Incompressible Surfaces (Lecture 32)

April 29, 2009

In this lecture, we will describe some applications of the loop theorem to the study of a 3-manifold M. For simplicity, we will restrict our attention to the case where M is connected, closed and oriented, though the ideas below generalize to the case of nonorientable manifolds with boundary.

Definition 1. An embedded two-sided surface $\Sigma \subseteq M$ is *compressible* if one of the following conditions holds:

- (1) There exists an embedded loop $L \subseteq \Sigma$ which does not bound an embedded disk in Σ , but does bound an embedded disk D in M such that $D \cap \Sigma = \partial D$.
- (2) The surface Σ is a 2-sphere which bounds a disk in M.

If Σ is not compressible, then we say that Σ is *incompressible*.

Lemma 2. Let $\Sigma \subseteq M$ be a 2-sided surface of genus g > 0. Then Σ is incompressible if and only if the map $\pi_1 \Sigma \to \pi_1 M$ is injective.

Proof. The "if" direction is clear: if $\pi_1 \Sigma \to \pi_1 M$ is injective, then any loop in Σ which bounds a disk in M (embedded or not) must be nullhomotopic in Σ , and therefore bound a disk.

Conversely, suppose that Σ is incompressible. If $\pi_1 \Sigma \to \pi_1 M$ is not injective, then there exists a nontrivial loop L in Σ which is the boundary restriction of a map $f : D^2 \to M$. We may assume without loss of generality that the map f is transverse to Σ , so that $f^{-1}\Sigma$ is a union of k circles for k > 0. We will assume that f has been chosen to minimize k.

Suppose first that k = 1, so that $f^{-1}\Sigma = \partial D^2$. Let M' be the 3-manifold with boundary obtained by cutting M along Σ . Then f lifts to a map $f': D^2 \to M'$. Applying the loop theorem, we deduce that there exists an embedding $\tilde{f}': (D^2, S^1) \to (M', \partial M')$ representing a nontrivial homotopy class on the boundary. Then the composite map $D^2 \xrightarrow{\tilde{f}'} M' \to M$ is an embedded disk in M, contradicting our assumption that Σ is incompressible.

If k > 1, then $f^{-1}\Sigma$ includes a circle C in the interior of D^2 . We may assume that C is chosen innermost, so that it bounds a disk D' with $f^{-1}\Sigma \cap D' = C$. If f|C is a nontrivial loop in Σ , then we can replace f by f|D and thereby contradict the minimality of k. Otherwise, we may assume that f|C is nullhomotopic, so that there exists another map $f_0: D^2 \to M$ which agrees with f outside of D' and carries D' into Σ . Moving f_0 by a small homotopy on D', we obtain a new map $f_1: D^2 \to M$ which agrees with f on the boundary and such that $f_1^{-1}\Sigma$ consists of k-1 circles, again contradicting the minimality of k.

Our next result guarantees the existence of a good supply of incompressible surfaces:

Proposition 3. Let M be a closed connected oriented 3-manifold. Let X be a topological space containing an open subset homeomorphic to $Y \times (-1, 1)$, for some simply connected space Y (which we identify with $Y \times \{0\}$), and let $f : M \to X$ be a map. Assume that $\pi_2 Y \simeq 0$, and that π_2 vanishes for each component of X - Y. Then there exists a map $f' : M \to X$ satisfying the following conditions:

- (1) The maps f and f' are homotopic when restricted to M F, where F is a finite set (in fact, we can choose F to consist of only one point). In particular, f and f' induce the same map $\pi_1 M \to \pi_1 X$.
- (2) The map f' is transverse to Y, and ${f'}^{-1}Y$ is a union of incompressible surfaces of M.

Proof. Adjusting f by a small homotopy, we may assume that f is transverse to Y, so that $f^{-1}Y$ is a union of finitely many two-sided surfaces Σ_i in M, each having genus g_i . We will assume that these surfaces have been chosen to minimize $c(f) = \sum_i 3^{g_i}$. If each of these surfaces is incompressible, we are done. Otherwise, we will explain how to modify the map f to obtain a new map f' satisfying (1) with c(f') < c(f); this will contradict the minimality of f.

