
obtain the identityf(u, v) = f(v, u).

(L3) Since the tensor product operation on complex line bundles is associative up to isomorphism,

f(u, f(v, w)) = f(f(u, v), w)

.

A power series f(u, v) with the properties enumerated above is called a commutative, 1-dimensional
formal group law over the commutative ring A(∗). We may view it as defining a group structure on the
formal scheme Spf A(∗)[[t]] = Spf A(CP∞).

Remark 1.5. The formal group law f is not canonically associated to the cohomology theory A: it depends
on the choice of a power series generator t for the ring A(CP∞) ' A(∗)[[t]]. However, the underlying formal
group is independent of the choice of t: namely, it is given by the formal spectrum Spf A(CP∞). The group
structure

Spf A(CP∞)× Spf A(CP∞)→ Spf A(CP∞)

is induced by a map s : CP∞×CP∞ → CP∞ which classifies the operation of tensor product on complex
line bundles. In more concrete terms, we can identify CP∞ with the space of lines in the infinite dimensional
complex vector space C[x]; then the map s is induced by the multiplication map C[x]⊗C[x]→ C[x].

Remark 1.6. Not every one-dimensional formal group G over a commutative ring R arises from a formal
group law: this requires the existence of a coordinate on the group G, which in general exists only Zariski
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locally on Spec R. Consequently, it is convenient to introduce a slightly more general notion of periodicity.
We will say that a multiplicative cohomology theory A is weakly periodic if the natural map

A2(∗)⊗A(∗) An(∗)→ An+2(∗)

is an isomorphism for all n ∈ Z. Note that this implies in particular that A2(∗) ⊗A(∗) A−2(∗) ' A(∗), so
that A2(∗) is a projective module of rank 1 over A(∗). We note that A is periodic if and only if it is weakly
periodic and A2(∗) is a free module over A(∗).

Example 1.7. The formal power series f(u, v) = u+v determines a formal group over an arbitrary commu-
tative ring R, which we call the formal additive group and denote by Ĝa. As we have seen, this is the formal
group which governs the behavior of Chern classes in (periodic) ordinary cohomology (with coefficients in
R).

Example 1.8. The formal power series f(u, v) = u + v + uv determines a formal group over an arbitrary
commutative ring R, which we call the formal multiplicative group and denote by Ĝm. In the case where
R = Z, this is the formal group which governs the behavior of Chern classes in complex K-theory. The role
of the multiplicative group is easy to understand in this case: modulo a normalization, we have essentially
defined the first Chern class of a line bundle L to be the class [L] represented by L in K-theory. Tensor
product of line bundles then correspond to products in K-theory.

It is natural to ask whether there are any restrictions on the power series f(u, v), other than the identities
(L1), (L2), and (L3). To address this question, it is convenient to introduce a cohomology theory MP, called
periodic complex cobordism. This cohomology theory is in some sense a universal home for the first Chern
class of complex line bundles; in particular, there is a canonical isomorphism MP(CP∞) ' MP(∗)[[t]].
Quillen showed that the associated formal group law over MP(∗) was also universal. In other words, the
coefficient ring MP (∗) is the Lazard ring which classifies formal group laws, so that for any commutative
ring R there is a bijection between the set Hom(MP(∗), R) of commutative ring homomorphisms from MP(∗)
into R, and the set of power series f(u, v) with coefficients in R that satisfy the three identities asserted
above. We refer the reader to [1] for a proof of Quillen’s theorem and further discussion.

The construction that associates the formal group G = Spf A(CP∞) to an even periodic cohomology
theory A has turned out to be a very powerful tool in stable homotopy theory. The reason is that the formal
group G carries a remarkable amount of information about A. In some cases, it is possible to recover A from
the formal group G. Let R be any commutative ring and G a formal group over R determined by a formal
group law f(u, v) ∈ R[[u, v]]. By Quillen’s theorem, this data is classified by a (uniquely determined) ring
homomorphism MP(∗) → R. There is a natural candidate for a cohomology theory AG which gives rise to
the formal group G. Namely, for every finite cell complex X, set

An
G(X) = MPn(X)⊗MP(∗) R.

Remark 1.9. To give a definition which does not involve finiteness restrictions on X, one should work with
homology rather than cohomology; we will not concern ourselves with this technical point.

In general, the above formula for AG does not give a cohomology theory. The problem is that long exact
sequences in MP-cohomology might not remain exact after tensoring with R. If R is flat over MP(∗), then
this problem disappears. However, a much weaker condition on (R, G) will ensure the same conclusion. In
order to formulate it, it is convenient to employ the language of algebraic stacks.

Let MFGL denote the moduli stack of formal group laws, so that for any commutative ring R the set
Hom(Spec R,MFGL) may be identified with the set of all power series f(u, v) ∈ R[[u, v]] satisfying (L1),
(L2), and (L3). Then MFGL is an affine scheme: in fact, by Quillen’s theorem we have MFGL = Spec MP(∗).
Let G denote the group scheme of all automorphisms of the formal affine line Spf Z[[x]]; in other words,
Hom(Spec R,G) is the set of all power series

g(x) = a1x + a2x
2 + . . .
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with coefficients in R, such that a1 is invertible; such power series form a group under composition. The
group G acts on MFGL: on the level of R-valued points, this action is given by the formula

fg(u, v) = g−1f(g(u), g(v)).

Let MFG denote the stack-theoretic quotient of MFGL by G: this is the moduli stack of formal groups. There
is a natural map

MFGL →MFG

which “forgets the coordinate”; it is a principal bundle with structure group G.

Remark 1.10. One can think of MFG as a kind of infinite-dimensional Artin stack.

Now, for any space X, the MP-cohomology groups MPn(X) are modules over the commutative ring
MP(∗). By Quillen’s theorem, these modules can be identified with quasi-coherent sheaves on MFGL. How-
ever, one can say more. Via the multiplicative structure on MP, one can view each element of MP(∗) as
defining a stable cohomology operation; that is, a natural transformation from the cohomology theory MP
to itself. However, there are many other stable cohomology operations on MP. For any space X, the cobor-
dism group MP(X) is a module over the ring of all MP-cohomology operations. An elaboration of Quillen’s
theorem can be used to give an algebro-geometric interpretation of this additional structure: when X is
finite cell complex, the quasi-coherent sheaves MPn(X) on MFGL are endowed with an action of the group
G (covering the action of G on MFGL). In other words, we may interpret the complex cobordism groups
MPn(X) as quasi-coherent sheaves MPn(X) on the moduli stack MFG.

Remark 1.11. The finiteness restrictions on X can be dropped if we are willing to work with the MP-
homology groups of X, rather than the MP-cohomology groups.

Now, suppose that G is a (commutative, 1-dimensional) formal group over a commutative ring R. Then
G is classified by a map

Spec R
φ→MFG

and we may define
An(X) = φ∗MPn(X)

for every finite cell complex X; this is a quasi-coherent sheaf on Spec R which we may identify with an
R-module. Again, this does not necessarily define a cohomology theory: however, it does give a cohomology
theory whenever the map φ is flat. If φ is flat, then we say that the formal group G is Landweber-exact.
Using the structure theory of formal groups, Landweber has given a criterion for a formal group G to
be Landweber-exact (see [18]). We will not review Landweber’s theorem here. However, we remark that
Landweber’s criterion is purely algebraic, easy to check, and is quite often satisfied.

Remark 1.12. In the case where G is the formal group given by a formal group law f(u, v) ∈ R[[u, v]],
the preceding definition of An(X) coincides with the definition given earlier. In general, the formal group
law f exists only (Zariski) locally on Spec R; namely, it exists whenever the Lie algebra g of G is free as
an R-module. The present definition of A has the advantage of making sense even if g is not free; it is
furthermore independent of a choice of coordinate on the formal group G. We note that if g is not free, then
A cannot be a periodic cohomology theory in the sense of Definition 1.1: instead, we have A2k(∗) ' g⊗(−k),
so that A is weakly periodic in the sense of Remark 1.6.

Example 1.13. Let R = Z, and let Ĝm be the formal multiplicative group (determined by the formal group
law f(u, v) = u + v + uv). In this case, Landweber’s criterion is satisfied, so that

An(X) = MPn(X)⊗MP(∗) Z

defines a cohomology theory (for finite cell complexes X). Moreover, this cohomology theory is uniquely
determined by the fact that it is even, periodic, and is associated to the formal multiplicative group Ĝm
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over A(∗) ' Z. We saw in Example 1.8 that complex K-theory has all these properties. We deduce that A
is complex K-theory: in other words, we can discover K-theory in a purely algebraic fashion, by thinking
about the formal multiplicative group.

Example 1.14. Let Ĝa be the formal additive group over a commutative ring R, defined by the formal group
law f(u, v) = u + v. Then Ĝa is Landweber-exact if and only if R is an algebra over the field Q of rational
numbers. In this case, the associated cohomology theory is just periodic cohomology with coefficients in R.

Remark 1.15. Over the field Q of rational numbers, the formal additive group is isomorphic to the formal
multiplicative group (in fact, all commutative, 1-dimensional formal groups over Q are isomorphic to one an-
other). This reflects the fact that rationally, complex K-theory reduces to periodic cohomology with rational
coefficients. More specifically, for every finite cell complex X, the Chern character gives an isomorphism

K(X)⊗Z Q→
⊕

k

H2k(X;Q).

The Chern character should be thought of as a cohomological reflection of the exponential map exp : Ĝa
∼→

Ĝm.

1.3 Elliptic Cohomology

In the last section, we reviewed the relationship between cohomology theories and formal groups. In par-
ticular, we saw that the most basic examples of formal groups (namely, the formal additive group Ĝa and
the formal multiplicative group Ĝm) were closely related to the most basic examples of cohomology theories
(namely, ordinary cohomology and complex K-theory). It is natural to try to expand on these examples, by
seeking out other cohomology theories that are related to other interesting formal groups.

A key feature of the formal groups Ĝa and Ĝm is that they arise as the formal completions of algebraic
groups Ga and Gm. (The homotopy-theoretic significance of this observation will become clear later, when
we discuss equivariant cohomology theories.) Since we are interested only in commutative, 1-dimensional
formal groups, it is natural to consider algebraic groups which are also commutative and 1-dimensional.
However, examples are in short supply: in fact, over an algebraically closed field, every 1-dimensional
algebraic group is isomorphic to either the additive group Ga, the multiplicative group Gm, or an elliptic
curve. The cohomology theories associated to the first two examples are classical, but the third case is more
exotic: this is the subject of elliptic cohomology, to which this paper is devoted.

Definition 1.16. An elliptic cohomology theory consists of the following data:

(1) A commutative ring R.

(2) An elliptic curve E, defined over R.

(3) A multiplicative cohomology theory A which is even and weakly periodic (see Remark 1.6).

(4) Isomorphisms A(∗) ' R and Ê ' Spf A(CP∞) (of formal groups over R ' A(∗)). Here Ê denotes the
formal completion of the elliptic curve E along its identity section.

Remark 1.17. In the situation of Definition 1.16, we will often abuse terminology and simply refer to A as
an elliptic cohomology theory. In other words, we think of an elliptic cohomology theory as a cohomology
theory A, together with some additional data relating A to an elliptic curve.

Remark 1.18. Let E be an elliptic curve over a commutative ring R. The formal completion Ê of E
is a commutative, 1-dimensional formal group over R. If Ê is Landweber-exact, then the data of (3) and
(4) is uniquely determined. Consequently, in the Landweber-exact case, an elliptic cohomology theory is
essentially the same thing as an elliptic curve.
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Remark 1.19. Our notion of elliptic cohomology theory is essentially the same as the notion of an elliptic
spectrum as defined in defined in [4].

In view of Remark 1.18, there is a plentiful supply of elliptic cohomology theories: roughly speaking,
there is an elliptic cohomology theory for every elliptic curve. Of course, we have a similar situation for
other algebraic groups. The multiplicative group Gm can be defined over any commutative ring R. The
formal completion of Gm is Landweber-exact if and only if R is a torsion-free Z-module; in this case, one
has an associated cohomology theory which is given by

An(X) = Kn(X)⊗Z R

for every finite cell complex X. In other words, there are many cohomology theories associated to the
multiplicative group, but they are all just variants of one universal example: complex K-theory, associated
to the “universal” multiplicative group over the ring of integers Z.

The analogous situation for elliptic cohomology is more complicated, because there is no universal example
of an elliptic curve over a commutative ring. In other words, the moduli stack M1,1 of elliptic curves, defined
by the equation

Hom(Spec R,M1,1) = {Elliptic curves E → Spec R},

is not an affine scheme. In fact, M1,1 is not even a scheme: the right hand side of the above equation really
needs to be viewed as a groupoid-valued functor on rings, since elliptic curves can have nontrivial automor-
phisms. However, M1,1 is a Deligne-Mumford stack; that is, there is a sufficient supply of étale morphisms
φ : Spec R → M1,1. For every such morphism φ there is associated an elliptic curve Eφ. It turns out that,
if φ is étale (or more generally, if φ is flat), then the formal group Êφ is Landweber-exact. Consequently, in
this case we may associate to φ an elliptic cohomology theory Aφ.

The correspondence
O : [φ : Spec R→M1,1] 7→ Aφ

determines a presheaf on M1,1, taking values in the category of cohomology theories. ( More precisely, it
is a presheaf of cohomology theories on the category of affine schemes with an étale map to M1,1. ) This
presheaf may, in some sense, be regarded as the “universal elliptic cohomology theory”. To extract an actual
cohomology theory from A, it is tempting to try to take the global sections Γ(M1,1,O). Unfortunately, the
notion of a cohomology theory is not well-suited to this sort of construction: one cannot generally make
sense of the global sections of a presheaf that takes values in the category of cohomology theories.

To remedy this difficulty, it is necessary to represent our cohomology theories. According to Brown’s
representability theorem (see [2]), any cohomology theory A has a representing space Z, so that there is a
functorial identification

A(X) ' [X, Z]

of the A-cohomology of every cell complex X with the set [X, Z] of homotopy classes of maps from X into
Z. More generally, for each n ∈ Z there is a space Z(n) and an identification

An(X) ' [X, Z(n)].

The connecting map in the A-cohomology long exact sequence endows the sequence of spaces {Z(n)} with
additional structure: namely, a sequence of homotopy equivalences

δ(n) : Z(n)→ ΩZ(n + 1).

A sequence of (pointed) spaces Z(n), together with homotopy equivalences δ(n) as above, is called a spectrum.
Every spectrum determines a cohomology theory, and every cohomology theory arises in this way. However,
the spectrum representing a cohomology theory A is not canonically determined by A: for example, the 0th
space Z(0) can only be recovered up to homotopy equivalence.
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Consider the diagram

{ Spectra }

��
{φ : Spec R→M1,1} //

44iiiiiiiii
{Cohomology Theories}.

If we could supply the dotted arrow, then we could lift the presheaf O to a presheaf of spectra on the moduli
stack of elliptic curves. This would address the problem: there is a good theory of sheaves of spectra, which
would allow us to form a spectrum of global sections. However, supplying the dotted arrow is no simple
matter. It is an example of a lifting problem which, in principle, can be attacked using the methods of
obstruction theory. However, the obstruction-theoretic calculations involved turn out to be very difficult, so
that a direct approach is not feasible.

The fundamental insight, due to Hopkins and Miller, is that the calculations become much more tractable
if one tries to prove a stronger result. By definition, an elliptic cohomology theory is required to have a
multiplicative structure. If A is a multiplicative cohomology theory represented by a spectrum {Z(n)}, then
by Yoneda’s lemma, the multiplication map

Ak(X)×Al(X)→ Ak+l(X)

is represented by a map mk,l : Z(k)×Z(l)→ Z(k + l), which is well-defined up to homotopy. Moreover, the
identities that are satisfied by the multiplication operation may be rephrased in terms of certain diagrams
involving the maps mk,l, which are required to commute up to homotopy. In particular, the space Z(0) has
the structure of a commutative ring, when regarded as an object in the homotopy category of topological
spaces. For sophisticated purposes, requiring the ring axioms to hold up to homotopy is not nearly good
enough. However, one does not wish to require too much. We could ask that the ring axioms for Z(0) hold
not just up to homotopy, but on the nose, so that Z(0) is a topological commutative ring. Any topological
commutative ring represents a multiplicative cohomology theory. However, it turns out that the cohomology
theories which arise in this way are not very interesting: they are all just variants of ordinary cohomology.
In particular, the classifying space Z×BU for complex K-theory is not homotopy equivalent to a topological
commutative ring.

