Product Structure Theorem: End of the Proof (Lecture 22)

March 31, 2009

We continue our proof of the product structure theorem for smooth structures on PL manifolds. Recall that we are reduced to proving the following:

Proposition 1. Let $K \subseteq \mathbb{R}^m \times \mathbb{R}$ be a polyhedron which is the closed star of the origin 0 with respect to some *PL* triangulation of \mathbb{R}^{m+1} (so that K is the cone on ∂K , with the origin as the cone point), let $\pi : K \to \mathbb{R}$ denote the projection onto the last factor. Let $f : K \to \mathbb{R}^{m+1}$ be a *PD* embedding satisfying the following conditions:

- (1) The image of f is the unit ball $B(1) \subseteq \mathbb{R}^{m+1}$ and f(0) = 0.
- (2) For $.8 \le t \le 1$ and $x \in \partial K$, we have f(tx) = tf(x).
- (3) The projection π is injective when restricted to the vertices of K (with respect to some PL triangulation), so that $\pi \circ f^{-1}$ is regular on the interior of the unit ball except possibly at the origin.
- (4) The map $\pi \circ f$ coincides with π on $\pi^{-1}(-\epsilon, \epsilon) \cap S^m$ for ϵ sufficiently small.
- (5) The map f is PL in a neighborhood of the origin.

Then, after modifying f by a PD isotopy which is trivial on ∂K , we can arrange that $\pi \circ f^{-1}$ is regular on the interior of the unit ball.

Replacing f by its restriction to tK for t close to 1, we can assume that $\pi \circ f$ is regular on $B(1) - \{0\}$. Let $C_0 = \partial K \cap \pi^{-1}[-\epsilon, \epsilon]$ and let $C = [.8, 1] \times C_0 \subseteq K$. Conditions (4) and (2) guarantee that $\pi | C = (\pi \circ f) | C$. Let $D \subseteq K$ be a PL neighborhood of the origin on which f is PL. Choose a triangulation S of K with the following properties:

- (1) The subpolyhedra C and D of K are unions of simplices.
- (2) The map π is injective on the vertices of K.

Let Lf denote the linearized version of f with respect to the triangulation S (that is, the unique map which is linear on each simplex of S and which agrees with f on vertices). Choose a PL function $\chi: K \to [0,1]$ such that $\chi = 1$ on .8K and $\chi = 0$ on $[.9,1] \times \partial K$, and define a homotopy $\{f_t: K \to \mathbb{R}^{m+1}\}$ by the formula

$$f_t(x) = t\chi(x)Lf(x) + (1 - t\chi(x))f(x).$$

We have seen that if S is a sufficiently fine triangulation, then f_t is a PD isotopy from f to f_1 , where f_1 is a map which is PL on .8K and agrees with f on $[.9,1] \times \partial K$. Since f is already PL on D, we have $f = f_1$ on D, so that $\pi \circ f_1^{-1}$ is regular on $f_1(D - \{0\})$. Similar reasoning shows that $\pi \circ f_1 = \pi \circ f = \pi$ on $C \subseteq K$. Choosing S sufficiently fine, we can arrange that f_1 is an arbitrarily close approximation to f (in the C^1 -sense). In particular, we can arrange that:

(a) The map $\pi \circ f_1^{-1}$ is regular on $B_1 - f_1(D)$ (and therefore on $B(1) - \{0\}$).

- (b) For every point $x \in f_1(.8K)$, we have $tx \in f_1(.8K)$ for $0 \le t \le 1$ (since $f_1(.8K)$ closely approximates f(.8K), which is the ball B(.8)).
- (c) For $x \notin C$, we have $|(\pi \circ f)(x)| \ge \frac{\epsilon}{2}$.

We define another map $f_2: K \to \mathbb{R}^{m+1}$ so that for $x \in \partial K$, we have

$$f_2(tx) = \begin{cases} f_1(tx) & \text{if } .8 \le t \le 1\\ \frac{t}{.8}f(.8x) & \text{if } 0 \le t \le .8. \end{cases}$$

Using the assumption that $\pi \circ f_1^{-1}$ is regular on $B(1) - \{0\}$, it is easy to check that $\pi \circ f_2^{-1}$ is regular on $B(1) - \{0\}$ (if $v \in \mathbb{R}^{m+1}$ is a regular vector for $\pi \circ f_1^{-1}$ at a point $x \in f_1(.8K)$, then v is regular for $\pi \circ f_2^{-1}$ at tx for $t \in (0,1]$). In order to proceed, we need to know the following:

Claim 2. There exists a PD isotopy from f_1 to f_2 , fixed near ∂K .

In fact, there exists a PL isotopy from f_1 to f_2 which is supported on .8K. This is an obvious consequence of the following result:

Theorem 3 (The Alexander Trick). Let $\phi, \phi': D^n \to D^n$ be two PL homeomorphisms from the PL n-disk to itself. If ϕ and ϕ' agree on the boundary ∂D^n , then ϕ is PL isotopic to the identity.