Let Σ be a compressible component of $f^{-1}Y$. If Σ is a 2-sphere, then Σ bounds a disk D. Since $\pi_2 Y$ is equal to zero, there exists a map $f_0 : M \to X$ which agrees with f outside of D, and carries D into Y (moreover, this map is homotopic to f after removing a single point of D). Adjusting f_0 by a small homotopy, we obtain a map $f' : M \to X$ such that $f'^{-1}Y = f^{-1}Y - \Sigma$, so that c(f') < c(f) as desired.

Suppose now that Σ is not a 2-sphere, so there exists a 2-disk $D \subseteq M$ such that $D \cap \Sigma = \partial D$ is a nontrivial loop in Σ . Choose a tubular neighborhood $D \times [-1, 1] \subseteq M$ such that $(D \times [-1, 1]) \cap M \subseteq \Sigma$. We may assume that $f(x, t) \in Y \times [0, 1]$ for $(x, t) \in D \times [-1, 1]$ near $\partial D \times [-1, 1]$.

We define a new map $f': M \to X$ as follows:

- (i) We let f' coincide with f outside of the interior of $D \times [-1, 1]$ (so that f' will be homotopic to f after removing a point of $D \times [-1, 1]$).
- (*ii*) Since Y is simply connected, the loop $f \mid \partial D \times \frac{1}{2}$ extends to a map $g_+ : D \times \frac{1}{2} \to Y$; we let $f' \mid D \times \frac{1}{2} = g_+$. Define $f' \mid D \times \frac{-1}{2}$ similarly.
- (*iii*) Using the assumption that each component of X Y has vanishing π_2 , we can extend f' over $D \times [\frac{1}{2}, 1]$ and over $D \times [-1, \frac{-1}{2}]$, carrying the complement of $(D \times \{\pm \frac{1}{2}\}) \cup (\partial D \times [-1, 1])$ into X Y.
- (iv) Using the assumption that $\pi_2 Y = 0$, we can extend f' over $D \times [\frac{-1}{2}, \frac{1}{2}]$ so that $f'(D \times [\frac{-1}{2}, \frac{1}{2}] \subseteq Y$.

Adjust f' by a small homotopy which pushes $f'(D \times (\frac{-1}{2}, \frac{1}{2})$ into $Y \times (-1, 0)$. Then the inverse image $f'^{-1}Y$ can be identified with the surface obtained from $f^{-1}Y$ by doing surgery along the loop $L : \partial D$. There are two possibilities:

- (a) The curve L is separating in Σ . Since L is nontrivial, we deduce that L surgery along L cuts Σ into two surfaces of positive genus g and g', where Σ has genus g + g'. Since $3^g + 3^{g'} < 3^{g+g'}$, we deduce that c(f') < c(f).
- (b) The curve L is nonseparating in Σ . Then surgery along L replaces Σ by a curve having smaller genus. Since $3^{g-1} < 3^g$ we deduce that c(f') < c(f).

We now describe some applications of Proposition 3.

Corollary 4. Let M be a closed connected oriented 3-manifold, and suppose that $H_1(M; \mathbf{Q}) \neq 0$. Then M contains a two-sided incompressible surface.

Proof. If $H_1(M; \mathbf{Q}) \neq 0$, then $H^1(M; \mathbf{Z}) \neq 0$. Choose a nontrivial cohomology class represented by a map $f: M \to S^1$. Applying Proposition 3, we may suppose that the inverse image of a point $x \in S^1$ is a union of incompressible surfaces in M. If $f^{-1}(x) = \emptyset$, then f is nullhomotopic. Otherwise, some component of $f^{-1}\{x\}$ is incompressible.