There is a notion that is intermediate between “commutative ring up to homotopy” and “topological
commutative ring”, which is suitable for describing the kind of multiplicative structure that exists on complex
K-theory and in many other examples. Roughly speaking, one requires the representing space Z(0) to have
the structure of a commutative ring in the homotopy category of topological spaces, but also remembers the
homotopies which make the relevant diagrams commute, which are required to satisfy further identities (also
up to homotopies which are part of the structure and required to satisfy yet higher identites, and so on). A
spectrum {Z(n)} together with all of this data is called an E∞-ring spectrum, or simply an E∞-ring. We
will not give a definition here, though we will give a brief outline of the theory in §2.1. For definitions and
further details we refer the reader to the literature (for example [11] or [16]).

Returning to the subject of elliptic cohomology, we can now consider the diagram

{E∞ − Rings }

��
{φ : Spec R→M1,1} //

33gggggggggg
{Multiplicative Cohomology Theories}.

Once again, our objective is to produce the dotted arrow in the diagram: as for spectra, there is a suitable
sheaf theory for E∞-rings. At first glance, this appears to be a much more difficult problem than the one
considered earlier. Let φ : Spec R→M1,1 be an étale map, and let Aφ be the associated elliptic cohomology
theory. The Brown representability theorem guarantees that Aφ can be represented by a spectrum. However,

9



the multiplicative structure on Aφ does not guarantee us an E∞-structure on the representing spectrum.
Thus, the problem of lifting O to a sheaf of E∞-rings is nontrivial, even when we restrict O to a single object.

However, it turns out that problem of lifting O to a presheaf of E∞-rings is much more amenable to
obstruction-theoretic attack. This is because E∞-rings are very rigid objects. Although it is much harder
to write down an E∞-ring than a spectrum, it is also much harder to write down a map between E∞-rings
than a map between spectra. The practical effect of this, in our situation, is that it is much harder to write
down the wrong maps between E∞-rings and much easier to find the right ones. More precisely, the work of
Goerss, Hopkins and Miller gives the following:

Theorem 1.20. There exists a commutative diagram

{E∞ − Rings }

��
{φ : Spec R→M1,1} //

OMDer

33gggggggggggggggggggg
{Multiplicative Cohomology Theories}.

Moreover, OMDer is unique up to homotopy equivalence.

We are now in a position to extract a “universal” elliptic cohomology theory, by taking the global sections
of the presheaf OMDer . In the language of homotopy theory, this amounts to taking the homotopy limit of
the functor OMDer . We will denote this homotopy limit by tmf[∆−1]. This is an E∞-ring: in other words, a
cohomology theory with a very sophisticated multiplicative structure. In particular, we can view tmf[∆−1]
as a multiplicative cohomology theory. However, it is not an elliptic cohomology theory: in fact, it is neither
even nor periodic (of period 2). This is a reflection of the fact that the moduli stack M1,1 is not affine. In
other words, tmf[∆−1] is not an elliptic cohomology theory because it does not correspond to any particular
elliptic curve: rather, it corresponds to all elliptic curves at once.

For our purposes, it is the (pre)sheaf OMDer itself which is the principal object of interest, not the E∞-ring
tmf[∆−1] of global sections. Passage to global sections loses a great deal of interesting information, since
the moduli stack M1,1 is not affine. In the next section, we will “rediscover” OMDer from a rather different
point of view: namely, by thinking about equivariant cohomology theories.

Remark 1.21. The reason that we have written tmf[∆−1], rather than tmf, is that we considered above the
moduli stack M1,1 of (smooth) elliptic curves. The cohomology theory tmf is associated to a similar picture,
where we replace M1,1 by its Deligne-Mumford compactification M1,1. We will discuss elliptic cohomology
over M1,1 in §4.3.

The notation tmf is an acronym for topological modular forms. It is so-named because there exists a ring
homomorphism from tmf∗(∗) to the ring of integral modular forms. This homomorphism is an isomorphism
after inverting the primes 2 and 3. (These primes are troublesome because of the existence of elliptic curves
with automorphisms of orders 2 and 3.)

2 Derived Algebraic Geometry

Many of the cohomology theories which appear “in nature” can be extended to equivariant cohomology
theories. For example, if X is a reasonably nice (compact) space with an action of a compact Lie group G,
one defines the G-equivariant K-theory of X to be the Grothendieck group KG(X) of G-equivariant vector
bundles on X. We would like to consider the following general question: given a cohomology theory A,
where should we look for G-equivariant versions of A-cohomology?

For any reasonable theory of equivariant cohomology, we should expect that if X is a principal G-bundle
over a space Y , then there is a natural isomorphism AG(X) ' A(Y ). This gives a definition of AG(X)
whenever the action of G on X is sufficiently “free”. However, one can always replace X by a homotopy
equivalent space with a free G-action. Namely, let p : EG → BG be a principal G-bundle whose total
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space EG is contractible. Such a principal bundle always exists, and is uniquely determined up to homotopy
equivalence. Now any space X on which G acts can be replaced by the homotopy equivalent space EG×X,
which is a principal G-bundle. One can now define ABor

G (X) = A((X × EG)/G): this is called the Borel-
equivariant cohomology theory associated to A.

There are some respects in which Borel-equivariant cohomology is not a satisfying answer to our question.
For one thing, we note that ABor

G (X) is entirely determined by the original cohomology theory A: in other
words, it is nothing but a new notation for ordinary A-cohomology. More importantly, there are many
cases in which it is not the answer that we want to get. For example, if A is complex K-theory, then the
Borel-equivariant theory does not coincide with theory obtained by considering equivariant vector bundles.
Instead, we have a natural map

KG(X)→ KG(X × EG) ' K((X × EG)/G) ' KBor
G (X)

where the first map is given by pullback along the projection X × EG → X. This map is generally not an
isomorphism. When X is a point, we obtain the map

φ : Rep(G)→ K(BG)

from the representation ring of G to the K-theory of BG, which carries each representation of G to the
associated bundle on the classifying space. This map is never an isomorphism unless G is trivial. However,
it is not far from being an isomorphism: by the Atiyah-Segal completion theorem ([6]), φ identifies K(BG)
with the completion of Rep(G) with respect to a certain ideal (the ideal consisting of virtual representations
of dimension zero).

Let us consider the situation in more detail for the circle group G = S1. Every representation of G
is a direct sum of irreducible representations. Since G is abelian, every irreducible representation is one
dimensional, given by a character G → C∗. Furthermore, every character of G is simply an integral power
of the “defining” character

χ : G = {z ∈ C : |z| = 1} ↪→ C∗.

The representation ring of G is therefore isomorphic with the ring of Laurent polynomials Z[χ, χ−1]. We
observe that this ring of Laurent polynomials may also be identified with the ring of functions on the
multiplicative group Gm. The classifying space of the circle group may be identified with CP∞; as we saw
in §1.2, the K-theory of this space is a power series ring Z[[t]], which may be identified with the ring of
functions on the formal additive group Ĝm. In this case, the map

KG(∗)→ K(BG)

is easily identified: it is given by restriction of functions from the entire multiplicative group to the formal
multiplicative group. In other words, it is given by taking germs of functions near the identity. Concretely,
this is given by χ 7→ (t + 1).

We saw in §1 that if A is an even periodic cohomology theory, then A determines a formal group
Ĝ = Spf A(CP∞). The lesson we learn from the example of K-theory is that the problem of finding
equivariant versions of the cohomology theory A is related to the problem of realizing Ĝ as the formal
completion of an algebraic group G. In the example of K-theory, we can recover G as the spectrum of
the equivariant K-group KS1(∗). In the case of elliptic cohomology, we do not expect G to be affine, and
therefore we cannot expect to recover it from its ring of functions (though it is often possible to reconstruct
G through a more elaborate procedure: we will discuss this problem in §5.5). Instead, we should view the
correspondence as running in the other direction: given an algebraic group G having Spf A(CP∞) as its
formal completion, it is natural to define AS1(∗) to be global sections of the structure sheaf of G. Passing
from functions to their formal germs then gives a suitable “completion” map

AS1(∗)→ A(CP∞)

from equivariant A-cohomology to Borel-equivarient A-cohomology.
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Of course, the above prescription does not solve the problem of defining equivariant versions of the
cohomology theory A, even for the group G = S1. Merely knowing the equivariant cohomology groups
AG(∗) of a point does not tell us how to define the equivariant cohomology groups AG(X) of a more general
G-space X. This difficulty arises even when G is trivial: a cohomology theory A is not determined by its
coefficient groups An(∗). If want to make the above definition work, we need to be able to extract from
the algebraic group G not just cohomology rings, but cohomology theories. To accomplish this, we need G
to be an algebraic group in a somewhat nonstandard setting: the sheaf of regular functions on G will be a
sheaf not of ordinary commutative rings, but of E∞-rings. Our goal in §2 is to introduce the ideas which are
needed to make sense of these kinds of algebraic groups. We will use this theory to construct equivariant
cohomology theories in §3, and relate it to the theory of elliptic cohomology in §4.

2.1 E∞-Rings

In §1.3, we briefly touched upon the notion of an E∞-ring spectrum. This is a very important notion which
we will need to use throughout this paper. However, the ideas involved are somewhat nonelementary, and to
give a precise definition would take us too far afield. This section is intended as a nontechnical introduction
to the subject of E∞-ring theory; we will not give any definitions or prove any theorems, but will highlight
some of the main features of the theory and explain how it can be used in practice.

Roughly speaking, an E∞-ring space is a topological space A equipped with the structure of a commu-
tative ring. As we explained in §1.3, there are several unsatisfactory ways of making this precise. Consider
the diagram

A×A

a

""FF
FF

FF
FF

F

s

��

A

A×A

a

<<xxxxxxxxx

where a denotes the addition map on A, and s the automorphism of A×A which permutes the factors. The
commutativity of this diagram expresses the commutativity of the addition operation on A. However, this
is a very strong condition which is often not satisfied in practice. What is much more common is that the
diagram commutes up to homotopy. That means that there is a continuous map

ht : A×A× [0, 1]→ A

with h0 = a and h1 = a ◦ s. For sophisticated applications, merely knowing the existence of h is usually not
enough: one should really take h to be part of the structure of A. Moreover, h should not be arbitrary, but
should itself satisfy certain identities (up to specified homotopy). In other words, we do not want A merely to
have the structure of a commutative ring up to homotopy, but up to coherent homotopy. Of course, deciding
exactly what we mean by this is a highly nontrivial matter: exactly what homotopies should we take as part
of the data, and what identities should they satisfy? There are several (equivalent) ways of answering these
questions; we refer the reader to [11] for one possible answer.

Let A be an E∞-ring space; then, in particular, we can view A as a space and consider its homotopy
groups πnA (here we use a canonical base point of A which is given by the “identity” with respect to addition).
Since A is an abelian group in the homotopy category of topological spaces, each πnA is endowed with the
structure of an abelian group; this agrees with the usual group structure on πnA for n ≥ 1. In addition, the
multiplication operation on A endows π∗A = ⊕n≥0πnA with the structure of a graded ring. The ring π∗A
is commutative in the graded sense: that is, if x ∈ πnA and y ∈ πmB, then xy = (−1)nmyx ∈ πn+mA. In
particular, π0A is a commutative ring, and each πnA has the structure of a module over π0A.

Any commutative ring can be regarded as an E∞-ring space; we simply regard it as a topological com-
mutative ring, given the discrete topology. For any E∞-ring space A, there is a canonical map A → π0A
which collapses each path component of A to a point.
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A map of E∞-ring spaces A→ B is an equivalence if it gives rise to isomorphisms πnA→ πnB. We note
that if A is an E∞-ring space with πnA = 0 for n ≥ 1, then the projection A→ π0A is an equivalence; in this
case we say that A is essentially discrete and we may abuse terminology by identifying A with the ordinary
commutative ring π0A. We can regard the higher homotopy groups πnA as a measure of the difference
between A and the ordinary commutative ring π0A.

Recall that an ordinary commutative ring R is said to be reduced if it contains no nonzero nilpotent
elements. If R is not reduced, then the nilpotent elements of R form an ideal I; then there is a projection
R→ R/I, and R/I is a reduced ring. The relationship between E∞-ring spaces and ordinary commutative
rings should be regarded as analogous to the relationship between ordinary commutative rings and reduced
commutative rings. If A is an E∞-ring space, one should regard π0A as the “underlying ordinary commutative
ring” which is obtained from A by killing the higher homotopy groups, just as the reduced ring R/I is obtained
by killing the nilpotent elements of R.

Any E∞-ring space A determines a cohomology theory: for a (well-behaved) topological space X, one
can define A(X) to be the set of homotopy classes of maps from X into A. More generally, one can consider
the space AX of all maps from X into A, and endow it with the structure of an E∞-ring space, computing all
of the ring operations pointwise. One can then define A−n(X) to be the homotopy group πnAX for n ≥ 0.
This definition has a natural extension to the case n < 0, and gives rise to a (multiplicative) cohomology
theory which we will also denote by A. Of course, the functor

X 7→ A(X)

determines A as a topological space, up to weak homotopy equivalence. The E∞-ring structure on A can
be regarded as determining a commutative ring structure on the functor X 7→ A(X), together with certain
higher coherence conditions.

We therefore have two distinct, but related, points of view on what an E∞-ring space A is. On the one
hand, we may view A as a “commutative ring in homotopy theory”; from this point of view, the theory of
E∞-rings is a kind of generalized commutative algebra. On the other hand, we may view an E∞-ring space A
as a cohomology theory equipped with a good multiplicative structure, giving rise not only to multiplication
maps on A-cohomology but also secondary operations such as Massey products and their higher analogues.
Both of these points of view will be important for the applications we discuss in this paper.

The cohomology theory associated to an E∞-ring space A is connective: that is, it has the property
that An(∗) = 0 for n > 0. Many cohomology theories which arise naturally do not have this property. For
example, a nontrivial cohomology theory cannot be both connective and periodic (in the sense of Definition
1.1). Consequently, it is necessary to introduce a slightly more general notion than an E∞-ring space: that of
an E∞-ring spectrum, or simply an E∞-ring. Roughly speaking, an E∞-ring is a cohomology theory A with
all of the same good multiplicative properties that the cohomology theories associated to E∞-ring spaces
have, but without the requirement that A be connective. If A is an E∞-ring, then one can associate to it
a graded ring ⊕n∈ZπnA (by taking that A-cohomology groups of a point) which may be nonzero in both
positive and negative degrees. Every E∞-ring space may be regarded as an E∞-ring; conversely, an E∞-ring
A with πnA = 0 for n < 0 is equivalent to an E∞-ring space. Finally, if A is an arbitrary E∞-ring, then it
has a connective cover τ≥0A, which satisfies

πkτ≥0A =

{
πkA if k ≥ 0
0 if k < 0.

Remark 2.1. It is important to understand that the world of E∞-rings is essentially higher-categorical in
nature. In practice, this means that given two E∞-rings A and B, one really has a space Hom(A,B) of maps
from A to B, rather than simply a set.

If A is an E∞-ring, then there is a good theory of modules over A, which are called A-module spectra.
Every A-module spectrum M can be viewed as a spectrum, and therefore determines a cohomology theory
X 7→ M∗(X). In particular, one can define homotopy groups πnM = M−n(∗), and these form a graded
module π∗M over the graded ring π∗A.

