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In the last lecture, we saw that the connectivity properties of the map PL(m)/O(m)→ PL(m+1)/O(m+
1) could be phrased geometrically as follows:

Theorem 1 (Product Structure Theorems). Let M be a PL manifold of dimension m, let K ⊆ M be a
closed subpolyhedron, and suppose we are given a smooth structure on M×R which is the product of a smooth
structure on M with the standard smooth structure on R in a neighborhood of K ×R. Then, after modifying
the smooth structure by a suitable PD isotopy which is trivial in a neighborhood of K × R, we can arrange
that the smooth structure on M × R is the product of a smooth structure on M with the standard smooth
structure on R. The same result holds if we replace R by [0, 1].

Our goal in the next few lectures is to sketch a proof of this result. The argument is essentially the same
whether we use R or [0, 1]; we will therefore switch from one case to the other as convenient. To simplify
the exposition, we will assume that K = ∅. The case where K is nonempty can be treated by more careful
versions of the same arguments.

To begin, let us assume that we are given a smooth structure on the product M×[0, 1]. Let X = M×[0, 1],
and let π : X → [0, 1] denote the projection. The easiest case of Theorem 1 is the following:

Lemma 2. Theorem 1 is true if π is a smooth submersion.

Proof. If π is a smooth submersion, then it exhibits X as a smooth fiber bundle over [0, 1]. Let M0 = M ,
equipped with the smooth structure given by the identification M0 ' π−1{0}. We have a diffeomorphism
f : X ' M0 × [0, 1].. In other words, X is diffeomorphic to a product with [0, 1]. This is not quite the
full strength of Theorem 1: we must show that this diffeomorphism can be chosen to be PD isotopic to the
identity map on X. Let us think of f as a PD family {ft : M →M0}t∈[0,1] of PD homeomorphisms from M
to M0, where f0 is the identity. Define a PD isotopy {ht : X →M0 × [0, 1]}t∈[0,1] by the formula

ht(m, s) =

{
(fs−t(m), s) if t ≤ s
(f0(m), s) if t ≥ s.

Then h0 is the diffeomorphism f , which gives the original smooth structure on X. The map h1 is the identity
map X 'M × [0, 1] 'M0 × [0, 1], which gives a product smooth structure on X.

If π is a smooth map, then we can test whether or not π is a submersion by checking whether the
derivative of π does not vanish at any point. Of course, the condition that π is smooth is very strong: in our
situation, we only know that π is piecewise linear with respect to some Whitehead compatible triangulation
of X. In other words, we know that π is piecewise differentiable on X: that is, there is a smooth triangulation
of X such that π is differentiable on each simplex. In this case, it is still possible to salvage something of
the theory of derivatives:

Definition 3. Let X be a smooth manifold, and let f : X → R be a piecewise differentiable map. (In the
case of interest, X is a smoothing of M×R for some PL manifold M , and f is the projection onto the second
factor.) Let x ∈ X be a point and let v be a tangent vector to X and x. We define Dv(f) to be the minimum
value of the derivatives Dv(f |σ), where σ ranges over all simplices containing x of some triangulation of X
for which f is smooth on each simplex.
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The map (v, x) 7→ Dv(f) is not generally continuous if f is not a smooth function. However, it is lower
semicontinuous. In other words, for every real number ε, the subset of the tangent bundle TX consisting of
pairs (x, v) for which Dv(f) > ε is an open set. We will say that a tangent vector v to X is regular for f if
Dv(f) > 0. Lower semicontinuity guarantees that the set of regular tangent vectors is open in TX .

Definition 4. Let X be a smooth manifold and f : X → R a piecewise differentiable function. We will say
that f is regular if, for every point x ∈ X, there exists a tangent vector v ∈ TX,x such that (x, v) is regular
(in other words, such that Dv(f) > 0).

Example 5. If f is smooth, then f is regular if and only if it is a smooth submersion.

Lemma 6. Let X be a smooth manifold and f : X → R a regular piecewise differentiable function. Then
there exists a smooth tangent field v : X → TX such that, for every x ∈ X, the tangent vector v(x) is regular
for f .

Proof. Since f is regular, we can find for each x a tangent vector wx at x such that Dvx(f) > 0. Let
vx : X → TX be a smooth tangent field such that vx(x) = wx. Since the collection of regular tangent
vectors is open, there exists an open neighborhood Ux of x such that vx(y) is f -regular for y ∈ Ux. Since
X is paracompact, the open covering {Ux}x∈X has a locally finite refinement. Choose a smooth partition of
unity ψi subordinate to this refinement, so that each ψi is supported in Uxi

. Then the smooth vector field
v =

∑
i ψivxi

has the desired property.

