Triangulation in Families (Lecture 7)

February 17, 2009

In the last lecture, we introduced the diagram of simplicial sets

$$
\operatorname{Man}_{P L}^{m} \stackrel{\phi^{\prime}}{\leftarrow} \operatorname{Man}_{P D}^{m} \xrightarrow{\phi} \operatorname{Man}_{\mathrm{sm}}^{m}
$$

Our goal in this lecture is to prove that the map ϕ is a trivial Kan fibration. In other words, we wish to show that every diagram

can be completed by adding a suitable dotted arrow.
Let V be an infinite dimensional real vector space. Unwinding the definitions, we are given smooth submanifold $X \subseteq V \times \Delta^{n}$ which is a fiber bundle over Δ^{n}, a subpolyhedron $K_{0} \subseteq V \times \partial \Delta^{n}$, and a PD homeomorphism $K_{0} \rightarrow X \times_{\Delta^{n}} \partial \Delta^{n}$ such that the following diagram commutes:

We wish to find the following data:
(i) A polyhedron K equipped with a PL map $\pi: K \rightarrow \Delta^{n}$ and a homeomorphism $K_{0} \simeq Y \times_{\Delta^{n}} \partial \Delta^{n}$.
(ii) A PD homeomorphism $K \rightarrow X$ which commutes with the projection to Δ^{n}.
(iii) A lifting of π to a PL embedding $K \rightarrow V \times \Delta^{n}$ which extends the embedding already given on K_{0}.

Moreover, this data must satisfy the following condition:
(iv) The projection map $K \rightarrow \Delta^{n}$ exhibits K as a fiber bundle in the PL category (automatically trivial, since Δ^{n} is contractible). In other words, there is a PL homeomorphism $Y \simeq \Delta^{n} \times N$, for some PL m-manifold N.

As we saw last time, the data of (iii) comes essentially for free, using general position arguments. We will focus on conditions (i) and $(i i)$ for the time being, and return to $(i v)$ at the end of the discussion.

Since $X \rightarrow \Delta^{n}$ is a fiber bundle in the smooth setting, we can identify X with a product $M \times \Delta^{n}$ for some smooth manifold M. The PD homeomorphism $K_{0} \rightarrow X \times{\Delta^{n}} \partial \Delta^{n}$ can be viewed as a providing a Whitehead compatible triangulation of $M \times \partial \Delta^{n}$ which is compatible with the polyhedron structure on $\partial \Delta^{n}$ (in other words, a PD homeomorphism $K_{0} \rightarrow M \times \partial \Delta^{n}$ such that the composite map $K_{0} \rightarrow \partial \Delta^{n}$ is PL. We wish to extend this to a Whitehead compatible triangulation of $M \times \Delta^{n}$ which is compatible with the projection $M \times \Delta^{n} \rightarrow \Delta^{n}$.

In the case $n=0$, this reduces to the problem we solved in Lecture 4: namely, proving that every smooth manifold M admits a Whitehead compatible triangulation. For our present needs, we will require a more refined version of the same result:

Theorem 1. Let M be a smooth manifold and let $f_{0}: K_{0} \rightarrow M \times \partial \Delta^{n}$ be a $P D$ homeomorphism such that the composite map $K_{0} \rightarrow \partial \Delta^{n}$ is PL. Then f can be extended to a PD homeomorphism $K \rightarrow M \times \Delta^{n}$, where the projection $K \rightarrow \Delta^{n}$ is $P L$.

Proof. Write Δ^{n} as a union of two closed subpolyhedra L and L^{\prime} whose interiors cover Δ^{n}, where L contains a neighborhood of $\partial \Delta^{n}, L^{\prime} \cap \partial \Delta^{n}=\emptyset$, and there is a retraction $r: L \rightarrow \partial \Delta^{n}$. Let $\bar{K}_{0}=K_{0} \times \partial \Delta^{n} L$. Then f_{0} evidently extends to a PD embedding $\bar{f}_{0}: \bar{K}_{0} \rightarrow M \times \Delta^{n}$ with image $M \times L$.

For each $x \in M$, choose a smooth chart $i_{x}: \mathbb{R}^{n} \rightarrow M$ carrying 0 to x, and let U_{x} denote the image of the open ball. Since M is compact, we can choose a finite collection $\left\{x_{1}, \ldots, x_{k}\right\}$ such that the open balls $U_{i}=U_{x_{i}}$ cover M. We then have PD maps $\bar{f}_{i}:[-2,2]^{n} \times L^{\prime} \rightarrow M \times \Delta^{n}$ whose images cover $M \times L^{\prime}$. We observe that each of the projections $\pi \circ \bar{f}_{i}$ is PL, where $\pi: M \times \Delta^{n} \rightarrow \Delta^{n}$ denotes the projection.

To produce the desired map $K \rightarrow M \times \Delta^{n}$, it will suffice to show that we can approximate the PD maps $\left\{\bar{f}_{0}, \ldots, \bar{f}_{n}\right\}$ by maps $\left\{\bar{f}_{i}^{\prime}\right\}$ which are pairwise compatible, where $\bar{f}_{0}\left|K_{0}=\bar{f}_{0}^{\prime}\right| K_{0}$ and $\pi \circ \bar{f}_{i}=\pi \circ \bar{f}_{i}^{\prime}$. We proceed as in Lecture 4 to define sequences of approximations $\left\{\bar{f}_{0}^{j}, \ldots, \bar{f}_{j}^{j}\right\}$ to $\left\{\bar{f}_{0}, \ldots, \bar{f}_{j}\right\}$ using induction on j. When $j=0$, we set $\bar{f}_{0}^{j}=\bar{f}_{0}$.