13



We will generally refer to A-module spectra simply as A-modules. However, there is a special case in
which this could potentially lead to confusion. If A is an ordinary commutative ring, then we may regard
A as an E∞-ring. In this case, we can identify A-module spectra with objects in the derived category of
A-modules: that is, complexes of A-modules, up to quasi-isomorphism.

The following definition will play an important role throughout this paper:

Definition 2.2. Let A be an E∞-ring and let M be an A-module. We will say that M is flat if the following
conditions are satisfied:

(1) The module π0M is flat over π0A, in the sense of classical commutative algebra.

(2) For each n, the induced map
πnA⊗π0A π0M → πnM

is an isomorphism.

We will say that a map A→ B of E∞-rings is flat if B is flat when regarded as an A-module.

2.2 Derived Schemes

In the last section, we reviewed the theory of E∞-rings, and saw that it is a natural generalization of classical
commutative algebra. In this section, we will explain how to incorporate these ideas into the foundations of
algebraic geometry.

We begin by reviewing the definition of a scheme. Recall that a scheme is a pair (X, OX), where X is a
topological space and OX is a sheaf of rings on X, which is locally (on X) isomorphic to (Spec A,OSpec A)
for some commutative ring A. We seek a modification of this definition in which we allow E∞-rings to fill
the role of ordinary commutative rings. The main challenge is to decide what we mean by Spec A, when A
is an E∞-ring. We will adopt the following rather simple-minded definition:

Definition 2.3. Let A be an E∞-ring. Then the topological space Spec A, the Zariski-spectrum of A, is
defined to be the spectrum of the ordinary commutative ring π0A: in other words, the set of prime ideals
in π0A. We endow Spec A with the usual Zariski-topology, with a basis of open sets given by the loci
Uf = {p|f /∈ p}, f ∈ π0A.

To complete the definition of the Zariski-spectrum of an E∞-ring A, we need to define the structure sheaf
OSpec A. By general nonsense, it suffices to define OSpec A on each of the basic open subsets Uf ⊆ Spec A. If A
were an ordinary commutative ring, we would define OSpec A(Uf ) = A[f−1]. This definition makes sense also
in the E∞-context. Namely, given an E∞-ring A and an element f ∈ π0A, there exists a map of E∞-rings
A→ A[f−1] which may be characterized in either of the following equivalent ways:

(1) The map π∗A→ π∗(A[f−1]) identifies π∗(A[f−1]) with (π∗A)[f−1].

(2) For any E∞-ring B, the induced map

Hom(A[f−1], B)→ Hom(A,B)

is a homotopy equivalence of the left hand side onto the subspace of the right hand side consisting of
all maps A→ B which carry f to an invertible element in π0B (this is a union of path components of
Hom(A,B)).

In virtue of the second characterization, the map A→ A[f−1] is well-defined up to canonical equivalence;
moreover, it is sufficiently functorial to allow a definition of the structure sheaf OSpec A.

We are now prepared to offer our main definition:

Definition 2.4. A derived scheme is a topological space X equipped with a sheaf of E∞-rings OX , which
is locally equivalent to (Spec A,OSpec A) where A is an E∞-ring.
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Remark 2.5. As we mentioned earlier, the world of E∞-rings is higher-categorical in nature. Consequently,
one needs to be careful what one means by a sheaf of E∞-rings. There are several approaches to making
this idea precise. One is to use Quillen’s theory of model categories. Namely, one can let C be a suitable
model-category for E∞-rings (for example, commutative monoids in symmetric spectra: see [16]). Now we
can consider the category of C-valued presheaves on a topological space X. This category of presheaves is
itself endowed with a model structure, which simultaneously reflects the original model structure on C and
the topology of X. Namely, we define a map F → G of presheaves to be a cofibration if it induces a cofibration
F(U)→ G(U) in C for every open subset U ⊆ X, and a weak equivalence if it induces a weak equivalence on
stalks Fx → Gx for every point x ∈ X. One can then define a sheaf of E∞-rings on X to be a fibrant and
cofibrant object of this model category.

Remark 2.6. As with E∞-rings themselves, derived schemes are higher-categorical objects by nature. That
means that given derived schemes (X, OX) and (Y,OY ), we can naturally associate a space of morphisms
from (X, OX) to (Y, OY ). Namely, we define

Hom((X, OX), (Y,OY )) =
∐

f :X→Y

Hom0(OY , f∗ OX).

Here Hom0(OY , f∗ OX) is the subspace of Hom(OY , f∗ OX) consisting of local maps of sheaves of E∞-rings:
that is, maps which induce local homomorphisms π0 OY,f(x) → π0 OX,x of commutative rings for each x ∈ X.
This is a union of path components of Hom(OY , f∗ OX), which may be defined following the description in
Remark 2.5.

Example 2.7. Let A be an E∞ ring. Then (Spec A,OSpec A) is a derived scheme. Derived schemes which
arise via this construction we will call affine.

Example 2.8. Let (X, OX) be an ordinary scheme. Since every ordinary commutative ring can be regarded
as an E∞-ring, we may regard OX as a presheaf of E∞-rings on X. This presheaf is generally not a sheaf:
this is because of the existence of nontrivial cohomology groups of the structure sheaf OX over the open
subsets of X. Let O′X denote the sheafification of OX , in the setting of sheaves of E∞-rings. Then (X, O′X) is
a derived scheme. We will abuse terminology by ignoring the distinction between OX and O′X (either one can
be recovered from the other, via the functors of sheafification and π0. We also note that OX(U)→ O′X(U) is
an equivalence whenever U ⊆ X is affine). Thus, every ordinary scheme can be regarded as a derived scheme.

There is a sort of converse to the construction described in Example 2.8. Let (X, OX) be a derived
scheme. Then the functor

U 7→ π0(OX(U))

is a presheaf of commutative rings on X. We let π0 OX denote the sheafification of this presheaf. (A
vanishing theorem of Grothendieck ensures that (π0 OX)(U) ' π0(OX(U)) whenever U is affine.) The pair
(X, π0 OX) is a scheme. We call it the underlying ordinary scheme of (X, OX), and will occasionally denote
it by (X, OX).

Remark 2.9. If we were to employ only E∞-ring spaces, rather than arbitrary E∞-rings, in our definition
of derived schemes, then the functor

(X, OX)→ (X, π0 OX)

would be a right adjoint to the inclusion functor from schemes to derived schemes. In other words, we would
be able to regard (X, π0 OX) as the maximal ordinary subscheme of the derived scheme (X, OX). There
is an analogous construction in ordinary algebraic geometry: every scheme possesses a maximal reduced
subscheme.

Without connectivity assumptions, no such interpretation is possible: there is no map which directly
relates (X, OX) and (X, π0 OX).
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Virtually all of the formalism of ordinary algebraic geometry can be carried over to derived algebraic
geometry, without essential change. For example, if (X, OX) is a derived scheme, then one can consider
quasi-coherent sheaves on X: these are functors F which assign to every open subset U ⊆ X a OX(U)-
module spectrum F(U), which satisfy F(V ) ' F(U) ⊗OX(U) OX(V ) whenever V ⊆ U are affine, and which
satisfy an appropriate descent condition.

There is also a good theory of flatness in derived algebraic geometry:

Definition 2.10. Let p : (X, OX)→ (Y, OY ) be a map of derived schemes. We will say that p is flat if, for
every pair of open affine subsets U ⊆ X, V ⊆ Y such that p(U) ⊆ V , the induced map of E∞-rings

OY (V )→ OX(U)

is flat.

Remark 2.11. As in ordinary algebraic geometry, one can give various equivalent formulations of Definition
2.10: for example, testing flatness only on particular affine covers of X and Y , or on stalks of the structure
sheaves.

We note that if p : (X, OX) → (Y,OY ) is a flat map of derived schemes, then the underlying map of
ordinary schemes (X, π0 OX)→ (Y, π0 OY ) is flat in the sense of ordinary algebraic geometry. Conversely, if
(Y, OY ) is an ordinary scheme, then p is flat if and only if (X, OX) is an ordinary scheme and p is flat when
viewed as a map of ordinary schemes. In other words, the fibers of a flat morphism are classical schemes.

For many of the applications that we encounter, we will need to deal with algebro-geometric objects
of a more general nature than schemes. For example, the moduli stack M1,1 of elliptic curves cannot be
represented by a scheme. However, M1,1 is an algebraic stack, in the sense of Deligne-Mumford. Algebraic
stacks are usually defined to be a certain class of functors from commutative rings to groupoids; however,
for Deligne-Mumford stacks one can also take a more geometric approach to the definition:

Definition 2.12. A Deligne-Mumford stack is a topos X with a sheaf OX of commutative rings, such that
the pair (X, OX) is locally (on X) isomorphic with (Spec A,OSpec A), where A is a commutative ring. Here
Spec A denotes the étale topos of A, and OSpec A its canonical sheaf of rings.

As with schemes, it is possible to offer a derived version of Definition 2.12, and thereby obtain a notion
of derived Deligne-Mumford stack. All of the above discussion carries over to this more general context,
without essential change. The reason for introducing this definition is that we have already encountered a
very interesting example:

Example 2.13. Let M1,1 = (M,OM1,1) denote the (ordinary) moduli stack of elliptic curves; here we let
the symbol M denote the étale topos of the moduli stack. Let OMDer denote the sheaf of E∞-rings on
M constructed in Theorem 1.20. (To be more precise, Theorem 1.20 constructs a presheaf of E∞-rings
on a particular site for the topos M, which extends in a canonical way to the sheaf O.) Then the pair
MDer = (M,O) is a derived Deligne-Mumford stack. We have π0 OMDer ' OM1,1 , so that the underlying
ordinary Deligne-Mumford stack of MDer is the classical moduli stack M1,1 of elliptic curves.

We can view Example 2.13 as offering a geometric interpretation of Theorem 1.20: namely, Theorem 1.20
asserts the existence of a certain “derived” version of the moduli stack of elliptic curves. This turns out to
be a very useful perspective: it turns out that the derived moduli stack MDer itself has a moduli-theoretic
interpretation. This observation leads both to a new construction of the sheaf OMDer , and to a theory of
equivariant versions of elliptic cohomology. It also permits the study of elliptic cohomology using tools from
derived algebraic geometry, which leads to many other applications.

3 Derived Group Schemes and Orientations

In §2, we argued that given a (multiplicative) cohomology theory A, there is a relationship between equivari-
ant versions of A and group schemes over the commutative ring A(∗). To exploit this relationship, it would
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be even better to have a group scheme G defined over A itself. The language of derived algebraic geometry
enables us to make sense of this idea. Namely, suppose that A is an E∞-ring; then Definition 2.4 allows us
to speak of derived A-schemes; that is, maps G → Spec A in the setting of derived schemes. But how can
we make sense of a group structure on G? The question is somewhat subtle, since derived schemes are most
naturally viewed as higher-categorical objects.

Let us first consider the case of ordinary schemes. Let p : G → X be a map of schemes. What does
it mean to say that G is a (commutative) group scheme over X? One possibility is to require that G be
a commutative group object in the category of schemes over X: in other words, to require the existence
of a multiplication map G ×X G → G satisfying various identities, which can be depicted as commutative
diagrams. There is an alternative way of phrasing this, using Grothendieck’s “functor of points” philosophy.
Namely, given an X-scheme q : S → X, we can define

G(S) = {r ∈ Hom(S, G)|p ◦ r = q}.

In other words, via the Yoneda embedding we may identify G with a functor from X-schemes to sets. To
endow G with the structure of a commutative group object (over X) is to give a lifting of this functor through
the category of abelian groups. Going still further, we could identify G with this lifting. From this point
of view, a commutative group scheme over X is a functor from X-schemes to abelian groups, such that the
underlying functor from X-schemes to sets happens to be representable.

We can apply the same philosophy to derived algebraic geometry. However, there is one important
difference: if X is a derived scheme, then derived schemes over X should not be viewed as an ordinary
category. Rather, they behave in a higher-categorical fashion, so that for a pair of derived X-schemes S and
S′, the collection HomX(S, S′) of commutative diagrams

S //

��@
@@

@@
@@

S′

~~}}
}}

}}
}

X

forms a space, rather than a set. However, this poses no major difficulties and we can make the following
definition:

Definition 3.1. Let X be a derived scheme. A commutative X-group is a (topological) functor G from
derived X-schemes to topological abelian groups, such that the composite functor

{X-schemes} → {topological abelian groups} → { topological spaces }

is representable (up to weak homotopy equivalence) by a derived X-scheme that is flat over X. If X = Spec R,
we will also say that G is a commutative R-group.

We will often abuse terminology and not distinguish between a commutative X-group G over X and the
derived X-scheme that represents its underlying space-valued functor.

Remark 3.2. Let X be an ordinary scheme. Then we may regard X as a derived scheme, and a commutative
X-group in the sense of Definition 3.1 is the same thing as a commutative group scheme that is flat over X,
in the sense of ordinary algebraic geometry. More generally, any commutative X-group gives rise to a flat
commutative group scheme over X, the underlying ordinary scheme of X.

If we were to remove the flatness hypothesis from Definition 3.1, neither of the above statements would
be true. The problem is that the formation of fiber products G×X G is not compatible with passage between
schemes and derived schemes, unless we assume that G→ X is flat.

Let us now return to the study of equivariant cohomology. Suppose that we are given a cohomology
theory which is represented by an E∞-ring A, and that we are looking for a definition of “S1-equivariant A-
cohomology.” An S1-equivariant cohomology theory determines an ordinary cohomology theory, simply by
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restricting attention to spaces on which S1 acts trivially. In the best of all possible worlds, this cohomology
theory might itself be representable by an E∞-ring AS1 . In the case of complex K-theory, this E∞-ring can
be described as the ring of functions on a commutative K-group Gm (we will analyze this example in detail
in §3.1). In the general case, we will take the commutative A-group G as our starting point, and try to
recover a theory of equivariant A-cohomology from it.

Of course, the commutative A-group G is not arbitrary, because any reasonable theory of equivariant
A-cohomology can be compared with Borel-equivariant A-cohomology. In particular, there should be an
“completion” map

AS1 → ACP∞ .

In the example of K-theory, this map can be interpreted as a restriction map, from regular functions defined
on all of Gm to formal functions defined only near the identity section of Gm. Morally speaking, this is
induced by a map

Spf ACP∞ → G

where the left hand side is a formal commutative A-group. In the case where A is even and periodic, it is
possible to make sense of the formal spectrum of ACP∞ using a formal version of derived algebraic geometry.
Fortunately, this turns out to be unnecessary: it is possible to formulate the relevant structure in simpler
terms. In order to do this, we first note that CP∞ has the structure of a (topological) commutative monoid.
Namely, we may view CP∞ as the space of 1-dimensional complex subspaces of the vector space C[x];
multiplication on C[x] induces a multiplication operation on CP∞.

Remark 3.3. The multiplication operation on CP∞ corresponds to the operation of forming tensor products
of complex line bundles. Though CP∞ is not a group, it is a group up to homotopy: there exists a homotopy
equivalence

CP∞ 'M

of topological commutative monoids, where M is a topological abelian group.

Definition 3.4. Let X be a derived scheme, and let G be a commutative X-group. A preorientation of G
is a map of topological commutative monoids

CP∞ → G(X).

A preoriented X-group is a commutative X-group G together with a preorientation of G.

