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In this lecture, we will describe some applications of the loop theorem to the study of a 3-manifold M .
For simplicity, we will restrict our attention to the case where M is connected, closed and oriented, though
the ideas below generalize to the case of nonorientable manifolds with boundary.

Definition 1. An embedded two-sided surface Σ ⊆ M is compressible if one of the following conditions
holds:

(1) There exists an embedded loop L ⊆ Σ which does not bound an embedded disk in Σ, but does bound
an embedded disk D in M such that D ∩ Σ = ∂ D.

(2) The surface Σ is a 2-sphere which bounds a disk in M .

If Σ is not compressible, then we say that Σ is incompressible.

Lemma 2. Let Σ ⊆M be a 2-sided surface of genus g > 0. Then Σ is incompressible if and only if the map
π1Σ→ π1M is injective.

Proof. The “if” direction is clear: if π1Σ→ π1M is injective, then any loop in Σ which bounds a disk in M
(embedded or not) must be nullhomotopic in Σ, and therefore bound a disk.

Conversely, suppose that Σ is incompressible. If π1Σ → π1M is not injective, then there exists a
nontrivial loop L in Σ which is the boundary restriction of a map f : D2 → M . We may assume without
loss of generality that the map f is transverse to Σ, so that f−1Σ is a union of k circles for k > 0. We will
assume that f has been chosen to minimize k.

Suppose first that k = 1, so that f−1Σ = ∂ D2. Let M ′ be the 3-manifold with boundary obtained by
cutting M along Σ. Then f lifts to a map f ′ : D2 →M ′. Applying the loop theorem, we deduce that there
exists an embedding f̃ ′ : (D2, S1) → (M ′, ∂ M ′) representing a nontrivial homotopy class on the boundary.

Then the composite map D2
ef ′

→ M ′ → M is an embedded disk in M , contradicting our assumption that Σ
is incompressible.

If k > 1, then f−1Σ includes a circle C in the interior of D2. We may assume that C is chosen innermost,
so that it bounds a disk D′ with f−1Σ ∩D′ = C. If f |C is a nontrivial loop in Σ, then we can replace f by
f |D and thereby contradict the minimality of k. Otherwise, we may assume that f |C is nullhomotopic, so
that there exists another map f0 : D2 →M which agrees with f outside of D′ and carries D′ into Σ. Moving
f0 by a small homotopy on D′, we obtain a new map f1 : D2 → M which agrees with f on the boundary
and such that f−1

1 Σ consists of k − 1 circles, again contradicting the minimality of k.

Our next result guarantees the existence of a good supply of incompressible surfaces:

Proposition 3. Let M be a closed connected oriented 3-manifold. Let X be a topological space containing
an open subset homeomorphic to Y × (−1, 1), for some simply connected space Y (which we identify with
Y × {0}), and let f : M → X be a map. Assume that π2Y ' 0, and that π2 vanishes for each component of
X − Y . Then there exists a map f ′ : M → X satisfying the following conditions:
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(1) The maps f and f ′ are homotopic when restricted to M − F , where F is a finite set (in fact, we can
choose F to consist of only one point). In particular, f and f ′ induce the same map π1M → π1X.

(2) The map f ′ is transverse to Y , and f ′−1
Y is a union of incompressible surfaces of M .

Proof. Adjusting f by a small homotopy, we may assume that f is transverse to Y , so that f−1Y is a union
of finitely many two-sided surfaces Σi in M , each having genus gi. We will assume that these surfaces have
been chosen to minimize c(f) =

∑
i 3gi . If each of these surfaces is incompressible, we are done. Otherwise,

we will explain how to modify the map f to obtain a new map f ′ satisfying (1) with c(f ′) < c(f); this will
contradict the minimality of f .

Let Σ be a compressible component of f−1Y . If Σ is a 2-sphere, then Σ bounds a disk D. Since π2Y
is equal to zero, there exists a map f0 : M → X which agrees with f outside of D, and carries D into
Y (moreover, this map is homotopic to f after removing a single point of D). Adjusting f0 by a small
homotopy, we obtain a map f ′ : M → X such that f ′−1

Y = f−1Y − Σ, so that c(f ′) < c(f) as desired.
Suppose now that Σ is not a 2-sphere, so there exists a 2-disk D ⊆ M such that D ∩ Σ = ∂ D is a

nontrivial loop in Σ. Choose a tubular neighborhood D× [−1, 1] ⊆M such that (D× [−1, 1])∩M ⊆ Σ. We
may assume that f(x, t) ∈ Y × [0, 1] for (x, t) ∈ D × [−1, 1] near ∂ D × [−1, 1].

We define a new map f ′ : M → X as follows:

(i) We let f ′ coincide with f outside of the interior of D× [−1, 1] (so that f ′ will be homotopic to f after
removing a point of D × [−1, 1]).

(ii) Since Y is simply connected, the loop f | ∂ D× 1
2 extends to a map g+ : D× 1

2 → Y ; we let f ′|D× 1
2 = g+.

Define f ′|D × −1
2 similarly.