Suppose that we have already defined a sequence of pairwise compatible maps $\bar{f}_{0}^{j}, \ldots, \bar{f}_{j}^{j}$ which are close approximations to $\bar{f}_{0}, \ldots, \bar{f}_{j}$. These maps can therefore be amalgamated to product a single PD map $F: \bar{K}_{j} \rightarrow M \times \Delta^{n}$, where \bar{K}_{j} is a polyhedron containing K_{0} such that $F \mid K_{0}=f_{0}$ and $\pi \circ F$ is PL. To complete the proof, it will suffice to show that we can choose close approximations F^{\prime} to F with the same properties, so that F^{\prime} is compatible with \bar{f}_{j+1}. To prove this, let $P \subseteq \bar{K}_{j}$ denote the inverse image of $\mathbb{R}^{n} \times\left(\Delta^{n}-\partial \Delta^{n}\right) \subseteq M \times \Delta^{n}$, and let $g: P \rightarrow \mathbb{R}^{n}$ denote the composition of F with the projection $\mathbb{R}^{n} \times \Delta^{n} \rightarrow \mathbb{R}^{n}$.

Let $P_{0} \subseteq P$ be a compact subpolyhedron containing the inverse image of $[-3,3]^{n} \times C$, where C is a closed neighborhood of L^{\prime} in $\Delta^{n}-\partial \Delta^{n}$. Applying the main lemma from the last lecture, we can approximate g arbitrarily well by a map $g^{\prime}: P \rightarrow \mathbb{R}^{n}$ whose restriction to X_{0} is PL and which agrees with g outside a compact set. We can then define a map $F^{\prime}: \bar{K}_{j} \rightarrow M \times \Delta^{n}$ by the formula

$$
F^{\prime}(x)= \begin{cases}F(x) & \text { if } x \notin P \\ \left(g^{\prime}(x), \pi F(x)\right) & \text { if } x \in P\end{cases}
$$

If g^{\prime} is a sufficiently good approximation to g, then $F^{\prime-1}[-2,2]^{n} \times L^{\prime} \subseteq P_{0}$, so that F^{\prime} is PL on $F^{\prime-1}[-2,2]^{n} \times$ L^{\prime} and therefore compatible with \bar{f}_{j+1}. It is readily verified that F^{\prime} has the desired properties.

This completes the construction of a polyhedron K containing K_{0} and a PD homeomorphism $f: K \rightarrow$ $M \times \Delta^{n}$ such that $\pi \circ f$ is piecewise linear. To complete the proof, we need to verify ($i v$): that is, we need to show that $\pi \circ f$ exhibits K as a PL fiber bundle over the simplex Δ^{n}. We first establish a local version of this statement.

First, we need to introduce a bit of terminology:
Definition 2. Let $f: K \rightarrow L$ be a PL map of polyhedra. We will say that f is a submersion (of relative dimension n) if for every point $x \in K$, there exist open neighborhoods $U \subseteq K$ of x and $V \subseteq L$ of $f(x)$ and a PL homeomorphism $U \simeq V \times \mathbb{R}^{n}$ (such that f is given by projection onto the first factor).

Example 3. A polyhedron K is a piecewise linear manifold if and only if the unique map $K \rightarrow *$ is a submersion.

There is an analogous notion of submersion in the smooth category, which is probably more familiar: a map of smooth manifolds $M \rightarrow N$ is a submersion if its differential is surjective at every point. By the
implicit function theorem, this is equivalent to the assertion that every point $x \in M$ has a neighborhood diffeomorphic to $V \times \mathbb{R}^{n}$, where V is an open subset of N.

The main result of lecture 3 admits the following relative version:
Theorem 4. Suppose given a commutative diagram

where K and L are polyhedra, M and N are smooth manifolds, and the horizontal maps are $P D$ homeomorphisms. Assume that p is a submersion of smooth manifolds. Then q is a submersion of PL manifolds.

If $L=N=*$, then the theorem reduces to the assertion that for any Whitehead compatible triangulation of a smooth manifold, the underlying polyhedron is a PL manifold. In the general case, we can use essentially the same argument. The assertion is local, so we can assume that M has the form $N \times \mathbb{R}^{n}$. We can then apply the "linearization" construction to the composite map

$$
K \rightarrow M \rightarrow \mathbb{R}^{n}
$$

to approximate f arbitrarily well by maps $K \rightarrow L \times \mathbb{R}^{n}$ which are piecewise linear in a neighborhood of any given point in $x \in K$. Any sufficiently good approxmation will be a PL homeomorphism in a neighborhood of x, so that q is a submersion.

Of course, the condition of being a submersion is generally weaker than the condition of being a fiber bundle. To complete the verification of $(i v)$ we will need the following technical result, whose proof will occupy our attention during the next few lectures:

Theorem 5. Suppose given a commutative diagram

where K and L are polyhedra, M and N are smooth manifolds, and the horizontal maps are PD homeomorphisms. Assume that p is a submersion of smooth manifolds (so that q is a submersion of PL manifolds). Then p is a smooth fiber bundle if and only if q is a $P L$ fiber bundle.

Remark 6. If the fiber dimensions are not equal to 4 , then Theorem 5 can be deduced from the following result.

Theorem 7. Let $p: M \rightarrow N$ be a submersion of smooth (PL) manifolds of relative dimension $\neq 4$, and assume that p is a fiber bundle in the category of topological manifolds. Then p is a fiber bundle in the category of smooth (PL) manifolds.

Theorem 7 is false in relative dimension 4 , but Theorem 5 is true in every dimension.