In the situation of Lemma 6, we will say that the vector field f is transverse to f .

Lemma 7. Let f : X → R be a piecewise differentiable function, and let v : X → TX be a smooth vector
field which is transverse to f . Then for any continuous function ε : X → R>0, there exists a smooth map
g : X → R such that

Dv(x)(g) > Dv(x)(f)− ε(x)

g(x)− f(x) < ε(x).

(Choosing ε sufficiently small will guarantee that v is also transverse to g.)

Proof. Choose a partition of unity ψi on X subordinate to a locally finite cover of X by compact sets Ki,
each of which is contained in a coordinate chart Ui. Suppose we are given smooth maps gi : Ui → R, and
define g by the formula

g =
∑

ψigi.

Then g(x) − f(x) < ε(x) will be satisfied provided that gi(x) − f(x) < ε(x) holds for x ∈ Ui. The other
condition is a bit more subtle: we have

Dv(x)g =
∑
i

(Dv(x)ψi)gi +
∑
i

ψiDv(x)(gi)

=
∑
i

(Dv(x)ψi)(gi − f) +Dvx
(
∑
i

ψi)f +
∑
i

ψiDv(x)(gi)

≥
∑
i

ψiDv(x)(gi)−
∑
i

Ci(gi − f)

where Ci > 0 is an upper bound for the compactly supported function Dv(x)ψi. If the inequalities

Dv(x)(gi) > Dv(x)(f)− ε(x)
2∑

x∈Kj∩Ki

Cj(gj(x)− f(x)) <
ε(x)

2
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hold for x ∈ Ki, then g will satisfy the desired inequality. Since only finitely many intersections Kj ∩Ki are
nonempty, the latter inequality can be achieved by ensuring that each gi is a close approximation to f on
Ki.

In other words, we may reduce to the case where X = Rn, and the inequalities

Dv(x)(g) > Dv(x)(f)− ε(x)

g(x)− f(x) < ε(x).

only need to be satisfied when x lies in some compact subset K ⊆ Rn. Let k : Rn → R>0 be a smooth
function with total integral 1, which is supported in a small ball of radius δ. Define g(x) =

∫
y
f(y)k(x− y).

Then g is a smooth function. It is not difficult to see that the conditions

Dv(x)(g) > Dv(x)(f)− ε(x)

g(x)− f(x) < ε(x).

will be satisfied on any compact subset K, provided that δ is chosen sufficiently small.

We now come to the main goal of this lecture:

Proposition 8. Theorem 1 is true in the case where the projection π : M × R → R is a regular (but not
necessarily smooth with respect the smoothing of M × R).

Proof. We will show that, after adjusting the smooth structure on M × R by a PD isotopy, we can arrange
that π is a smooth submersion; the desired result will then follow from Lemma 2. First, choose a smooth
Riemannian metric on X = M × R. Let ε : X → R>0 be a smooth function such that each of the closed
balls Bε(x)(x) ⊆ X of radius ε(x) around x is compact. Let v : X → TX be a smooth tangent field which is
transverse to π. Rescaling v, we can assume that each v(x) has unit length.

Choose a smooth function δ : X → R>0 such that

Dv(x)(f) > δ(x)

for x ∈ X. Let δ′ : X → R>0 be another smooth function such that if d(x, y) ≤ ε, then δ′(x) ≤ δ(y). Using
the previous Lemma, we can choose a smooth map g : X → R with the following properties:

Dv(x)(g) >
δ(x)

2

π(x)− g(x) < ε(x)
δ′(x)

2
.

In particular, λ(x) = Dv(x)(g) is a smooth function of x satisfying π(x)−g(x) < ε(x)λ(y) whenever d(x, y) <
ε(x).

Since v is a unit vector field and each of the ε(x)-balls around x is compact, the flow along the vector
field v gives a well-defined map

F : {(x, t) ∈ X × R : |t| < ε(x)} → X.

Moreover, for fixed x, F (x, t) stays in a ball of radius ε around x. It follows that the t-derivative of g(F (x, t))
coincides with λ(F (x, t)) > f(x)−g(x)

ε(x) . Consequently, for s ∈ [0, 1], we can find a unique t = t(x, s) such that
g(F (x, t))− g(x) = s(π(x)− g(x)). We now define a map hs : X → X by the formula

hs(x) = F (x, t(x, s)).

The family {hs : X → X}s∈[0,1] is then a PD isotopy from X to itself, where h0 is the identity and g◦h1 = f ,
so that f is smooth with respect to the smooth structure on X determined by h1.
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