Remark 5. If M is irreducible, then Corollary 4 must produce an incompressible surface Σ of positive genus. Let M' be the 3-manifold with boundary obtained by cutting M along Σ . Since not every boundary component of M' is a sphere, we must have $H_1(M'; \mathbf{Q}) \neq 0$. Applying an analogue of Corollary 4 for 3-manifolds with boundary, we can produce another incompressible surface in M'. By repeatedly cutting M along incompressible surfaces in this way, it is possible to obtain a very good understanding of the 3-manifold M.

Corollary 6. Let M be a closed oriented connected 3-manifold and suppose that $\pi_1 M \simeq G \star H$ is a free product of nontrivial groups G and H. Then M can be written as a connected sum $M_1 \# M_2$ where $\pi_1 M_1 \simeq G$ and $\pi_1 M_2 \simeq H$.

Proof. Let BG and BH denote classifying spaces for G and H, and let X be the space $BG \coprod_{\{-1\}} [-1, 1] \coprod_{\{1\}} BH$. Then X is a classifying space for $G \star H$, so there exists a map $f : M \to X$ which is the identity on $\pi_1 M$. Applying Proposition 3, we may suppose that f is transverse to $\{0\} \subseteq X$ and that $f^{-1}\{0\}$ is a union of incompressible surfaces Σ of M. If any such surface Σ has positive genus, then the map

$$\pi_1 \Sigma \to \pi_1 M \simeq G \star H$$

is injective (Lemma 2) which is a contradiction. Thus $f^{-1}\{0\}$ is a union of k spheres, for some k. Since G and H are both nontrivial, we must have k > 0. If k = 1, we obtain the desired connect sum decomposition of M. We will assume that f has been chosen to as to minimize k.

Assume that k > 1, and let α be a path in M joining two components of $f^{-1}\{0\}$. Then $f(\alpha)$ is a loop in X. Since $\pi_1 M \simeq \pi_1 X$, we can adjust the path α by composing with a loop in M to guarantee that $f(\alpha)$ is nullhomotopic. Adjusting α by a homotopy, we may assume that $\alpha : [0,1] \to M$ is transverse to $f^{-1}\{0\}$, so that α can be written as a composition

$$\alpha = \alpha_1 \circ \ldots \circ \alpha_m$$

where α_i lies in $f^{-1}(BG \coprod_{\{-1\}}[-1,0])$ for *i* odd (without loss of generality) and α_i lies in $f^{-1}([0,1] \coprod_{\{1\}} BH)$ for *i* even. We assume that *m* has been chosen as small as possible. Since $[f(\alpha)]$ vanishes, the structure of free products of groups guarantees that some $f([\alpha_i])$ must vanish. If α_i connects two different components of $f^{-1}\{0\}$, then we can replace α by α_i and reduce to the case m = 1. If α_i connects two points in the same component Σ of $f^{-1}M$, then we can replace α_i by a path α'_i in Σ . Adjusting the composite path

$$\alpha_1 \circ \ldots \circ \alpha_{i-1} \circ \alpha'_i \circ \alpha_{i+1} \circ \ldots \circ \alpha_m$$

by a small homotopy, obtain a new path having fewer intersections with $f^{-1}\{0\}$, again contradicting the minimality of M.

We may therefore assume that α is a path intersecting $f^{-1}\{0\}$ only in its endpoints. Let $K \simeq D^2 \times [0, 1]$ be a tubular neighborhood of the image of α so that $K \cap f^{-1}\{0\} = D^2 \times \{0, 1\}$. Using the assumption that $f(\alpha)$ is nullhomotopic, we can construct a new map $f': M \to X$ which agrees with f outside of K (and therefore induces the same isomorphism $\pi_1 M \to \pi_1 X$) and carries $D' \times [0, 1]$ into $\{0\}$, where D' is a slightly smaller disk in D^2 . Adjusting f' by a small homotopy, we obtain a map such that $f'^{-1}\{0\}$ is obtained from $f^{-1}\{0\}$ by a surgery along the 0-sphere $\alpha | \partial([0, 1])$: this surgery reduces the number of connected components which contradicts the minimality of k.