Suppose that X is the spectrum of an E∞-ring A and let G be a commutative X-group, with AS1 the
E∞-ring of global functions on G. Given an X-valued point of G, restriction of functions induces a map
AS1 → A. If G is equipped with a preorientation, then we get a collection of maps AS1 → A indexed by
CP∞, which we may identify with a map AS1 → ACP∞ ; this is the “completion” map we are looking for.
The requirement that CP∞ → G(X) be a map of topological commutative monoids corresponds to the
condition that the map

Spf ACP∞ → G

should be compatible with the group structures.
It is possible to formulate the notion of a preorientation in even simpler terms. We regard CP∞ as the

set of nonzero polynomials in C[x], modulo scaling. Let CPn denote the subspace corresponding to nonzero
polynomials of degree ≤ n. Then CP0 is the identity element of CP∞. By the fundamental theorem of
algebra, every nonzero polynomial in C[x] factors as a product of linear factors, which are unique up to
scaling. Consequently, CP∞ is generated, as an abelian monoid, by the subspace CP1. Moreover, it is
almost freely generated: the only relation is that the point CP0 ⊆ CP1 be the identity element. It follows
that giving a preorientation CP∞ → G(X) of a derived commutative group scheme over X is equivalent to
giving a map from the 2-sphere CP1 into G(X), which carries the base point to the identity element of G(X).
Thus, up to homotopy, preorientations of G are classified by elements of the homotopy group π2G(X).
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Of course, given any commutative A-group G, one can always find a preorientation of G: namely, the
zero map. In order to get interesting results, we need to impose a further condition. Let us return to
the example of complex K-theory, and let Gm = Spec KS1 the multiplicative group over K. In this case,
KCP∞ is precisely the E∞-ring of formal functions on Gm near the identity section. In other words, our
preorientation of Gm gives rise to a map

s : Spf KCP∞ → Gm

which is as nontrivial as possible: it realizes the left hand side as the formal completion Ĝm of Gm. We wish
to axiomatize this condition, without making reference to formal derived geometry. To do so, we note that in
the example above, both Spf KCP∞ and Ĝm are 1-dimensional formal groups. Consequently, to test whether
or not s is an isomorphism of formal groups, it suffices to check that the derivative of s is invertible. In order
to discover the object that plays the role of this derivative, we need to introduce a few more definitions.

Let A be an E∞-ring and G a preoriented A-group. Let G0 denote the underlying ordinary scheme of
G. Let ΩG0/π0A denote the sheaf of differentials of G0 over π0A, and let ω denote the pullback of this sheaf
along the identity section

Spec π0A→ G0.

We will identify ω with the π0A-module of global sections of ω.
Let σ : S2 → G(A) be the preorientation of G. Let Spec B = U ⊆ G be an affine open subscheme of

G containing the identity section; then we may identify σ with a map S2 → U(A). Since U is affine, we
may identify this with a map of E∞-rings B → AS2

. This in turn induces a map of ordinary π0A-algebras
π0B → A(S2) ' π0A ⊕ π2A. The first component is a ring homomorphism π0B → π0A corresponding to
the identity section of G0, while the second is a π0A-algebra derivation of π0B into π2A. This derivation is
classified by a map β : ω → π2A of π0A-modules.

Definition 3.5. Let A be an E∞-ring and G a commutative A-group equipped with a preorientation
σ : S2 → G(A). We will say that σ is an orientation if the following conditions are satisfied:

(1) The underlying map of ordinary schemes G0 → Spec π0A is smooth of relative dimension 1.

(2) The map β : ω → π2A induces isomorphisms

πnA⊗π0A ω → πn+2A

for every integer n ∈ Z.

An oriented A-group is a commutative A-group equipped with an orientation. More generally, if X
is a derived scheme, an oriented X-group is a preoriented X-group whose restriction to every open affine
Spec A ⊆ X is an oriented A-group.

Remark 3.6. Let A be an E∞-ring and G an oriented A-group. Then condition (2) of Definition 3.5 forces
A to be weakly periodic. Conversely, if A is weakly periodic, then condition (2) is equivalent to the assertion
that β is an isomorphism.

3.1 Orientations of the Multiplicative Group

Let A be an E∞-ring. In the last section, we introduced the notion of a (pre)orientation on a commutative
A-group. In this section, we specialize to the case where G is the multiplicative group Gm.

As in ordinary algebraic geometry, we can make sense of the multiplicative group Gm over any E∞ ring A.
In order to do so, we begin with a few general remarks about group algebras. Let R be a commutative ring,
and M an abelian group. Then the group ring R[M ] can be characterized by the following universal property:
to give a commutative ring homomorphism R[M ] → S, one must give a commutative ring homomorphism
R → S, together with a homomorphism from M to the multiplicative group of S. We note that R[M ] is
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not merely an R-algebra, but an R-Hopf algebra. More precisely, Spec R[M ] is a commutative group scheme
over R, the group structure coming from the fact that the collection of homomorphisms from M to S× forms
a group under pointwise multiplication, for every R-algebra S.

The above discussion generalizes without essential change to derived algebraic geometry. Given an E∞-
ring A and a topological abelian group M , we can form a group algebra A[M ]. In the special case where M
is the group Z of integers, we may informally write A[Z] as A[t, t−1] and we define the multiplicative group
Gm to be Spec A[Z]. We note that π∗(A[Z]) = (π∗A)[t, t−1]. In particular, the multiplicative group Gm is
flat over Spec A, so we may regard it as a commutative A-group. The underlying ordinary scheme of Gm is
just the usual multiplicative group over Spec π0A; in particular, it is smooth of relative dimension 1.

Let us consider the problem of constructing a preorientation of the multiplicative group Gm. By definition,
this is given by a homomorphism of topological commutative monoids, from CP∞ into Gm(A). This also
can be rewritten in terms of group algebras: it is the same thing as a map of A-algebras from A[CP∞] into
A. (We note that CP∞ is not an abelian group, but merely a monoid; however, the construction of the
group algebra still makes perfect sense in this case. )

Let S denote the sphere spectrum: this is the initial object in the world of E∞-rings. To give an A-algebra
map from A[M ] into B is equivalent to giving a map of E∞-rings from S[M ] into B. In particular, to give a
preorientation of the multiplicative group Gm over A is equivalent to giving a map of E∞-rings from S[CP∞]
into A. In other words, the E∞-ring S[CP∞] classifies preorientations of Gm.

Remark 3.7. The group algebra S[CP∞] is more typically denoted by Σ∞CP∞+ , and is called the (unre-
duced) suspension spectrum of the space CP∞.

Let us now suppose that we have a preorientation σ of Gm over an E∞-ring A, classified by a map
S[CP∞]→ A. The underlying ordinary scheme of Gm is the ordinary multiplicative group Spec(π0A)[t, t−1],
and the sheaf of differentials on this scheme has a canonical generator dt

t . The restriction ω of this sheaf
along the identity section is again canonically trivial, and the map

ω → π2A

induced by the preorientation σ can be identified with an element βσ ∈ π2A. Examining Definition 3.5, we
see that σ is an orientation if and only if βσ is invertible.

We note that βσ is functorial: if we are given an E∞-map f : A→ B, then we get an induced preorien-
tation f∗σ of the multiplicative group over B, and βf∗σ is the image of βσ under the induced map

π2A→ π2B.

In particular, βσ itself is the image of a universal element β ∈ π2S[CP∞] under the map S[CP∞]→ A.
The identification of β ∈ π2S[CP∞] is a matter of simple calculation. The group algebra S[CP∞] can be

identified with an E∞-ring space, and this space admits a canonical (multiplicative) map from CP∞. The
class β can be identified with the composite map

S2 ' CP1 ⊆ CP∞ → S[CP∞].

( At least, up to translation: this composite map carries the base point of S2 to the multiplicative identity
of S[CP∞], rather than the additive identity. )

To classify orientations on Gm, we need to “invert” the element β in S[CP∞]. This is a bit more subtle.
It is easy to show that an E∞-ring with the desired universal property exists. With some additional work,
one can show that it has the expected structure: that is, the natural map

(π∗S[CP∞])[β−1]→ π∗(S[CP∞][β−1])

is an isomorphism. The structure of this E∞-ring is the subject of the following theorem of Snaith:

Theorem 3.8. The E∞-ring S[CP∞][β−1] is equivalent to (periodic) complex K-theory.
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Remark 3.9. The original statement of Theorem 3.8 does not make use of the theory of E∞-rings. However,
it is easy to construct an E∞ map S[CP∞][β−1] → K (in our language, this map classifies the orientation
of Gm over K-theory), and the real content of Snaith’s theorem is that this map is an equivalence.

Remark 3.10. In Example 1.13, we saw that Landweber’s theorem could be used to produce complex
K-theory, as a cohomology theory, starting with purely algebraic data. We may view Theorem 3.8 as a
much more sophisticated version of the same idea: we now recover complex K-theory as an E∞-ring, as the
solution to a moduli problem. We will see that the moduli-theoretic interpretation of Theorem 3.8 leads to
purely algebraic constructions of equivariant complex K-theory as well.

Remark 3.11. If we view CP∞ as the classifying space for complex line bundles, then the group algebra
S[CP∞] can be viewed as a universal cohomology theory in which it is possible to add line bundles. Theorem
3.8 can be viewed as saying that if we take this universal cohomology theory and invert the Bott element
β, then we obtain a theory which classifies vector bundles. A very puzzling feature of Theorem 3.8 is the
apparent absence of any direct connection of the theory of vector bundles with the problem of orienting the
multiplicative group.

Remark 3.12. According to Theorem 3.8, the E∞-ring K classifies orientations of the multiplicative group
Gm. However, one could consider a more general problem of orienting a commutative A-group q : G→ Spec A
which happened to look like the multiplicative group Gm, in the sense that the underlying ordinary group
scheme G0 is a 1-dimensional torus over Spec π0A. It turns out that this problem is not really more general:
as in ordinary algebraic geomety, tori are rigid, so that G is isomorphic to the usual multiplicative group Gm

after passing to a double cover of Spec A. In other words, we can understand all of the relevant structure
by thinking about the usual multiplicative group Gm together with its automorphism group, which is cyclic
of order 2. The automorphism group also acts on the classifying E∞-ring K, and this action corresponds to
the operation of complex conjugation (on complex vector bundles).

In other words, by thinking not only about the multiplicative group but all multiplicative groups, we can
recover not only complex K-theory but also real K-theory.

3.2 Orientations of the Additive Group

In §3.1 we studied the problem of orienting the multiplicative group Gm. In this section, we wish to discuss
the analogous problem for the additive group Ga. Our first task is to define what we mean by the additive
group Ga.

One choice would be to define Ga so as to represent the functor which carries an E∞-ring A to its
underlying “additive group”. However, we immediately encounter two problems. First, the addition on A is
generally not commutative enough: we can regard A has having an “underlying space” which is an infinite
loop space, but this underlying space is generally not homotopy equivalent to a topological abelian group.
We could extract a derived group scheme to represent this functor: let us denote it by A1. But the group
structure on A1 would not be sufficiently commutative to carry out the constructions we will need in §3.3.

A second problem is that the derived scheme A1 is generally not flat over A. The A-scheme A1 may be
written as Spec A[X], where A[X] denotes the free E∞-algebra generated over A by one indeterminate X.
However, the homotopy groups of A[X] are perhaps not what one would naively expect: one has

πkA[X] =
⊕
n≥0

A−k(BΣn).

Here Σn denotes the symmetric group on n letters. This calculation coincides with the naive expectation
(πkA)[X] if and only if, for every n ≥ 0, the classifying space BΣn is acyclic with respect to A-cohomology.

Remark 3.13. We would encounter the same difficulties if we used the “naive” procedure above to define
the multiplicative group. Namely, there is a derived scheme GL1, which associates to every E∞-ring A the
underlying “multiplicative group” of A. This derived scheme GL1 is defined over the sphere spectrum S.
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However, it is not a commutative S-group in the sense of Definition 3.1, because it is neither flat over S
nor can it be made to take values in topological abelian groups. In particular, it does not coincide with the
commutative S-group Gm defined in §3.1. Instead, there is a natural map

Gm → GL1

which is an equivalence over the rational numbers Q. In general, one may regard Gm as universal among
commutative S-groups admitting a homomorphism to GL1.

Since defining the additive group Ga over a general E∞-ring A seems to be troublesome, we will choose
a less ambitious starting point. We can certainly make sense of the ordinary additive group Ga = SpecZ[X]
over the ring of integers Z. This is a commutative group scheme over the ordinary scheme SpecZ. Since it
is flat over Z, we may also regard it as a commutative Z-group in the sense of Definition 3.1. (We note that
the ordinary commutative ring Z[X], when regarded as an E∞-algebra over Z, is not freely generated by X:
this is the difference between Ga and the derived scheme A1 considered above).

Let us now suppose we are given a map of E∞-rings Z → R, and consider the problem of finding
a preorientation of Ga over R: in other words, the problem of finding a homomorphism of topological
commutative monoids CP∞ → Ga(R). As in the case of the multiplicative group Gm, this is equivalent to
giving a map of E∞-rings A → R, for a certain Z-algebra A. A calculation similar to the one given in §3.1
allows us to identify A with the group algebra Z[CP∞]; this is an E∞-ring with homotopy groups given by

π∗Z[CP∞] = H∗(CP∞,Z),

where multiplication is given by the Pontryagin product. As a ring, π∗Z[CP∞] is a free divided power series
algebra over Z, on a single generator β ∈ π2Z[CP∞].

A preorientation σ : Z[CP∞]→ R of the additive group over R is an orientation if and only if σ(β) ∈ π2R
is invertible. Consequently, the universal E∞-ring over which we have an orientation of Ga is the localization

Z[CP∞][β−1] ' Q[CP∞][β−1] ' K ⊗Q .

This is the E∞-ring which represents periodic rational cohomology.

Remark 3.14. Let us say that A is a rational E∞ ring if there is a map of E∞-rings from the field Q to
A (such a map is automatically unique, up to a contractible space of choices). Equivalently, A is rational if
each of the homotopy groups πnA is a vector space over Q.

If A is rational, then the difficulties defining the additive group over A dissolve: classifying spaces BG for
finite groups are acyclic with respect to A-cohomology, so that the free E∞-algebra A[X] has the expected
homotopy groups and is flat over A; moreover, the underlying “space” of any A-algebra is (naturally)
homotopy equivalent to a topological abelian group. Consequently, we get an equivalence A1 ' Ga over A,
so that A1 is a commutative A-group.

The point of the above discussion is that one can make sense of the additive group Ga in a bit more
generality. For our purposes, this turns out to be irrelevant: though Ga can be defined over Z, it can only
be oriented over Q.

Remark 3.15. Like the multiplicative group Gm, the additive group Ga has nontrivial automorphisms.
Provided that we work over Q, these are parametrized by the multiplicative group Gm. Consequently, Gm

acts also on the E∞-ring Q[β, β−1] which classifies orientations of Ga. Passing to invariants with respect to
this action, we recover ordinary (nonperiodic) cohomology with coefficients in Q.

3.3 The Geometry of Preorientations

Throughout this section, we fix an E∞-ring A and a commutative A-group G. Supposing that there exists
a good equivariant version of A-cohomology, we would expect that for any compact Lie group G and any
G-space X, the equivariant cohomology AG(X) is a module over AG(∗). If G = S1, then AG(∗) can be
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identified with functions on G; it is therefore natural to expect AG(X) to be obtained as the global sections
of quasi-coherent sheaf on G. More generally, for every compact Lie group G one can construct a derived
scheme MG and obtain AG(∗) as the E∞-algebra of functions on MG, and AG(X) as the global sections of
a certain quasi-coherent sheaf on MG. In this section, we address the first step: constructing the derived
scheme MT in the case where T is a compact abelian Lie group.

Let X∗(T ) denote the character group Hom(T, S1); then X∗(T ) is a finitely generated abelian group
(isomorphic to Zn if T is connected). We can recover T from its character group via the isomorphism
T ' Hom(X∗(T ), S1) (a special case of the Pontryagin duality theorem).

We let MT denote the derived A-scheme which classifies maps of abelian groups from X∗(T ) into G. In
other words, for every commutative A-algebra B, the space of B-valued points MT (B) is homotopy equivalent
to a space of homomorphisms from X∗(T ) into G(B) (if T is not connected, the abelian group X∗(T ) is
not a free abelian group and one must be careful to use the derived mapping space between the topological
abelian groups).

Example 3.16. If T = S1, then MT = G. More generally, if T is an n-dimensional torus, then MT is the
n-fold fiber power of G over Spec A. In particular, M{e} = Spec A.

Example 3.17. Let T be a cyclic group Z/nZ of order n. Then MT is equivalent to the kernel G[n] of the
multiplication-by-n-map

G n→ G.

