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We continue our proof of the product structure theorem for smooth structures on PL manifolds. Recall
that we are reduced to proving the following:

Proposition 1. Let K ⊆ Rm×R be a polyhedron which is the closed star of the origin 0 with respect to some
PL triangulation of Rm+1 (so that K is the cone on ∂ K, with the origin as the cone point), let π : K → R
denote the projection onto the last factor. Let f : K → Rm+1 be a PD embedding satisfying the following
conditions:

(1) The image of f is the unit ball B(1) ⊆ Rm+1 and f(0) = 0.

(2) For .8 ≤ t ≤ 1 and x ∈ ∂ K, we have f(tx) = tf(x).

(3) The projection π is injective when restricted to the vertices of K (with respect to some PL triangulation),
so that π ◦ f−1 is regular on the interior of the unit ball except possibly at the origin.

(4) The map π ◦ f coincides with π on π−1(−ε, ε) ∩ Sm for ε sufficiently small.

(5) The map f is PL in a neighborhood of the origin.

Then, after modifying f by a PD isotopy which is trivial on ∂ K, we can arrange that π ◦ f−1 is regular on
the interior of the unit ball.

Replacing f by its restriction to tK for t close to 1, we can assume that π◦f is regular on B(1)−{0}. Let
C0 = ∂ K ∩ π−1[−ε, ε] and let C = [.8, 1]×C0 ⊆ K. Conditions (4) and (2) guarantee that π|C = (π ◦ f)|C.
Let D ⊆ K be a PL neighborhood of the origin on which f is PL. Choose a triangulation S of K with the
following properties:

(1) The subpolyhedra C and D of K are unions of simplices.

(2) The map π is injective on the vertices of K.

Let Lf denote the linearized version of f with respect to the triangulation S (that is, the unique map which
is linear on each simplex of S and which agrees with f on vertices). Choose a PL function χ : K → [0, 1]
such that χ = 1 on .8K and χ = 0 on [.9, 1]× ∂ K, and define a homotopy {ft : K → Rm+1} by the formula

ft(x) = tχ(x)Lf(x) + (1− tχ(x))f(x).

We have seen that if S is a sufficiently fine triangulation, then ft is a PD isotopy from f to f1, where f1
is a map which is PL on .8K and agrees with f on [.9, 1] × ∂ K. Since f is already PL on D, we have
f = f1 on D, so that π ◦ f−1

1 is regular on f1(D − {0}). Similar reasoning shows that π ◦ f1 = π ◦ f = π on
C ⊆ K. Choosing S sufficiently fine, we can arrange that f1 is an arbitrarily close approximation to f (in
the C1-sense). In particular, we can arrange that:

(a) The map π ◦ f−1
1 is regular on B1 − f1(D) (and therefore on B(1)− {0}).
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(b) For every point x ∈ f1(.8K), we have tx ∈ f1(.8K) for 0 ≤ t ≤ 1 (since f1(.8K) closely approximates
f(.8K), which is the ball B(.8)).

(c) For x /∈ C, we have |(π ◦ f)(x)| ≥ ε
2 .

We define another map f2 : K → Rm+1 so that for x ∈ ∂ K, we have

f2(tx) =

{
f1(tx) if .8 ≤ t ≤ 1
t
.8f(.8x) if 0 ≤ t ≤ .8.

Using the assumption that π ◦ f−1
1 is regular on B(1) − {0}, it is easy to check that π ◦ f−1

2 is regular on
B(1)− {0} (if v ∈ Rm+1 is a regular vector for π ◦ f−1

1 at a point x ∈ f1(.8K), then v is regular for π ◦ f−1
2

at tx for t ∈ (0, 1]). In order to proceed, we need to know the following:

Claim 2. There exists a PD isotopy from f1 to f2, fixed near ∂ K.

In fact, there exists a PL isotopy from f1 to f2 which is supported on .8K. This is an obvious consequence
of the following result:

Theorem 3 (The Alexander Trick). Let φ, φ′ : Dn → Dn be two PL homeomorphisms from the PL n-disk
to itself. If φ and φ′ agree on the boundary ∂ Dn, then φ is PL isotopic to the identity.

