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Recall our assertion:

Theorem 1. Suppose given a commutative diagram

K
f //

q

��

M

p

��
L // N

where K and L are polyhedra, M and N are smooth manifolds, and the horizontal maps are PD homeomor-
phisms. Assume that p is a submersion of smooth manifolds (so that q is a submersion of PL manifolds).
Then p is a smooth fiber bundle if and only if q is a PL fiber bundle.

In the last two lectures, we proved the “only if” direction. However, almost exactly the same argument
can be used to prove the converse. The only step that really changes is the step in which we were forced to
actually construct an isotopy. Consequently, Theorem 1 is a consequence of the following:

Lemma 2. Let M be a compact PL manifold, and suppose that M ×R is equipped with a compatible smooth
structure. Then, for every pair of integers a ≤ b, there exists a smooth isotopy ht of M × R supported on a
compact subset of M × (a− 1, b+ 1) such that h1 M × (−∞, b] into M × (−∞, a).

Choose PL homeomorphism of (a− 1, b+ 1) with R which carries a to 0 and b to 1. Then we are reduced
to proving the following:

Lemma 3. Let M be a compact PL manifold and suppose that M ×R is equipped with a compatible smooth
structure. Then there exists a compactly supported smooth isotopy ht of M × R such that h1 carries M ×
(−∞, 1] into M × (−∞, 0).

To prove Lemma 3, let us consider the following condition on a pair of closed subpolyhedra K ⊆ L ⊆
M × R:

(PK,L) For every open neighborhood U of K, there exists a compactly supported smooth isotopy ht of M ×R
such that h1(L) ⊆ U .

Since isotopies can be concatenated, it is easy to see that conditions PK,K′ and PK′,K′′ imply PK,K′′ .
Moreover, Lemma 3 will follow if we can prove PM×(−∞,−1],M×(−∞,1]. For this, we need to recall a bit of
terminology from the theory of PL topology.

Definition 4. Let L be a polyhedron equipped with a triangulation. We say that a subpolyhedron K ⊆ L
is an elementary collapse of L if there exists a simplex σ of L with a face σ0 ⊂ σ having the following
properties:

(i) The simplex σ is not contained as a face of any other simplex of L.
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(ii) The simplex σ0 is not contained as a face of any other simplex of L other than σ.

(iii) The polyhedron K is obtained from L by removing the interiors of σ and σ0.

We say that K is a collapse of L if it can be obtained from L by a sequence of elementary collapses.

It turns out that the property that K ⊆ L is a collapse does not depend strongly on the choice of a
triangulation of L. More precisely, if K is a collapse of L with respect to one triangulation S of L, then K is
also a collapse with respect to any sufficiently fine refinement of S. Consequently, we can define the notion
of K being a collapse of L without mentioning a particular triangulation: it means that K is a collapse of
L with respect to some triangulation of L.

The following assertions are not difficult to verify:

• The polyhedron (−∞,−1] is a collapse (in fact an elementary collapse) of (−∞, 1].

• If A is a collapse of B, then M ×A is a collapse of M ×B, for any polyhedron M .

Combining these observations, we conclude that M × (−∞,−1] is a collapse of M × (−∞, 1]. It follows that
there exists a triangulation S of M × R which contains M × (−∞, 1] and M × (−∞,−1] as subcomplexes
such that each simplex of S is smoothly embedded in M ×R, and such that M × (−∞,−1] can be obtained
from M×(−∞, 1] by a finite sequence of elementary collapses. It will therefore suffice to prove the following:

Lemma 5. Suppose that K ⊆ L ⊆ M × R, where K is obtained from L by an elementary collapse with
respect to a simplex σ and a face σ0 which are smoothly embedded in M × R. Then for every open set U
containing K, there exists a smooth compactly supported isotopy ht such that h1(L) ⊆ U .

The construction of this isotopy is now a local matter: we can choose it to be supported in a small tubular
neighborhood of the smoothly embedded simplex σ (which is diffeomorphic to an open ball and therefore
well-understood. We leave the details to the reader.

We have seen that the “only if” direction of Theorem 1 is a crucial step toward our understanding of the
classification of PL structures on a given smooth manifold. Similarly, the “if” direction of Theorem 1 plays
a vital role in understanding smooth structures on a given PL manifold. It is to this topic that we now turn.

The main result that we are heading toward is that the problem of smoothing a PL manifold is governed
by an h-principle: that is, it can be reduced to a problem of homotopy theory. Roughly speaking, we would
like to say that there is a space of smooth structures on M , which can be described as the space of sections
of a fibration E →M such that the fiber Ex over a point x ∈M describes smooth structures on M near the
point x.

To make this more precise, we would like to have a good understanding of a small neighborhoods of x in
M , and how they depend on the choice of x. In the case where M is smooth, the theory of vector bundles
provides such an understanding. Namely, there exists a vector bundle TM on M (the tangent bundle) whose
fiber at a point x ∈ M is diffeomorphic to a small neighborhood of x in M . This diffeomorphism can be
chosen canonically, for example, if a Riemannian metric on M has been specified. We would like to have a
replacement for the theory of vector bundles in the piecewise linear setting. Milnor’s theory of microbundles
provides such a replacement.

Definition 6 (Milnor). Let X be a topological space. An topological microbundle on X (of rank n) is a map
p : E → X equipped with a section s : X → E satisfying the following condition:

(∗) For every point x ∈ X, there exists a neighborhood of U ⊆ X containing x and an open subset of E
homeomorphic to U×Rn, such that the section s can be identified with the zero section U ' U×{0} ↪→
U × Rn.
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An equivalence of microbundles E and E′ over X is a homeomorphism h : U ' U ′ fitting into a commu-
tative diagram

U
h //

  @
@@

@@
@@

@ U ′

~~}}
}}

}}
}}

X,

where U is an open subset of E containing the image of the section s : X → E, U ′ is an open subset of E′

containing the image of s′ : X → E′, and the map h ◦ s = s′.

Remark 7. There are similar definitions in the smooth and PL categories. For example, in the PL case
we modify Definition 6 by requiring E and X to be polyhedra and all of the relevant maps to be piecewise
linear. In the smooth case, we require E and X to be smooth manifolds and all of the homeomorphisms to
be diffeomorphisms.

Example 8. Let M be a topological (PL, smooth) manifold. The tangent microbundle TM is defined to be
the product M ×M , mapping to M via the projection π1 : M ×M → M , with section s : M → M ×M
given by the diagonal map.

Example 9. Let ζ be a (smooth) vector bundle over a (smooth) manifold M . Then the map ζ → M is a
(smooth) microbundle.

In the smooth case, the converse is true as well. Namely, suppose that p : E → M is a smooth
microbundle. Replacing E by a small open neighborhood of s(M), we can assume that p is a submersion of
smooth manifolds, so that p has a relative tangent bundle TE/M . The pullback s∗TE/M is then a smooth
vector bundle over M , which can itself be regarded as a microbundle over M . In fact, this microbundle
is equivalent to E: choosing a Riemannian metric on E allows us to define an “exponential spray” which
identifies an open subset of s∗TE/M with an open subset of E containing s(M).

This construction shows that the theory of microbundles is equivalent to the theory of vector bundles in
the setting of smooth manifolds.

We will take up the theory of microbundles again in the next lecture.
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