Remark 3.18. If G is affine, then each MT is also affine: in this case, we can dispense with derived schemes
entirely and work at the level of E∞-rings. However, we will be primary interested in the case of elliptic
cohomology, where G is not affine and the geometric language is indispensable.

The geometric object MT is meant to encode the T -equivariant A-cohomology of a point. Let ∗/T denote
the orbifold quotient of a point by the group T . Then the T -equivariant A-cohomology of a point ought to
be identified with the orbifold A-cohomology of ∗/T : that is, it ought to depend only on ∗/T , and not on T
itself. In other words, it ought to be independent of the chosen basepoint of ∗/T .

We may rephrase the situation as follows. Given a commutative A-group G, we have constructed a
functor

T 7→MT

from compact abelian Lie groups to derived A-schemes. We wish to factor this through the classifying space
functor. In other words, we want a functor M̃ , defined on the (topological) category of spaces of the form
BT (T a compact abelian Lie group), such that

M̃(BT ) 'MT .

The above formula determines the behavior of M̃ on objects. To finish the job, we note that the space of
maps from BT to BT ′ is homotopy equivalent to a product BT ′×Hom(T, T ′): the first factor is given by the
image of the basepoint of BT in BT ′, and the second factor is a model for the space of base-point-preserving
maps from BT to BT ′. The functor M is already defined on the second factor. To complete the definition
of M̃ , we need to produce a map

BT ′ → Hom(MT ,MT ′).

Moreover, this should be suitably functorial in T and T ′. Functoriality in T implies that we need only define
this map in the universal case T = {e}; that is, we need to produce a map

Hom(X∗(T ′),CP∞) ' BT ′ →MT ′(A) = Hom(X∗(T ′), G(A)).

This map is required to be functorial in the character group X∗(T ′); it is therefore determined by its behavior
in the universal case where X∗(T ′) = Z. Consequently, we have sketched the proof of the following:
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Proposition 3.19. Let A be an E∞-ring, let G a commutative A-group and let MT be defined as above. Let
C be the (topological) category of spaces having the homotopy type of BT , where T is a compact abelian Lie
group.

The following data are equivalent:

(1) Covariant (topological) functors M̃ from C to derived A-schemes, together with functorial identifications
M̃(BT ) 'MT .

(2) Preorientations σ : CP∞ → G(A) of G.

Remark 3.20. It is possible to sharpen Proposition 3.19 further. The functor T 7→ MT is one way of en-
coding the commutative group structure on G. Consequently, specifying a preoriented A-group is equivalent
to specifying a functor M̃ from C to A-schemes, such that M̃ preserves certain Cartesian diagrams. This
point of view is relevant when it comes to studying elliptic cohomology over the compactified moduli stack
of elliptic curves, where there is a similar functor M̃ which does not commute with products.

3.4 Equivariant A-Cohomology for Abelian Groups

Let A be an E∞-ring and G a preoriented A-group. In the last section, we constructed a derived A-scheme
MT , for every compact abelian Lie group T . Moreover, we showed that MT really depends only on the
classifying space BT , and not on a choice of basepoint on BT .

Let T be a compact abelian Lie group, and X a space on which T acts. We wish to define the T -
equivariant cohomology group AT (X). In the case where X is a point, we have already described the
appropriate definition: we should take the global sections of the structure sheaf of the space MT . More
generally, we will obtain AT (X) as the global sections of a certain sheaf FT (X) on MT .

We will say that a T -space X is finite if it admits a filtration

∅ = X0 ⊆ X1 ⊆ . . . ⊆ Xn = X

where Xi+1 = Xi

∐
T/T0×Sk(T/T0 ×Dk+1) is obtained from Xi by attaching a T -equivariant cell (T/T0 ×

Dk+1).

Theorem 3.21. There exists a collection of functors {FT }, defined for every compact abelian Lie group T
and essentially uniquely prescribed by the following properties:

(1) For every compact abelian Lie group T , the functor FT is a contravariant functor from finite T -spaces
to quasi-coherent sheaves on MT , which carries T -equivariant homotopy equivalences to equivalences
of quasi-coherent sheaves.

(2) For fixed T , the functor FT carries finite homotopy colimits of T -spaces to homotopy limits of quasi-
coherent sheaves.

(3) If X is a point, then FT = OMT
.

(4) Let T ⊆ T ′, let X be a finite T -space, and X ′ = (X×T ′)/T the induced finite T ′-space. Let f : MT ′ →
MT be the induced morphism of derived schemes. Then FT ′(X ′) = f∗ FT (X).

Here is a sketch of the proof: suppose we wish to define FT (X), where X is a finite T -space. Using (2),
we can reduce to the case where X is an individual cell: in fact, to the case where X is a T -orbit T/T0,
where T0 ⊆ T is a closed subgroup. By condition (4), we have FT (T/T0) = f∗ FT0(∗), where f : MT0 →MT

is the induced map. Finally, FT0(∗) is determined by condition (3).

Remark 3.22. We could extend the functor FT formally to all T -spaces, but we have refrained from doing
so because inverse limit constructions behave poorly in the setting of quasi-coherent sheaves on MT . For
general T -spaces, it is T -equivariant homology which has better formal properties at the level of sheaves on
MT .
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Remark 3.23. Suppose that X is a T -space on which T acts transitively. Then X is abstractly isomorphic
to T/T0, but the isomorphism is not canonical unless we specify a base point on X. Consequently, the
identification FT (X) ' f∗ OMT0

is not quite canonical either; however, the ambiguity that results from the
failure to specify a base point on X is precisely accounted for by the fact that MT is a functor of only the
classifying space BT . In other words, a preorientation of G is precisely the datum needed to make the above
prescription work.

Remark 3.24. To flesh out our sketch of the proof of Theorem 3.21, we would need to sharpen requirements
(1) through (4) somewhat. For example, the isomorphisms

f∗ FT (X) ' FT ′(X ′)

should be suitably compatible with the formations of chains of subgroups T ⊆ T ′ ⊆ T ′′. We will not spell
out the precise axiomatics of the situation here.

We are now prepared to define equivariant A-cohomology. Namely, for any compact abelian Lie group
T and any finite T -space X, let AT (X) = Γ(MT ,FT (X)) be the global sections of the sheaf FT (X). Then
AT (X) is a cohomology theory defined on finite T -spaces. We may, if we wish, go further to extract
cohomology groups via the formula

An
T (X) = π−nAT (X).

The reader who is familiar with equivariant homotopy theory might, at this point, raise an objection.
We have defined a cohomology theory on the category of T -spaces, which assigns to each finite T -space X
the abelian group A0

T (X). By general nonsense, this functor is represented by a G-space Z(0). Moreover,
the functors An

T (X) are represented by spaces Z(n), which are deloopings of Z(0). In other words, Z(0)
is a T -equivariant infinite loop space. However, in equivariant stable homotopy theory one demands more:
namely, one wishes to be able to deloop not only with respect to ordinary spheres, but also spheres with
a nontrivial (linear) action of T . To extract the necessary deloopings, we need to introduce a few more
definitions.

By construction, the sheaves FT (X) are not merely sheaves of modules on MT , but actually sheaves of
E∞-algebras. By functoriality, there are natural maps

FT (X)→ FT (X × Y )← FT (Y )

and therefore a map FT (X)⊗ FT (Y )→ FT (X × Y ).
Let T be a compact abelian Lie group, and let X0 ⊆ X be finite T -spaces. We define FT (X, X0) to be

the fiber of the map
FT (X)→ FT (X0).

The multiplicatation maps defined above extend to give maps FT (X, X0)⊗ FT (Y )→ FT (X × Y, X0 × Y ).

Proposition 3.25. Suppose that A is an E∞ ring and let G be an oriented A-group. Let T be a compact
abelian Lie group, let V be a finite dimensional unitary representation of T , and let SV ⊆ BV be the unit
sphere and the unit ball in V , respectively. Then:

(1) The quasi-coherent sheaf LV = FT (BV, SV ) is a line bundle on MT .

(2) For every finite T -space X, the natural map

LV ⊗FT (X)→ FT (X ×BV, X × SV )

is an equivalence.
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To give the flavor of the proof of Proposition 3.25, let us consider the case where T is the circle group,
and V its defining 1-dimensional representation. The sheaf LV is defined to be the fiber of the map

FT (BV )→ FT (SV ).

The T -space BV is equivariantly contractible, and the T -space SV is T -equivariantly homotopy equivalent
to T itself. Consequently, the sheaf on the left hand side is the structure sheaf OG, and the sheaf on the
right hand side is the structure sheaf of the identity section of G. Thus, FT (BV, SV ) can be viewed as the
ideal sheaf for the identity section of G. Assertion (1) of Proposition 3.25 asserts that LV is invertible: this
follows from the assumption that G is oriented, which implies that the underlying ordinary scheme G0 is
smooth of relative dimension 1 over Spec π0A.

Now let us suppose that G is an oriented derived commutative group scheme over an E∞-ring A. For every
finite dimensional complex representation V of a compact abelian Lie group T , we let LV = FT (BV, SV ) be
the line bundle on MT whose existence is asserted by Proposition 3.25. There are natural maps

LV ⊗LV ′ → LV⊕V ′

which are equivalences in view of assertion (2) of Proposition 3.25. Consequently, the definition LV extends
to the case where V is a virtual representation of T .

For every finite T -space X and every virtual representation V of T , we define

AV
T (X) = π0Γ(MT ,FT (X)⊗ L−1

V ).

Each functor X 7→ AV
T (X) is represented by a T -space Z(V ). If V is an actual representation of T ,

then Z(V ) is, up to T -equivariant homotopy equivalence, a delooping of Z(0) with respect to the 1-point
compactification of V . Consequently, when G is oriented, then the above construction yields an actual
T -equivariant cohomology theory, defined in degrees indexed by the virtual representations of T .

3.5 The Nonabelian Case

Let A be an E∞-ring, and G an oriented A-group. In §3.4, we constructed an equivariant cohomology theory
AG for every compact abelian Lie group G. We now wish to treat the case where G is nonabelian. We will
do so by formally extrapolating from the abelian case. Namely, we claim the following:

Proposition 3.26. There exists a family of functors X 7→ AG(X), defined for all compact Lie groups G,
and essentially characterized by the following properties:

(1) For every compact Lie group G, AG is a contravariant functor from G-spaces to spectra, which preserves
equivalences.

(2) For every inclusion H ⊆ G of compact Lie groups, there are natural equivalences

AH(X) ' AG((X ×G)/H).

(3) The functor AG carries homotopy colimits of G-spaces to homotopy limits of spectra.

(4) In the case where G is abelian and X is a finite G-space, the functor AG coincides with the functor
defined in §3.4.

(5) Let EabG be a G-space with the following property: for any closed subgroup H ⊆ G, the set (EabG)H

of H-fixed points of Y is empty if H is nonabelian, and weakly contractible if H is abelian. Then, for
any G-space X, the natural map

AG(X)→ AG(X × EabG)

is an equivalence.
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We sketch the proof. By (5), we can reduce to defining AG(X) in the case where the action of G on X
has only abelian stabilizer groups. Replacing X by a G-cell complex if necessary, we can assume that X is
composed of cells modelled on G/H, where H ⊆ G is abelian. Using property (3), we can reduce to the case
where X = G/H. Property (2) then forces AG(X) = AH(∗), which is determined by property (4).

We remark that conditions (1) through (3) are obvious and natural demands to place on any good theory
of equivariant cohomology. Condition (4) is an equally natural demand, given that we want to build on
the definition that we have already given in the abelian case. Condition (5), on the other hand, is more
mysterious. We could define a different version of equivariant A-cohomology if we were to replace (4) and
(5) by the following conditions:

(4′) In the case where G is trivial, the functor AG(X) coincides with the function spectrum AX .

(5′) For any G-space X, the natural map

AG(X)→ AG(X × EG)

is an equivalence.

Properties (1) through (5′) characterize Borel-equivariant cohomology. Condition (5) is considerably
weaker than condition (5′), but it is still a rather severe assumption. It asserts that the equivariant cohomol-
ogy theory associated to a nonabelian group G is formally determined by equivariant cohomology theories
associated to abelian subgroups of G. In other words, AG(X) should be given by a Borel construction relative
to abelian subgroups of G. Why should we expect a good equivariant version of A-cohomology to satisfy (5),
when the analogous condition (5′) is unreasonable? We offer several arguments:

• In the case where A is complex K-theory, and we take G to be the multiplicative group Gm with its
natural orientation, the equivariant cohomology theories described by Proposition 3.26 coincide with
ordinary equivariant K-theory, even for nonabelian groups. In other words, assumption (5) above is
satisfied in the case of complex K-theory.

• In the case where G is abelian and X is a finite G-space, the constructions of §3.4 give much more
than the G-equivariant cohomology theory AG. Namely, we had also a geometric object MG, and an
interpretation of AG(X) as the global sections of a certain sheaf FG on MG. There is similar geometry
associated to the case where G is nonabelian, at least provided that G is connected.

• Suppose that one can construct a derived scheme MG and a functor FG as in §3.3 and §3.4, where G
is a nonabelian compact Lie group. Suppose further that Proposition 3.25 remains valid in this case.
Then it is possible to prove that assumption (5) holds, using the method of complex-oriented descent
(as explained, for example, in [15]).

• When G is an oriented elliptic curve and G is a connected compact Lie group, the theory of G-
equivariant A-cohomology described by Proposition 3.26 is closely related to interesting geometry,
such as the theory of regular GC-bundles on elliptic curves and nonabelian theta functions.

4 Oriented Elliptic Curves

In §3, we described the theory of oriented A-groups G, where A is an E∞-ring. In this section, we consider
the most interesting case: where G is an elliptic curve.

Definition 4.1. Let A be an E∞-ring. An elliptic curve over A is a commutative A-group E → Spec A,
having the property that the underlying map E → Spec π0A is an elliptic curve (in the sense of classical
algebraic geometry).
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Remark 4.2. If A is an ordinary commutative ring, regarded as an E∞-ring, then Definition 4.1 is equivalent
to the usual definition of an elliptic curve over A.

Remark 4.3. In ordinary algebraic geometry, one need not take the group structure on an elliptic curve
E → Spec A as part of the data. The group structure on E is uniquely determined, as soon as one specifies
a base point Spec A → E. In derived algebraic geometry, this is generally not true: the group structure on
E is not determined by the underlying derived scheme, even after a base point has been specified.

We now come to the main result of this survey:

Theorem 4.4. Let MDer = (M,ODer) denote the derived Deligne-Mumford stack of Example 2.13. For every
E∞-ring A, let E(A) denote the classifying space for the (topological) category of oriented elliptic curves over
A. Then there is a natural homotopy equivalence

Hom(Spec A,MDer) ' E(A).

In other words, MDer may be viewed as a moduli stack for oriented elliptic curves in derived algebraic
geometry, just as its underlying ordinary stack classifies elliptic curves in classical algebraic geometry.

Remark 4.5. We have phrased Theorem 4.4 in reference to the work of Goerss-Hopkins-Miller, which
establishes the existence and uniqueness of the structure sheaf ODer. However, our proof of Theorem 4.4
does not require that we know existence of ODer in advance. Instead, we can begin by considering the functor

A 7→ E(A)

and prove that it is representable by a derived Deligne-Mumford stack (X,OX). The hard part is to show
that X is equivalent to the étale topos of the ordinary moduli stack of elliptic curves, and that OX is a sheaf
of E∞-rings which satisfies the conclusions of Theorem 1.20. Consequently, we will obtain a new proof of
the existence of ODer.

The rest of this section is devoted to sketching the proof of Theorem 4.4.