(iii) Using the assumption that each component of X−Y has vanishing π2, we can extend f ′ over D× [ 12 , 1]
and over D × [−1, −1

2 ], carrying the complement of (D × {± 1
2}) ∪ (∂ D × [−1, 1]) into X − Y .

(iv) Using the assumption that π2Y = 0, we can extend f ′ over D × [−1
2 ,

1
2 ] so that f ′(D × [−1

2 ,
1
2 ] ⊆ Y .

Adjust f ′ by a small homotopy which pushes f ′(D × (−1
2 ,

1
2 ) into Y × (−1, 0). Then the inverse image

f ′
−1
Y can be identified with the surface obtained from f−1Y by doing surgery along the loop L : ∂ D. There

are two possibilities:

(a) The curve L is separating in Σ. Since L is nontrivial, we deduce that L surgery along L cuts Σ into
two surfaces of positive genus g and g′, where Σ has genus g + g′. Since 3g + 3g′

< 3g+g′
, we deduce

that c(f ′) < c(f).

(b) The curve L is nonseparating in Σ. Then surgery along L replaces Σ by a curve having smaller genus.
Since 3g−1 < 3g we deduce that c(f ′) < c(f).

We now describe some applications of Proposition 3.

Corollary 4. Let M be a closed connected oriented 3-manifold, and suppose that H1(M ; Q) 6= 0. Then M
contains a two-sided incompressible surface.

Proof. If H1(M ; Q) 6= 0, then H1(M ; Z) 6= 0. Choose a nontrivial cohomology class represented by a map
f : M → S1. Applying Proposition 3, we may suppose that the inverse image of a point x ∈ S1 is a union
of incompressible surfaces in M . If f−1(x) = ∅, then f is nullhomotopic. Otherwise, some component of
f−1{x} is incompressible.
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Remark 5. If M is irreducible, then Corollary 4 must produce an incompressible surface Σ of positive
genus. Let M ′ be the 3-manifold with boundary obtained by cutting M along Σ. Since not every boundary
component of M ′ is a sphere, we must have H1(M ′; Q) 6= 0. Applying an analogue of Corollary 4 for 3-
manifolds with boundary, we can produce another incompressible surface in M ′. By repeatedly cutting M
along incompressible surfaces in this way, it is possible to obtain a very good understanding of the 3-manifold
M .

Corollary 6. Let M be a closed oriented connected 3-manifold and suppose that π1M ' G ? H is a free
product of nontrivial groups G and H. Then M can be written as a connected sum M1#M2 where π1M1 ' G
and π1M2 ' H.

Proof. LetBG andBH denote classifying spaces forG andH, and letX be the spaceBG
∐
{−1}[−1, 1]

∐
{1}BH.

Then X is a classifying space for G ? H, so there exists a map f : M → X which is the identity on π1M .
Applying Proposition 3, we may suppose that f is transverse to {0} ⊆ X and that f−1{0} is a union of
incompressible surfaces Σ of M . If any such surface Σ has positive genus, then the map

π1Σ→ π1M ' G ? H

is injective (Lemma 2) which is a contradiction. Thus f−1{0} is a union of k spheres, for some k. Since G
and H are both nontrivial, we must have k > 0. If k = 1, we obtain the desired connect sum decomposition
of M . We will assume that f has been chosen to as to minimize k.

Assume that k > 1, and let α be a path in M joining two components of f−1{0}. Then f(α) is a loop in
X. Since π1M ' π1X, we can adjust the path α by composing with a loop in M to guarantee that f(α) is
nullhomotopic. Adjusting α by a homotopy, we may assume that α : [0, 1]→M is transverse to f−1{0}, so
that α can be written as a composition

α = α1 ◦ . . . ◦ αm

where αi lies in f−1(BG
∐
{−1}[−1, 0]) for i odd (without loss of generality) and αi lies in f−1([0, 1]

∐
{1}BH)

for i even. We assume that m has been chosen as small as possible. Since [f(α)] vanishes, the structure of
free products of groups guarantees that some f([αi]) must vanish. If αi connects two different components
of f−1{0}, then we can replace α by αi and reduce to the case m = 1. If αi connects two points in the same
component Σ of f−1M , then we can replace αi by a path α′i in Σ. Adjusting the composite path

α1 ◦ . . . ◦ αi−1 ◦ α′i ◦ αi+1 ◦ . . . ◦ αm

by a small homotopy, obtain a new path having fewer intersections with f−1{0}, again contradicting the
minimality of M .

We may therefore assume that α is a path intersecting f−1{0} only in its endpoints. Let K ' D2× [0, 1]
be a tubular neighborhood of the image of α so that K ∩ f−1{0} = D2 × {0, 1}. Using the assumption that
f(α) is nullhomotopic, we can construct a new map f ′ : M → X which agrees with f outside of K (and
therefore induces the same isomorphism π1M → π1X) and carries D′× [0, 1] into {0}, where D′ is a slightly
smaller disk in D2. Adjusting f ′ by a small homotopy, we obtain a map such that f ′−1{0} is obtained from
f−1{0} by a surgery along the 0-sphere α| ∂([0, 1]): this surgery reduces the number of connected components
which contradicts the minimality of k.
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