Composing with an inverse to ϕ' , we are reduced to proving that if ϕ is the identity on ∂D^n , then ϕ is PL isotopic to the identity. We will give a proof in the topological category: the PL version of Theorem 3 can be established using a construction of the same flavor. Let us identify D^n with the unit ball $B(1) \subseteq \mathbb{R}^n$. We define an isotopy $\{\phi_t : B(1) \to B(1)\}$ by the formula

$$\phi_t(sx) = \begin{cases} sx & \text{if } t \le s \\ t\phi(\frac{sx}{t}) & \text{if } t > s. \end{cases}$$

where $x \in \partial B(1)$. It is easy to see that ϕ_t is an isotopy from $\phi_0 = id$ to $\phi_1 = \phi$.

Remark 4. The Alexander trick does not work in the smooth category; the map described above exhibits essential nondifferentiable behavior when t = 0.

We now return to the proof of Proposition 1. Note that f_2 has the following properties:

- If $x \in C_0 \subseteq \partial K$, then $\pi f_2(x) = \pi(x)$.
- If $x \in \partial K C_0$, then $|(\pi \circ f_2)(tx)| \ge \frac{t\epsilon}{2}$.

We are free to replace f by f_2 . Since $\pi \circ f_2^{-1}$ is regular away from the origin, we are free to replace K by any smaller neighborhood of the identity. In particular, we can replace K by the star of the origin with respect to some triangulation of .8K with respect to which $f_2|.8K$ is PL. We are thereby reduced to proving the following version of Proposition 1

Proposition 5. Let $K \subseteq \mathbb{R}^m \times \mathbb{R}$ be a polyhedron which is the closed star of the origin 0 with respect to some *PL* triangulation of \mathbb{R}^{m+1} (so that K is the cone on ∂K , with the origin as the cone point), let $\pi : K \to \mathbb{R}$ denote the projection onto the last factor. Let $f : K \to \mathbb{R}^{m+1}$ be a *PL* embedding satisfying the following conditions:

- (1) The image of f is the unit ball $B(1) \subseteq \mathbb{R}^{m+1}$ and f(0) = 0.
- (2) The projection π is injective when restricted to the vertices of K.
- (3) There exists a subpolyhedron $C_0 \subseteq \partial K$ and a constant ϵ such that $|\pi(tx)|, |\pi \circ f(tx)| \ge t\epsilon$ for $x \notin C_0$.

(4) The maps $\pi \circ f$ and π agree on C_0 (and therefore on the cone $\overline{C} = \{tx : x \in C_0, t \in [0,1]\}$).

Then, after modifying f by a PD isotopy which is trivial on ∂K , we can arrange that $\pi \circ f^{-1}$ is regular on the interior of f(K).

We will construct a PD isotopy $\{f_t\}$ of f with the following properties:

- (i) For every simplex σ of our triangulation of K, the $\{f_t | \sigma\}$ is a smooth isotopy from σ to $f(\sigma)$.
- (*ii*) The isotopy $\{f_t\}$ is fixed on ∂K .
- (*iii*) We have $\pi \circ f_1 = \pi$ in a neighborhood of the origin.

Since π is injective on the vertices of K, the map $\pi \circ f_1^{-1}$ will automatically be regular on the interior of K except possibly at the origin; condition (*iii*) will guarantee regularity at the origin as well. It therefore suffices to construct $\{f_t\}$. Since π is injective on the vertices of K, the set V of vertices of ∂K can be partitioned into two subsets $V_+ = \{v \in V : \pi(v) > 0\}$ and $V_- = \{v \in V : \pi(v) < 0\}$. Refining our triangulation of ∂K if necessary, we may assume that every simplex τ of ∂K which contains vertices from both V_+ and V_- belongs to C_0 . For each simplex τ of ∂K , let $\hat{\tau}$ denote the cone of this simplex (with cone point the origin). We construct the isotopies $\{f_t | \hat{\tau}\}$ one simplex at a time. If τ is a simplex of C_0 , then we let $\{f_t | \hat{\tau}\}$ be the trivial isotopy (this satisfies (*iii*) since f satisfies (4)). Otherwise, we may assume without loss of generality that each vertex v of τ belongs to V_+ . Let v_1, \ldots, v_k be the vertices of τ . There exist positive constants $\{a_i\}_{1\leq i\leq k}$ such that $\pi(v_i) = a_i(\pi \circ f)v_i$. We define a homotopy $\{g_t : \hat{\sigma} \to \mathbb{R}_{\geq 0} f(\hat{\sigma})\}$ by the formula

$$g_t(\lambda_1 v_1 + \ldots + \lambda_k v_k) = \sum \lambda_k f(v_i)(ta_i + (1-t)).$$

Then g_t is a homotopy from $f|\hat{\tau} = g_0$ to a map g_1 satisfying $\pi \circ g_1 = \pi$. Note that g_t carries a neighborhood of the origin in $\hat{\tau}$ into $f(\hat{\tau})$. Using a relative version of the smooth isotopy extension theorem, we can find an isotopy $\{f_t|\hat{\tau} \to f(\hat{\tau})\}$ which is supported in a compact subset of $\hat{\tau} - \tau$, agrees with g_t near the origin, and agrees with the isotopies we have already constructed on the cone of $\partial \tau$.