4.1 Construction of the Moduli Stack

Let A be an E∞-ring. As in Theorem 4.4, we let E(A) denote the classifying space of the (topological)
category of oriented elliptic curves over Spec A. The first step is to prove that the functor

A 7→ E(A)

is representable by a derived Deligne-Mumford stack. As a first approximation, we let E′(A) denote the clas-
sifying space of the (topological) category of preoriented elliptic curves over Spec A. Let M1,1 = (M,OM1,1)
denote the classical moduli stack of elliptic curves. We observe that every elliptic curve over an ordinary
commutative ring R admits a unique preorientation (namely, zero). Consequently, the restriction of E′ to
ordinary commutative rings is represented by M1,1. We now apply the following general representability
result:

Proposition 4.6. Let F be a functor from connective E∞-rings to spaces. Suppose that F satisfies the
following conditions:

(1) There exists a Deligne-Mumford stack (X,O) which represents the restriction of F to ordinary commu-
tative rings. In other words, for any commutative ring R, the space F(R) is homotopy equivalent to
the classifying space of the groupoid Hom(Spec R, (X,O)).

(2) The functor F satisfies étale descent.

(3) The functor F has a well-behaved deformation theory.
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Then there exists a derived Deligne-Mumford stack (X, Õ) which represents the functor F. Moreover,
Õ(U) is a connective E∞-ring whenever U is affine.

Proof sketch: In virtue of condition (2), the assertion is local on X. We may therefore reduce to the case
where (X,O) is isomorphic to Spec R, where R is a commutative ring. The idea is to obtain (X, Õ) = Spec R̃,
where R̃ is a connective E∞-ring with π0R̃ = R. One constructs R̃ as the inverse limit of a convergent tower
of approximations, which are constructed using condition (3). For details, and a discussion of the meaning
of (3), we refer the reader to [19].

We wish to apply Proposition 4.6 to the functor A 7→ E′(A). Condition (1) is clear: on ordinary
commutative rings, E′ is represented by the classical moduli stack M1,1. The remaining conditions are also
not difficult to verify, using general tools provided by derived algebraic geometry. We conclude that there
exists a derived Deligne-Mumford stack (M,O′) which represents the functor A 7→ E′(A), at least when the
E∞-ring A is connective. However, using the fact that elliptic curves are flat over A, one can show that
E′(A) is equivalent to E′(τ≥0A), where τ≥0A is the connective cover of A. It follows that (M,O′) represents
the functor E′ for all E∞-rings A. Moreover, M is the étale topos of the ordinary moduli stack M1,1 of
elliptic curves, π0 O′ ' OM1,1 , and πi O′ is a quasi-coherent sheaf on M1,1 for i > 0. With a bit more effort,
one can show that each πi O′ is a coherent sheaf on M1,1.

Let ω denote the line bundle on M1,1 which associates to each elliptic curve E → Spec R the R-module
of invariant differentials on E. The preorientation of the universal elliptic curve over (M,O′) gives rise to
a map β : ω → π2 O′ of coherent sheaves on M. We can now define a new sheaf of E∞-rings O on M by
“inverting” β. This sheaf has the property that

πn O ' lim−→
k

{πn+2k O′⊗OM1,1
ω−k}

in the category of quasi-coherent sheaves on M1,1.

Remark 4.7. Let U →M be affine, and suppose that the restriction of ω to U is free. Then O′(U) = A is
a connective E∞-ring, and we may identify β with an element of π2A. By definition, O(U) is the A-algebra
A[β−1] obtained by inverting β. We note that O is not a connective sheaf of E∞-rings; rather it is (locally)
2-periodic, by construction.

To complete the proof of Theorem 4.4, it will suffice to prove the following:

(1) For n = 2k, the natural map ωk → πn O is an isomorphism of quasi-coherent sheaves on M1,1.

(2) For n = 2k + 1, the quasi-coherent sheaf πn O is trivial.

Indeed, suppose that (1) and (2) are satisfied. We first observe that (M,O) is a derived Deligne-Mumford
stack. The assertion is local on M, so we may restrict ourselves to an étale U → M such that (U,OM1,1 |U)
is affine and ω|U is trivial. In this case, (U,OM1,1 |U) ' Spec R, where R is a commutative ring; A = O′(U)
is a connective E∞-ring with π0A ' R, and we may identify the map β with an element in π2A. Then
O(U) = A[β−1]. Condition (1) asserts that R ' π0A[β−1], so that (U,O |U) is equivalent to Spec A[β−1].

By construction, the derived Deligne-Mumford stack (M,O) represents the functor A 7→ E(A). To
complete the proof, it suffices to show that O coincides with the sheaf ODer of E∞-rings constructed by
Goerss, Hopkins and Miller. For this, it suffices to show that over each affine U = Spec R of M, the E∞-ring
O(U) gives rise to the elliptic cohomology theory associated to the universal (classical) elliptic curve EU

over U . In other words, we need to produce an isomorphism of the formal spectrum of O(U)(CP∞) with
the formal completion of the underlying ordinary elliptic curve of EU . By construction, we have such an
isomorphism not only at the level of classical formal groups, but at the level of derived formal groups.

It remains to prove that (1) and (2) are satisfied. To simplify the discussion, we will consider only
condition (2): the first condition can be handled by a similar but slightly more complicated argument.
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Let n be an odd integer. We wish to show that colimit πn O of the directed system

{πn+2k O′⊗OM1,1
ω−k}

is zero. Since πn O is generated by the images of πn+2k O′⊗OM1,1
ω−k, it suffices to show that each of these

images is zero. Replacing n by n + 2k if necessary, it suffices to show that f : πn O′ → πn O is the zero map.
Let F be the image of f . Then F is a quotient of the coherent sheaf πn O′, and therefore coherent. If F 6= 0,
then F has support at some closed point κ : Spec Fq → M1,1. Consequently, to prove that condition (2)
holds, it suffices to prove that (2) holds in a formal neighborhood of the point κ. In other words, we need not
consider the entire moduli stack M1,1 of elliptic curves: it is sufficient to consider (a formal neighborhood
of) a single elliptic curve defined over a finite field Fq.

Remark 4.8. The above argument reduces the proof of Theorem 4.4 in characteristic zero to a statement
in characteristic p. This reduction is not necessary: in characteristic zero, it is fairly easy to verify (1) and
(2) directly. We sketch how this is done. Let A be an E∞-algebra over the field Q of rational numbers. The
theory of elliptic curves over A then reduces to the classical theory of elliptic curves, in the sense that they
are classified by maps Spec A→M1,1.

It follows that, rationally, O′ is an algebra over π0 O′ ' OM1,1 . Moreover, it is easy to work out the
structure of this algebra: namely, π∗ O′ is the symmetric algebra on ω over OM1,1 . Consequently, we observe
that the direct system {ω−k⊗OM1,1

πn+2k O′} is actually constant for n+2k > 0, isomorphic to ωm if n = 2m

is even and 0 otherwise.
If we do not work rationally, the directed system {ω−k ⊗OM1,1

πn+2k O′} is not constant. The sheaves
πn O′ are complicated and we do not know how to compute them individually; only in the limit do we obtain
a clean statement.

4.2 The Proof of Theorem 4.4: The Local Case

In §4.1, we reduced the proof of Theorem 4.4 to a local calculation, which makes reference only to a formal
neighborhood of a closed point κ : SpecFq →M1,1 of the moduli stack of elliptic curves. In this section, we
will explain how to perform this calculation, by adapting the theory of p-divisible groups to the setting of
derived algebraic geometry. Let p be a prime number, fixed throughout this section.

Definition 4.9. Let A be an E∞-ring. Let G be a functor from commutative A-algebras to topological
abelian groups. We will say that G is a p-divisible group of height h over A if the following conditions hold:

(1) The functor B 7→ G(B) is a sheaf (in the ∞-categorical sense) with respect to the flat topology on
A-algebras.

(2) For each n, the multiplication map pn : G→ G is surjective (in the flat topology) with kernel G[pn].

(3) The colimit of the system {G[pn]} is equivalent to G (as sheaves of topological abelian groups with
respect to the flat topology).

(4) For each n ≥ 0, the functor G[pn] is a commutative A-group, that is finite and flat over A of rank pnh.

Remark 4.10. If A is an ordinary commutative ring, then Definition 4.9 recovers the usual notion of a
p-divisible group over A. Since a p-divisible group G is determined by the flat derived A-schemes G[pn], the
theory of p-divisible groups over an arbitrary E∞-ring A is equivalent to the theory of p-divisible groups
over the connective cover τ≥0A.

Example 4.11. Let E be an elliptic curve over an E∞-ring A. Let E[pn] denote the fiber of the map
pn : E → E, and let G be the direct limit of the system {E[pn]}n≥0. Then G is a p-divisible group over A
of height 2, which we will denote by E[p∞].
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Our approach to the proof of Theorem 4.4 rests on a derived analogue of the Serre-Tate theorem, which
asserts that the deformation theory of an elliptic curve is equivalent to the deformation theory of its p-divisible
group, provided that we work p-adically:

Theorem 4.12. Let A be an E∞-ring. Suppose that π0A is a complete, local, Noetherian ring whose residue
field k has characteristic p, and that each of the homotopy groups πnA is a finitely generated module over
π0A. Then there is a Cartesian diagram (of ∞-categories)

{Elliptic curves E → Spec A} //

��

{p-divisible groups E[p∞]over A}

��
{Elliptic curves E0 → Spec k} // {p-divisible groups E0[p∞]over k}.

According to Theorem 4.12, giving an elliptic curve over A is equivalent to giving an elliptic curve E0

over the residue field k of π0A, together with a lifting of the p-divisible group E0[p∞] to a p-divisible group
over A. In other words, the deformation theory of elliptic curves is the same as the deformation theory of
their p-divisible groups (in characteristic p).

Let A be an E∞-ring satisfying the hypotheses of Theorem 4.12. It is possible to analyze the theory of
p-divisible groups over A along the same lines as one analyzes the theory of p-divisible groups over π0A.
Namely, every p-divisible group G over A has a unique filtration

Ginf → G→ Get.

Here Ginf is a “purely infinitesimal” p-divisible group obtained from the p-power torsion points of a (uniquely
determined) commutative formal A-group, and Get is an étale p-divisible group associated to a p-adic local
system on Spec A = Spec π0A. As with commutative A-groups, we can speak of preorientations and orienta-
tions of a p-divisible group G. A preorientation of G is equivalent to a preorientation of its infinitesimal part
Ginf . An orientation of G is an identification of Ginf with the p-power torsion on Spf ACP∞ ; in particular,
an orientation of G can exist only if G is 1-dimensional.

Now suppose that k is a perfect field of characteristic p, and that we are given a point κ : Spec k →M1,1

corresponding to an elliptic curve E0 over k. Let O′κ denote the formal completion of the sheaf O′ at the point
κ. Then O′κ is a connective E∞-ring such that π0 O′κ is the formal completion of the sheaf of functions on
the classical moduli stack M1,1 at the point κ. There is a preoriented elliptic curve E → Spec O′κ, which we
may regard as the universal deformation of E0 (as a preoriented elliptic curve). Let E denote the underlying
ordinary scheme of E; the π0 O′κ-module ω of invariant differentials on E is a free π0 O′κ-module of rank 1.
Fixing a generator of ω, the preorientation of E gives an element β ∈ π2 O′κ. Let Oκ = O′κ[β−1]. As we saw
in §4.1, Theorem 4.4 amounts to proving that Oκ is even and π0 Oκ ' π0 O′κ.

In view of Theorem 4.12, we may reinterpret the formal spectrum Spf O′κ in the language of p-divisible
groups. Namely, let G0 denote the p-divisible group of the elliptic curve E0 → Spec k. Since k is an ordinary
commutative ring, G0 has a unique preorientation. The formal spectrum Spf O′κ is the parameter space
for the universal deformation of E0 as a preoriented elliptic curve. By Theorem 4.12, this is the also the
parameter space for the universal deformation of G0 as a preoriented p-divisible group. More informally, we
might also say that the E∞-ring Oκ classifies oriented p-divisible groups which are deformations of G0.

There are now two cases to consider, according to whether or not the elliptic curve E0 → Spec k is
supersingular. If E0 is supersingular, then its p-divisible group G0 is entirely infinitesimal. It follows that
any oriented deformation E of E0 over an E∞-ring R is uniquely determined: E is determined by its p-
divisible group E[p∞] ' (Spf RCP∞)[p∞]. In concrete terms, this translates into a certain mapping property
of the deformation ring Oκ. One can show that this mapping property characterizes the Lubin-Tate spectrum
E2 associated to the formal group Ê0, which is known to have all of the desired properties. (We refer the
reader to [25] for a proof of the Hopkins-Miller theorem on Lubin-Tate spectra, which is very close to
establishing the universal property that we need here.)
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If the elliptic curve E0 → Spec k is not supersingular, then we need to work a bit harder. In this case,
any p-divisible group G deforming G0 = E0[p∞] admits a filtration

Ginf → G→ Get

where both Ginf and Get have height 1. Consequently, to understand the deformation theory of G0 we
must understand three things: the deformation theory of (G0)inf , the deformation theory of (G0)et, and the
deformation theory of the space of extensions Ext(Get, Ginf).

The deformation theory of the étale p-divisible group (G0)et is easy. An étale p-divisible group over A is
given by a p-adic local system over Spec A, which is the same thing as a p-adic local system on Spec π0A. If
A is a complete, local Noetherian ring with residue field k, these may be identified with p-adic local systems
on Spec k: in other words, finite free Zp-modules with a continuous action of the absolute Galois group of k.
In particular, this description is independent of A: (G)0 has a unique deformation to every formal thickening
of k, even in derived algebraic geometry. To simplify the discussion which follows, we will suppose that k is
algebraically closed. Then we may identify G with the constant (derived) group scheme Qp /Zp.

It is possible to analyze the infinitesimal part (G0)inf in the same way, using the fact that it is the
dual of an étale p-divisible group and therefore also has a trivial deformation theory. However, this is not
necessary: remember that we are really interested in deformations of G0 which are oriented. As we saw in
the supersingular case, the orientation of G determines the infinitesimal part Ginf , and the E∞-ring which
controls the universal deformation of Ginf as an oriented p-divisible group is a Lubin-Tate spectrum E1 (in
this case, an unramified extension of the p-adic completion of complex K-theory).

Finally, we need to study the deformation theory Ext(Qp /Zp, Ginf). As in classical algebraic geometry,
one shows that in a suitable setting one has isomorphisms

Ginf ' Hom(Zp, Ginf) ' Ext(Qp /Zp, Ginf).

Consequently, to obtain the universal deformation E∞-ring of G0 as an oriented p-divisible group, one should
take the E∞-ring of functions on the universal deformation of (G0)inf as an oriented p-divisible group. Since
this deformation is oriented, we may identify this E∞-ring with ECP∞

1 . A simple computation now shows
that Oκ ' ECP∞

1 has the desired properties.

Remark 4.13. The arguments employed above are quite general, and can be applied to p-divisible groups
which do not necessarily arise from elliptic curves. For example, one can produce “derived versions” of
certain Shimura varieties, at least p-adically, using the same methods.

4.3 Elliptic Cohomology near ∞
Classically, an elliptic curve E → SpecC is determined, up to noncanonical isomorphism, by its j-invariant
j(E) ∈ C. Consequently, the moduli space of elliptic curves is isomorphic to C, which is not compact. One
can compactify the moduli space by allowing elliptic curves to develop a nodal singularity.

We wish to extend the theory of elliptic cohomology to this compactification. To carry out this extension,
it suffices to work locally in a formal neighborhood of j = ∞. Complex analytically, we can construct a
family of elliptic curves over the punctured disk {q ∈ C : 0 < |q| < 1}, which assigns to a complex parameter
q the elliptic curve Eq = C∗/qZ. This family has a natural extension over the disk {q ∈ C : |q| < 1},
where Eq specializes to a nodal rational curve at q = 0. Provided that one is willing to work in a formal
neighborhood of q = 0, one can even give an algebraic construction of the elliptic curve Eq. This algebraic
construction gives a generalized elliptic curve T , the Tate curve, which is defined over Z[[q]]. The fiber of T
over q = 0 is isomorphic to a nodal rational curve, and its general fiber “is” Gm/qZ, in a suitable sense.