Composing with an inverse to φ′, we are reduced to proving that if φ is the identity on ∂ Dn, then φ is
PL isotopic to the identity. We will give a proof in the topological category: the PL version of Theorem 3
can be established using a construction of the same flavor. Let us identify Dn with the unit ball B(1) ⊆ Rn.
We define an isotopy {φt : B(1)→ B(1)} by the formula

φt(sx) =

{
sx if t ≤ s
tφ( sxt ) if t > s.

where x ∈ ∂ B(1). It is easy to see that φt is an isotopy from φ0 = id to φ1 = φ.

Remark 4. The Alexander trick does not work in the smooth category; the map described above exhibits
essential nondifferentiable behavior when t = 0.

We now return to the proof of Proposition 1. Note that f2 has the following properties:

• If x ∈ C0 ⊆ ∂ K, then πf2(x) = π(x).

• If x ∈ ∂ K − C0, then |(π ◦ f2)(tx)| ≥ tε
2 .

We are free to replace f by f2. Since π ◦f−1
2 is regular away from the origin, we are free to replace K by any

smaller neighborhood of the identity. In particular, we can replace K by the star of the origin with respect
to some triangulation of .8K with respect to which f2|.8K is PL. We are thereby reduced to proving the
following version of Proposition 1

Proposition 5. Let K ⊆ Rm×R be a polyhedron which is the closed star of the origin 0 with respect to some
PL triangulation of Rm+1 (so that K is the cone on ∂ K, with the origin as the cone point), let π : K → R
denote the projection onto the last factor. Let f : K → Rm+1 be a PL embedding satisfying the following
conditions:

(1) The image of f is the unit ball B(1) ⊆ Rm+1 and f(0) = 0.

(2) The projection π is injective when restricted to the vertices of K.

(3) There exists a subpolyhedron C0 ⊆ ∂ K and a constant ε such that |π(tx)|, |π ◦ f(tx)| ≥ tε for x /∈ C0.
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(4) The maps π ◦ f and π agree on C0 (and therefore on the cone C = {tx : x ∈ C0, t ∈ [0, 1]}).

Then, after modifying f by a PD isotopy which is trivial on ∂ K, we can arrange that π ◦ f−1 is regular on
the interior of f(K).

We will construct a PD isotopy {ft} of f with the following properties:

(i) For every simplex σ of our triangulation of K, the {ft|σ} is a smooth isotopy from σ to f(σ).

(ii) The isotopy {ft} is fixed on ∂ K.

(iii) We have π ◦ f1 = π in a neighborhood of the origin.

Since π is injective on the vertices of K, the map π ◦ f−1
1 will automatically be regular on the interior of

K except possibly at the origin; condition (iii) will guarantee regularity at the origin as well. It therefore
suffices to construct {ft}. Since π is injective on the vertices of K, the set V of vertices of ∂ K can be
partitioned into two subsets V+ = {v ∈ V : π(v) > 0} and V− = {v ∈ V : π(v) < 0}. Refining our
triangulation of ∂ K if necessary, we may assume that every simplex τ of ∂ K which contains vertices from
both V+ and V− belongs to C0. For each simplex τ of ∂ K, let τ̂ denote the cone of this simplex (with cone
point the origin). We construct the isotopies {ft|τ̂} one simplex at a time. If τ is a simplex of C0, then we
let {ft|τ̂} be the trivial isotopy (this satisfies (iii) since f satisfies (4)). Otherwise, we may assume without
loss of generality that each vertex v of τ belongs to V+. Let v1, . . . , vk be the vertices of τ . There exist
positive constants {ai}1≤i≤k such that π(vi) = ai(π ◦ f)vi. We define a homotopy {gt : σ̂ → R≥0 f(σ̂)} by
the formula

gt(λ1v1 + . . .+ λkvk) =
∑

λkf(vi)(tai + (1− t)).

Then gt is a homotopy from f |τ̂ = g0 to a map g1 satisfying π ◦ g1 = π. Note that gt carries a neighborhood
of the origin in τ̂ into f(τ̂). Using a relative version of the smooth isotopy extension theorem, we can find
an isotopy {ft|τ̂ → f(τ̂)} which is supported in a compact subset of τ̂ − τ , agrees with gt near the origin,
and agrees with the isotopies we have already constructed on the cone of ∂ τ .
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