We will sketch a construction of the Tate curve which makes sense in derived algebraic geometry. For
this, we will assume that the reader is familiar with the language of toric varieties (for a very readable
account of the theory of toric varieties, we refer the reader to [14]).

Fix an E∞-ring R. Let Λ be a lattice (that is, a free Z-module of finite rank) and let F = {σα}α∈A be
a rational polyhedral fan in Z. For each α ∈ A, let σ∨α ⊆ Λ∨ denote the dual cone to σα, regarded as a
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commutative monoid. Then the monoid algebra R[σ∨α ] is an E∞-ring, and we may define Uα = Spec R[σ∨α ].
The correspondence α 7→ Uα is functorial: it carries inclusions of cones to open immersions of affine derived
schemes. We may therefore construct a derived scheme XF = lim−→{Uα}α∈A by gluing these affine charts
together, using the pattern provided by the fan F . We call XF the toric variety over R defined by F . When
R is an ordinary commutative ring, this is a well-known classical construction; it makes perfect sense in
derived algebraic geometry as well.

Let F0 = {{0},Z≥0} be the fan in Z giving rise to the toric variety XF0 = Spec R[Z≥0]. We will write
the E∞-ring R[Z≥0] as R[q], though we should note that it is not the free E∞-ring on one generator over
R (the generator q satisfies relations that force it to strictly commute with itself). For each n ∈ Z, let σn

denote the cone
{(a, b) ∈ Z× Z|na ≤ b ≤ (n + 1)a},

and let F denote the fan in Z× Z consisting of the cones σn, together with all their faces. Projection onto
the first factor gives a map F → F0 of fans, and therefore a map of toric varieties f : XF → Spec R[q]. The
fiber of f over any point q 6= 0 can be identified with the multiplicative group Gm, while the fiber of f over
the point q = 0 is an infinite chain of rational curves, each intersecting the next in a node.

Consider the automorphism τ : Z×Z→ Z×Z defined by τ(a, b) = (a, b+a). It is clear that τ(σn) = σn+1,
so that τ preserves the fan F and therefore defines an automorphism of XF , which we shall also denote by τ .
The action of τ is not free: for q0 6= 0, τ acts on the fiber f−1{q0} ' Gm by multiplication by q0. However,
the action of τ is free when it is restricted to the fiber f−1(0).

Let X̂F denote the formal completion of XF along the fiber f−1{0}, and let R[[q]] denote the formal
completion of R[q] along the closed subset defined by the equation q = 0. The group τZ acts freely on X̂F ,
and thus we may define a formal derived scheme T̂ by taking the quotient of X̂F by the action of τZ. We
note that the fiber of T̂ over q = 0 can be identified with a nodal rational curve; in particular, it is proper
over Spec R. Using a generalization of the Grothendieck existence theorem to derived algebraic geometry,
one can show that T̂ is the formal completion of a (uniquely determined) derived scheme T → Spec R[[q]].
We call T the Tate curve; its restriction to the punctured formal disk Spec R((q)) = Spec R[[q]][q−1] is an
elliptic curve over R((q)), which we may think of as the quotient of the multiplicative group Gm by the
subgroup qZ.

Of course, we are primarily interested in oriented elliptic curves. The Tate curve is essentially given as
a quotient of the multiplicative group Gm. In particular, its formal completion is equivalent to the formal
completion of the multiplicative group. Consequently, giving an orientation of the Tate curve is equivalent to
giving an orientation of the multiplicative group Gm. By Theorem 3.8, this is equivalent to working over the
E∞-ring K (the complex K-theory spectrum). In other words, the Tate curve T over K((q)) is an oriented
elliptic curve, which is therefore classified by a map

Spec K((q))→MDer .

Of course, there are additional symmetries which we should take into account. The involution (a, b) 7→ (a,−b)
preserves the fan F and intertwines with the action of τ , and therefore induces an involution on T (the inverse
map with respect to the group structure). This involution preserves the orientation on T , provided that we
allow it to act also on the ground ring K. We therefore actually obtain a map Spec K((q))/{±1} → MDer,
where the group {±1} operates on K by complex conjugation.

One can define a new derived Deligne-Mumford stack by forming a pushout square

Spec K((q))/{±1} //

��

MDer

��
Spec K[[q]]/{±1} //

MDer.

Here MDer is a compactification of the derived moduli stack MDer. The underlying ordinary Deligne-Mumford
stack of MDer is the classical Deligne-Mumford compactification of M1,1.
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Remark 4.14. Much of the theory of elliptic cohomology carries over to the compactified moduli stack
MDer. However, there are often subtleties at ∞. For example, we can glue the universal oriented elliptic
curve E over MDer with the Tate curve T , to obtain a universal oriented generalized elliptic curve E over
MDer. However, E is not a derived group scheme over MDer: it has a group structure only on the smooth
locus of the map E→MDer.

Consequently, the construction of geometric objects that we described in §3.3 needs to be modified. Since
E is not a derived group scheme, we cannot define the geometric object MG associated to a compact abelian
Lie group G to be the derived scheme Hom(G∨,E). It is possible to make the necessary modifications, giving
an explicit construction of MG near ∞ using the theory of toric varieties. However, the construction is
somewhat complicated and we will not describe it here.

5 Applications

5.1 2-Equivariant Elliptic Cohomology

Let A be an E∞-ring and let E → Spec A be an oriented elliptic curve. In §3.3 we used this data to construct
a derived A-scheme MG, for every compact abelian Lie group G, which is the natural “home” for the G-
equivariant version of A-cohomology described in §3.4. It is possible to construct a derived scheme MG with
similar properties even when G is nonabelian. If G is connected and T is a maximal torus of G, the derived
scheme MG looks roughly like a quotient of MT by the action of the Weyl group of G. In particular, when
G is connected, MG is a derived scheme whose underlying classical scheme can be identified with the moduli
space for regular Galg-bundles on E; here Galg is the reductive algebraic group associated to G (see [13] for
a discussion of regular Galg-bundles on elliptic curves over the complex numbers).

Remark 5.1. It is possible to describe MSU(n) and MU(n) more explicitly, in the language of derived
algebraic geometry. However, we do not know of any moduli-theoretic interpretation of the derived scheme
MG in general. This seems to be a difficult question, primarily because the underlying classical object is a
moduli space rather than a moduli stack.

One way of thinking about equivariant elliptic cohomology is that it is a correspondence which associates
derived schemes to certain topological spaces. In particular, to the classifying space BG it assigns the derived
scheme MG. It is possible to extend this process to a more general class of topological spaces, to obtain
what we call 2-equivariant elliptic cohomology. For an explanation of this terminology we refer the reader to
§5.4. The correspondence associated to an oriented elliptic curve E → Spec A is summarized in the following
table.

Topological Space Associated Geometric Object
∗ Spec A

CP∞ E

BZ/nZ E[n]

BG MG

K(Z/nZ, 2) µn

K(Z, 3) Gm

K(Z, 4) BGm
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Every level l ∈ H4(BG,Z) classifies a fibration

K(Z, 3)→ X → BG,

and 2-equivariant elliptic cohomology associates to this a fibration of geometric objects: in other words, a
principal Gm over MG, which we may identify with a line bundle Ll over MG.

Remark 5.2. The line bundle Ll gives rise to a line bundle on the classical moduli space MG of regular
G-bundles on elliptic curves. This is the “theta” bundle whose global sections are nonabelian θ-functions:
in other words, the spaces of conformal blocks for the modular functor underlying the Wess-Zumino-Witten
model.

Example 5.3. Let us say that a commutative A-group X → Spec A is an abelian scheme over Spec A if the
underlying map of ordinary schemes X → Spec π0A is an abelian scheme, in the sense of classical algebraic
geometry. There is a good duality theory for abelian schemes: namely, given an abelian scheme X → Spec A,
one can define a dual abelian scheme X∨ which classifies extensions of X by the multiplicative group Gm.

In classical algebraic geometry, every elliptic curve is canonically isomorphic to its dual. The analogous
result is not true in derived algebraic geometry. However, it is true for oriented elliptic curves E → Spec A.

Let
l : CP∞×CP∞ → K(Z, 4)

classify the cup-product operation

H2(X;Z)×H2(X;Z)→ H4(X;Z).

Then Ll is a line bundle on the product E ×Spec A E. The symmetry and bi-additivity of the cup product
operation translate into the assertion that Ll is a symmetric biextension of E by Gm (see [8] for a discussion
in the classical setting). This gives an identification of E with the dual elliptic curve E∨.

We will not describe the construction of 2-equivariant elliptic cohomology here. However, we should
point out that it is essentially uniquely determined by the properties we have asserted above: namely, that
it is a functorial process which assigns to each level l : BG → K(Z, 4) a line bundle Ll on MG, and that it
determines an identification of the elliptic curve E with its dual.

5.2 Loop Group Representations

Let us consider a punctured formal disk around ∞ on the moduli stack of elliptic curves. As we saw in
§4.3, over this disk elliptic cohomology is given by the E∞-ring K((q)), where K is complex K-theory. In
other words, near ∞, elliptic cohomology reduces to K-theory. However, equivariant elliptic cohomology
does not reduce to equivariant K-theory. Both of these equivariant theories are given by the constructions
of §3. However, the inputs to these constructions are different: to get equivariant K-theory, we use the
multiplicative group Gm; for elliptic cohomology, we use the Tate curve Gm/qZ. Thus, we should expect G-
equivariant K-theory to be somewhat less complicated than G-equivariant elliptic cohomology. The former
is related to the representation theory of the group G, but the latter is related to the representation theory
of the loop group LG.

We begin with a quick review of the theory of loop groups: for a more extensive discussion, we refer the
reader to [23]. Fix a connected compact Lie group G, which for simplicity we will assume to be simple. Then
the group H4(BG;Z) is canonically isomorphic to Z. Let us fix a nonnegative integer l, which we identify
with an element of H4(BG;Z) and therefore with a map BG → K(Z, 4). Let LG denote the loop group of
(smooth) loops S1 → G. The level l classifies a central extension

S1 → L̃G→ LG.

Moreover, there is an action of S1 on the group L̃G, which descends to the natural S1-action on LG given
by rotation of loops. We let L̃G

+
denote the semidirect product of L̃G by S1, via this action. We will refer
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to the circle of this semidirect product decomposition as the energy circle, and the circle S1 ⊆ L̃G→ L̃G
+

as the central circle.

Definition 5.4. Let V be a (Hilbert) representation of L̃G
+
. We will say that V is a positive energy

representation of level l if it satisfies the following conditions:

(1) The central circle S1 ⊆ L̃G
+

acts on V via the defining character S1 ↪→ C∗.

(2) The Hilbert space V decomposes as a direct sum of finite-dimensional eigenspaces V(n) with respect to
the action of the energy circle.

(3) The energy eigenspaces V(n) are zero for n� 0.

Remark 5.5. If we ignore the action of the energy circle, then there are finitely many irreducible positive
energy representations of L̃G, up to isomorphism. However, each of these extends to a representation of
L̃G

+
in infinitely many ways: given any positive energy representation V of L̃G

+
, we can obtain a new

positive energy representation V (1) by tensoring with the defining representation of the energy circle (in
other words, by shifting the energy).

Remark 5.6. Every positive energy representation V of L̃G
+

can be decomposed as a direct sum of irre-
ducible representations Vα. The irreducible constituents Vα may be infinite in number, so long as the lowest
energy of Vα tends to ∞ with α.

Consider the Tate curve E over K((q)), constructed in §4.3. Using the constructions described in §5.1 we
saw that there is a derived scheme MG → Spec K((q)) and a line bundle Ll on MG, naturally associated to
the level l : BG→ K(Z, 4). The global sections Γ(MG,Ll) can be identified with an K((q))-module, which
we may informally refer to as the G-equivariant elliptic cohomology of a point, at level l.

We can now state the relationship between elliptic cohomology and the theory of loop group representa-
tions:

Theorem 5.7. Let G be a compact simple Lie group and l a nonnegative level on G. There is a natural
identification of Γ(MG,Ll) with the K-theory of the (topological) category of positive energy representations

of L̃G
+

at level l. Under this correspondence, multiplication by q ∈ π0K((q)) corresponds to the energy shift
V 7→ V (1).

The classical analogue of this result, which identifies the K-group of positive energy representations of
L̃G

+
with the global sections of the theta bundle over the underlying ordinary scheme of MG, is proven in

[3].

Remark 5.8. Theorem 5.7 is related to the work of Freed, Hopkins and Telemann (see [12]), which identifies
the K-theory of loop group representations with the twisted G-equivariant K-theory of the group G itself.

5.3 The String Orientation

Let V be a finite dimensional real vector space of dimension d� 3, equipped with a positive definite inner
product. The orthogonal group O(V ) of automorphisms of V is not connected. Consequently, we define
SO(V ) ⊆ O(V ) to be the connected component of the identity; the map SO(V ) ⊆ O(V ) may be regarded as
“killing” π0 O(V ), in the sense that SO(V ) is a connected space with πn SO(V ) ' πn O(V ) an isomorphism
for n > 0.

The group SO(V ) is not simply connected, but it has a simply connected double cover Spin(V ). The
map Spin(V )→ SO(V ) has the effect of “killing” π1 SO(V ), in the sense that πn Spin(V )→ πn SO(V ) is an
isomorphism for n 6= 1, but Spin(V ) is simply connected.

An algebraic topologist would see no reason to stop there. The group π2 Spin(V ) ' π2 SO(V ) ' π2 O(V ) is
trivial, but the homotopy group π3 Spin(V ) ' π3 SO(V ) ' π3 O(V ) is (canonically) isomorphic to Z. We may
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therefore construct a map String(V )→ Spin(V ) which induces an isomorphism πn String(V )→ πn Spin(V )
for n 6= 3, but such that π3 String(V ) = 0.

Remark 5.9. One might wonder what sort of an object String(V ) is. It is certainly not a finite dimensional
Lie group. One can construct a topological space with the desired properties using standard methods of
homotopy theory (attaching cells to kill homotopy groups). Using more sophisticated methods, one can
realize String(V ) as a topological group. An explicit realization of String(V ) as an (infinite dimensional)
topological group is described in [27].

An alternative point of view is to consider String(V ) as the total space over a certain S1-gerb over
Spin(V ). This has the advantage of being a “finite dimensional” object that can be studied using ideas from
differential geometry (see for example [9]).

Let M be a smooth manifold of dimension n. Choosing a Riemannian metric on M , we can reduce the
structure group of the tangent bundle of M to O(V ). An orientation (spin structure, string structure) on
M is a further reduction of the structure group of the tangent bundle TM to SO(V ) (Spin(V ), String(V )).
The manifold M admits an orientation if and only if the first Stiefel-Whitney class w1(M) vanishes. An
orientation of M can be lifted to a spin structure if and only if the second Stiefel-Whitney class w2(M)
vanishes. Likewise, a spin structure on M extends to a string structure if and only if a certain characteristic
class p ∈ H4(M ;Z) vanishes. The characteristic class p has the property that 2p coincides with the first
Pontryagin class p1(M), though p itself is well-defined only after a spin structure on M has been chosen.

Let A be a multiplicative cohomology theory. Then A determines a (dual) homology theory, which we
will also denote by A. A class η ∈ An(M) is an A-orientation of M provided that cap product by η induces
an isomorphism

A∗(∗)→ An−∗(M,M − {m})
for every point m ∈M . In this case, we will say that M is A-oriented and that η is the A-fundamental class
of M .

In the case where A is ordinary integral homology, giving an A-orientation of M is equivalent to reducing
the structure group of the tangent bundle of M to SO(V ). Similarly, giving a spin structure on M allows
one to define an orientation of M with respect to complex K-theory (even with respect to real K-theory).
The idea is that K-homology classes can be represented by elliptic differential operators; the appropriate
candidate for the fundamental class of M is the Dirac operator, which makes sense once M has been endowed
with a spin structure. In this section, we would like to discuss the “elliptic” analogue of this result: if M is
a string manifold, then M has a canonical orientation with respect to elliptic cohomology.

The relationship between elliptic cohomology orientations of a manifold and string structures goes back
to the work of Witten (see [29]). Heuristically, the elliptic cohomology of a space M can be thought of as
the S1-equivariant K-theory of the loop space LM . To obtain an elliptic cohomology orientation of M , one
wants to write down the Dirac equation on LM . Witten computed the index of this hypothetical Dirac
operator using a localization formula, and thereby defined the Witten genus w(M) ∈ Z((q)) of the manifold
M , having the property that the coefficient of qn in w(M) is the χn-isotypic part of the index of the Dirac
operator, where χ : S1 → C∗ is the identity character. Moreover, he made the following very suggestive
observation: if p1(M) = 0, then w(M) is the q-expansion of a modular form.

Remark 5.10. The statement that the elliptic cohomology of M is given by the S1-equivariant K-theory
of the loop space LM is only heuristically true. However, it is true in the “limiting” case where we consider
elliptic cohomology near ∞, and we consider only “small” loops in M . As we saw in §4.3, in a formal disk
around ∞, elliptic cohomology may be identified with K((q)). Moreover, K((q))(M) is a completion of
KS1(M), where we identify M with the subset of LM consisting of constant loops (so that S1 acts trivially
on this space). The results described in §5.2 may be considered as a less trivial illustration of the same
principle.

In order to study the problem of orienting various classes of manifolds more systematically, it is convenient
to pass to the limit by defining

O = lim−→{O(Rd)}d≥0
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SO = lim−→{SO(Rd)}d≥0

Spin = lim−→{Spin(Rd)}d≥0

String = lim−→{String(Rd)}d≥0

Let G denote any of these groups (though much of what we say below applies to other structure groups as
well). If M is a smooth manifold of any dimension, we will say that a G-structure on M is a reduction of
the structure group of the stabilized tangent bundle of M from O to G. In this case, we will say that M is a
G-manifold.

Fix a topological group G with a map G → O, and consider the class of G-manifolds: that is, smooth
manifolds M whose structure group has been reduced to G. To this data, one can associate a Thom spectrum
MG. Roughly speaking, one defines MGn(X) to be the set of bordism classes of n-dimensional G-manifolds
M equipped with a map M → X. In particular, if M is a G-manifold of dimension n, there is a canonical
element η ∈MGn(M); this is an orientation of M with respect to the cohomology theory MG. One can view
MG as the universal cohomology theory for which every G-manifold has an orientation. More generally, if A
is an arbitrary cohomology theory, then equipping every G-manifold M with an A-orientation is more or less
equivalent to giving a map s : MG→ A. In good cases, the cohomology theory A will be represented by an
E∞-ring, and s will be a map of E∞-rings: roughly speaking, this may be thought of as asserting that the
orientations on G-manifolds determined by s are compatible with the formation of products of G-manifolds.

The statements we made earlier, regarding orientations of manifolds with respect to ordinary homology
and K-theory, can be reinterpreted as asserting the existence of certain natural maps

MSO→ Z

MSpin→ KO

between E∞-rings. Similarly, the string orientability of elliptic cohomology can be formulated as the existence
of an E∞-map

σ : MString→ tmf .

The map σ is sometimes called the topological Witten genus; when composed with the map tmf → K((q))
and evaluated on a string manifold M , it reduces to the ordinary Witten genus described above.

The existence of the map σ is known, thanks to the work of several mathematicians. We refer the reader
to [4] for a discussion of the problem in a somewhat simpler setting. We will sketch here an alternative
construction of the map σ, using the theory of 2-equivariant elliptic cohomology sketched in §5.1. For
simplicity, we let E → Spec A be an oriented elliptic curve over an E∞-ring A; we will construct a natural
map σA : MString→ A. The map σ itself is obtained by passing to the (homotopy) inverse limit.

We first rephrase the notion of an orientation from a point of view which is more readily applicable to
our situation. Given a homomorphism s : G → O, we obtain a map BG → B O, which we may think of
as a (stable) vector bundle over BG. A vector bundle determines, in turn, a spherical fibration over BG,
which we may view as a bundle of invertible S-modules over BG. Given an E∞-ring A, we may tensor with
A to obtain a bundle of A-modules over BG; let us denote this bundle by As. To give a map of E∞-rings
MG→ A is equivalent to giving a trivialization of the local system As, which is suitably compatible with the
group structure on BG. To simplify the discussion, we will focus only on trivializing As; the compatibility
with the group structure is established by a more careful application of the same ideas.

Let us now specialize to the case G = Spin, and suppose that we are given an oriented elliptic curve
over A. The theory of equivariant elliptic cohomology associates to the compact Lie group Spin(n) a derived
A-scheme MSpin. Moreover, the functoriality of the construction gives a map of topological spaces

φ : B Spin(n) ' Hom(∗, B Spin(n))→ Hom(Spec A,MSpin).

Let l : B Spin(n)→ K(Z, 4) be the canonical generator; then the theory of 2-equivariant elliptic cohomology
associates to l a line bundle Ll over MSpin. Thus, for every A-valued point of MSpin, we get an invertible
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A-module. The morphism φ therefore gives a local system of invertible A-modules on B Spin(n); let us
denote it by Aφ.

The existence of the string orientation on elliptic cohomology rests on the following comparison result,
which we will not prove here:

Theorem 5.11. Let s : Spin(n) → O be the natural homomorphism and let E → Spec A be an oriented
elliptic curve over an E∞-ring A. There is a canonical isomorphism

Aφ ' As

of local systems of invertible A-modules over B Spin(n).

To provide A with a string orientation, we need to prove that As becomes trivial after pulling back along
the map B String(n) → B Spin(n). By Theorem 5.11, it will suffice to prove that Aφ becomes trivial after
pullback to B String(n). The theory of 2-equivariant elliptic cohomology provides a commutative diagram

B String(n) //

��

Hom(Spec A,MString(n))

��
B Spin(n) // Hom(Spec A,MSpin(n))

Consequently, to prove that Aφ becomes trivial after pullback to B String(n), it suffices to prove that Ll

becomes trivial after pullback along the map of derived schemes MString(n) → MSpin(n). But MString(n) is
precisely the total space of the principal Gm-bundle underlying Ll: in other words, it is universal among
derived schemes over MSpin(n) over which Ll has a trivialization.

Remark 5.12. The argument given above not only establishes the existence of the string orientation
MString → A; it also explains why the covering String(n) → Spin(n) arises naturally when one consid-
ers the problem of finding orientations with respect to elliptic cohomology.

5.4 Higher Equivariance

The purpose of this section is to place the theory of 2-equivariant elliptic cohomology, which we discussed
in §5.1, into a larger perspective.

Let A be an even, periodic cohomology theory, and suppose that A(∗) = k is a field. In this case, there are
not many possibilities for the formal group Ĝ = Spf A(CP∞). If k is of characteristic zero, any 1-dimensional
formal group over k is isomorphic to the formal additive group; correspondingly, A is necessarily equivalent
to periodic ordinary cohomology with coefficients in k. If k is of characteristic p, then the formal group G is
classified up to isomorphism (over the algebraic closure k) by a single invariant 1 ≤ n ≤ ∞. The invariant n
is called the height of G, and may be thought of as a measure of the size of the p-torsion subgroup G[p] ⊆ G.
By convention, we say that the additive group in characteristic zero has height zero (since it has no nontrivial
p-torsion).

To a formal group G of height n over an algebraically closed field k of characteristic p, one can associate
an (essentially unique) even, periodic cohomology theory. This cohomology theory is called Morava K-theory
and denoted by Kn.

The Morava K-theory of Eilenberg-Mac Lane spaces has been computed by Ravenel and Wilson (see
[24]). In particular, they show that for m > n, the natural map

K(n)∗(∗)→ K(n)∗(K(Z/pZ,m))

is an isomorphism. In other words, the Morava K-theory K(n) cannot tell the difference between the space
K(Z/pZ,m) and a point. We may informally summarize the situation by saying that K(n) does not “see”
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the homotopy groups of a space X in dimensions larger than n. Of course, this is not literally true: however,
it is true provided that the homotopy groups of X satisfy certain finiteness properties.

If G is a formal group over a commutative ring R, then it need not have a well-defined height; however,
it has a height when restricted to each residue field of R. We will say that an cohomology theory A has
height ≤ n if it is even, weakly periodic, and the associated formal group has height ≤ n at every point. Our
discussion of Morava K-theory can be generalized as follows: if A is a cohomology theory of height ≤ n,
then A only “sees” the first n homotopy groups of a space X. As we remarked above, this is not true in
general, but it is true provided that we make suitable finiteness assumptions on X.

Let us first consider the case of a cohomology theory A of height ≤ 0. Then R = A(∗) is an algebra
over the field Q of rational numbers, and A is automatically a periodic variant of ordinary cohomology with
coefficients in R. It follows that A(X) is insensitive to the homotopy groups of X, provided that those
homotopy groups are finite. For spaces with finite homotopy groups, A(X) simply measures the number of
connected components of X.

We can get more information by considering cohomology theories of height ≤ 1. The prototypical example
is complex K-theory. The above discussion indicates that, under suitable finiteness hypotheses, K(X) should
be sensitive only to the fundamental groupoid of X. In other words, the only really interesting K-group
to compute is K(BG), where G is a finite group. However, this example turns out to be quite interesting:
there is a natural map η : Rep(G)→ K(BG), defined for any finite group G. The Atiyah-Segal completion
theorem asserts that η is not far from being an isomorphism: it realizes K(BG) as the completion of Rep(G)
with respect to the augmentation ideal consisting of virtual representations having virtual dimension zero.

There are many respects in which Rep(G) is a better behaved object than K(BG): for example, it is a
finitely generated abelian group, while K(BG) is not. Moreover, there is a moral sense in which K(BG)
“ought to be” Rep(G): the fact that η is not an isomorphism is somehow a technicality. We can regard
equivariant K-theory as a way of formally “defining away” the technicality. Namely, the equivariant K-group
KG(∗) is a refined version of K(BG), which coincides with Rep(G) by definition.

One might ask if there are other examples of spaces X for which K(X) is in need of refinement. According
to the discussion above, the answer is essentially no: K(X) should only be sensitive to the fundamental
groupoid of X, so that the general “expected answer” for K(X) is the representation ring Rep(π1X) (provided
that X is connected).

When we consider cohomology theories of higher height, the above argument breaks down. Let Ell denote
an elliptic cohomology theory, necessarily of height ≤ 2. Following the above discussion, we should imagine
that Ell(X) is sensitive to the first two homotopy groups of a space X. Consequently, it is most interesting
to compute Ell(X) when X is a connected space satisfying π1X = G, π2X = A, and πnX = 0 for n > 2. In
the above discussion, we assumed that the groups G and A were finite. However, by analogy with K-theory,
we should also allow the case where G and A are compact Lie groups (so that X is allowed to be a space
like BG, or the classifying space of a circle gerb over G). By analogy with K-theory, one might guess that
there is an “expected” answer for Ell(X), and that Ell(X) is related to this expected answer by some sort of
completion result in the spirit of the Atiyah-Segal theorem. This prediction turns out to be correct: there
is an expected answer, which is dictated by the geometry of elliptic curves. Moreover, as with equivariant
K-theory, one can build a coherent and useful theory out of the expected answers. This is the theory of
2-equivariant elliptic cohomology which we discussed in §5.1.

Remark 5.13. There is no reason to stop at height 2. Given an E∞-ring A and an oriented p-divisible
group G over A of height n, one can construct a theory of n-equivariant A-cohomology. Namely, let X be a
space whose homotopy groups are all finite p-groups, vanishing in dimension > n. Then there is a natural
procedure for using G to construct a spectrum AX , which can be thought of as the “expected answer”
for A(X). Moreover, there is a map AX → A(X) which can be described by an Atiyah-Segal completion
theorem. The significance of these “expected answers” is not yet clear, but they are closely related to the
generalized character theory of [15].
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5.5 Elliptic Cohomology and Geometry

In this paper, we have discussed elliptic cohomology from an entirely algebraic point of view. In doing so,
we have ignored what is perhaps the most interesting question of all: what is elliptic cohomology? In other
words, given a topological space X, what does it mean to give an elliptic cohomology class η ∈ tmf(X)? No
satisfactory answer to this question is known, as of this writing. However, a number of very interesting ideas
have been put forth. We saw in §5.2 that equivariant elliptic cohomology is related to the theory of loop
group representaions. Graeme Segal has suggested that elliptic cohomology should bear some relationship to
conformal field theories (see [26]). Building on his ideas, Stolz and Teichner have proposed that the classifying
space for elliptic cohomology might be interpreted as a moduli space for supersymmetric conformal field
theories. To support their view, they show in [27] that supersymmetry predicts that the coefficients in the
q-expansion of the partition function of such a theory should be integral. Alternative speculations on the
problem can be found in [17] and [7], among other places.

Our moduli-theoretic interpretation of elliptic cohomology has the advantage of being well-suited to
proving comparison results with other theories. Suppose that we are given some candidate cohomology
theory A, which we suspect is equivalent to elliptic cohomology. For simplicity, we will assume that A is
a candidate for the elliptic cohomology theory associated to an elliptic curve over an affine base Spec π0A
(the non-affine case can be treated as well, but requires a more elaborate discussion). We will suppose that
A enjoys all of the good formal properties of elliptic cohomology: namely, that it is representable by an
E∞-ring, and that it has well-behaved equivariant and 2-equivariant analogues.

To relate A to elliptic cohomology, we would like to produce a map f : tmf → A. Better yet, we would
like to have a map Spec A→MDer: we can then obtain f by considering the induced map on global sections
of the structure sheaves. To provide such a map, we need to give an oriented elliptic curve E → Spec A. We
will proceed under the assumption that E exists, and explain how to reconstruct it from the cohomology
theory A.

We wish to produce E not just as a derived scheme, but as an oriented A-group. Equivalently, for every
lattice Λ, we want to construct the abelian variety EΛ = Hom(Λ, E), and we want the construction to be
functorial in Λ. Let T = Hom(Λ, S1) denote the Pontryagin dual of Λ. If EΛ were affine, we would expect
to recover it as Spec AT (∗). Unfortunately, abelian varieties are not affine, so we must work a bit harder. To
this end, select a map q : BT → K(Z, 4) which classifies a positive definite quadratic form on Λ∨. The level
q determines an ample line bundle Lq on EΛ. Moreover, the global sections of the kth power of Lq should
be given by T -equivariant A-cohomology at level kq: we can make sense of this A-module in virtue of the
assumption that we have a good 2-equivariant theory. We can now assemble these modules of sections, for
varying k ≥ 0, into a graded E∞-ring R•, and attempt to recover EΛ as the projective spectrum of R•.

Of course, the above construction will only work to produce an abelian variety over Spec A if certain
conditions are met. These conditions can be reduced to certain computations: for example, one must show
that if T is a torus and q : BT → K(Z, 4) classifies a positive definite quadratic form of discriminant d, then
the T -equivariant A-cohomology of a point, at level q, is a free A-module of rank d. Supposing that this and
other algebraic conditions are satisfied, the above construction will give us an elliptic curve E → Spec A.
Moreover, by comparing equivariant A-cohomology with Borel-equivariant A-cohomology, we can supply
E with a preorientation σ : CP∞ → E(A). The condition that σ be an orientation is again a matter of
computation: essentially, we would need to show that an appropriate version of the Atiyah-Segal completion
theorem holds, at least locally on the elliptic curve E. Provided that all of the necessary computations yield
favorable results, we will obtain an oriented elliptic curve E → Spec A, which is classified by the desired map
Spec A→MDer.

Unfortunately, our algebraic perspective does not offer any insights on the problem of where to find
such a cohomology theory in geometry. Nevertheless, it seems inevitable that a geometric understanding of
elliptic cohomology will eventually emerge. The resulting interaction between algebraic topology, number
theory, mathematical physics, and classical geometry will surely prove to be an excellent source of interesting
mathematics in years to come.
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