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Abstract

We consider a wavelet thresholding approach to adaptive variance function esti-

mation in heteroscedastic nonparametric regression. A data-driven estimator is con-

structed by applying wavelet thresholding to the squared first-order differences of the

observations. We show that the variance function estimator is nearly optimally adap-

tive to the smoothness of both the mean and variance functions. The estimator is

shown to achieve the optimal adaptive rate of convergence under the pointwise squared

error simultaneously over a range of smoothness classes. The estimator is also adap-

tively within a logarithmic factor of the minimax risk under the global mean integrated

squared error over a collection of spatially inhomogeneous function classes. Numerical

implementation and simulation results are also discussed.
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1 Introduction

Variance function estimation in heteroscedastic nonparametric regression is important in

many contexts. In addition to being of interest in its own right, variance function estimates

are needed, for example, to construct confidence intervals/bands for the mean function and

to compute weighted least squares estimates of the mean function. Relative to mean func-

tion estimation, the literature on variance function estimation is sparse. Hall and Carroll

(1989) considered kernel estimators of the variance function based on the squared residu-

als from a rate optimal estimator of the mean function. Müller and Stadtmüller (1987 and

1993) considered difference based kernel estimators of the variance function. Ruppert, et al.

(1997) and Fan and Yao (1998) estimated the variance function by using local polynomial

smoothing of the squared residuals from an “optimal” estimator of the mean function. More

recently, Wang, et al. (2006) derived the minimax rate of convergence for variance function

estimation and constructed minimax rate optimal kernel estimators. Brown and Levine

(2007) proposed a class of difference-based kernel estimators and established asymptotic

normality.

So far the attention has been mainly focused on non-adaptive estimation of the variance

function. That is, the smoothness of the variance function is assumed to be known and

the estimators depend on the smoothness. In practice, however, the smoothness of the

underlying functions is nearly always unknown. It is thus important to construct estimators

that automatically adapt to the smoothness of the mean and variance functions. This is

the goal of the present paper. Specifically, we propose a wavelet thresholding approach

to adaptive variance function estimation in the heteroscedastic nonparametric regression

model

yi = f(xi) + V
1
2 (xi)zi, i = 1, ..., n, (1)

where xi = i/n and zi are independent and identically distributed with zero mean and unit
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variance. Here n = 2J for some positive integer J . The primary object of interest is the

variance function V (x). The estimation accuracy is measured both globally by the mean

integrated squared error (MISE)

R(V̂ , V ) = E‖V̂ − V ‖2
2 (2)

and locally by the mean squared error (MSE) at a given point x∗ ∈ (0, 1)

R(V̂ (x∗), V (x∗)) = E(V̂ (x∗)− V (x∗))2. (3)

It is well known that when the mean function is sufficiently smooth, it has no first order

effect on the quality of estimation for the variance function V . That is, one can estimate

V with the same asymptotic risk as if f were known. See, for example, Ruppert, et al.

(1997) and Fan and Yao (1998). On the other hand, when f is not smooth, the difficulty

in estimating V can be completely driven by the degree of smoothness of the mean f . How

the smoothness of the unknown mean function influences the rate of convergence of the

variance estimator can be characterized explicitly. Wang, et al. (2006) showed that the

minimax rate of convergence under both the pointwise MSE and global MISE is

max{n−4α, n
− 2β

2β+1 } (4)

if f has α derivatives and V has β derivatives.

The goal of the present paper is to estimate the variance function adaptively without

assuming the degree of smoothness for either the mean function f or variance function V .

We introduce a wavelet thresholding procedure which applies wavelet thresholding to the

squared first-order differences of the observations in (1). The procedure has two main steps.

The first step is taking the square of the first-order differences of the observations yi. This

step turns the problem of variance function estimation under the model (1) into a more

conventional regression problem of estimating the mean function. Another motivation for
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taking the differences is to eliminate the effect of the mean function f . The second step is

to apply a wavelet thresholding procedure to the squared differences.

The procedure enjoys a high degree of adaptivity and spatial adaptivity in terms of the

rate of convergence both for global and local estimation. More specifically, under the global

risk measure (2), it adaptively achieves within a logarithmic factor of the minimax risk over

a wide range of function classes which contain spatially inhomogeneous functions that may

have, for example, jump discontinuities and high frequency oscillations. The estimator also

optimally adapts to the local smoothness of the underlying function. As a special case, it

is shown that the variance function estimator adaptively achieves the rate of convergence

max{n−4α, (
log n

n
)

2β
1+2β } (5)

under both the pointwise MSE and global MISE, if f has α derivatives and V has β

derivatives. Furthermore, it is shown that the extra logarithmic factor in the adaptive

rate of convergence in (5) is necessary under the pointwise MSE and the estimator is thus

optimally locally adaptive.

The wavelet estimator of the variance function is data-driven and easily implementable.

We implement the procedure in Splus and R and carry out a simulation study to investigate

the numerical performance of the estimator. Simulation results show that the MISE mostly

depends on the structure of the underlying variance function and the effect of the mean

function is not significant. In addition, we also compare the performance of the wavelet

estimator with that of a kernel estimator whose bandwidth is chosen by cross validation.

The numerical results show that the wavelet estimator uniformly outperforms the kernel

estimator.

The paper is organized as follows. After Section 2.1 in which basic notation and defini-

tions are summarized, the wavelet thresholding procedure is introduced in Sections 2.2 and

2.3. Sections 3 and 4 investigate the theoretical properties of the estimator. In particular,
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Section 4.1 derives a rate-sharp lower bound for the adaptive rate of convergence under the

pointwise squared error loss. The lower and upper bounds together show that the estimator

is optimally adaptive under the pointwise loss. Section 5 discusses implementation of the

procedure and presents the numerical results. The proofs are given in Section 6.

2 Wavelet procedure for variance function estimation

In this section we introduce a wavelet thresholding procedure for estimating the variance

function V under the heteroscedastic regression model (1). We begin with notation and def-

initions of wavelets and a brief introduction to wavelet thresholding for estimating the mean

function in the standard Gaussian regression setting and then give a detailed description

of our wavelet procedure for variance function estimation.

2.1 Wavelet thresholding for Gaussian regression

We work with an orthonormal wavelet basis generated by dilation and translation of a

compactly supported mother wavelet ψ and a father wavelet φ with
∫

φ = 1. A wavelet

ψ is called r-regular if ψ has r vanishing moments and r continuous derivatives. A special

family of compactly supported wavelets is the so-called Coiflets, constructed by Daubechies

(1992), which can have arbitrary number of vanishing moments for both φ and ψ. Denote

by W (D) the collection of Coiflets {φ, ψ} of order D. So if {φ, ψ} ∈ W (D), then φ and ψ

are compactly supported and satisfy
∫

xiφ(x)dx = 0 for i = 1, ..., D−1; and
∫

xiψ(x)dx = 0

for i = 0, ..., D − 1.

For simplicity in exposition, in the present paper we use periodized wavelet bases on

[0, 1]. Let

φp
j,k(x) =

∞∑

l=−∞
φj,k(x− l), ψp

j,k(x) =
∞∑

l=−∞
ψj,k(x− l), for t ∈ [0, 1]
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where φj,k(x) = 2j/2φ(2jx − k) and ψj,k(x) = 2j/2ψ(2jx − k). The collection {φp
j0,k, k =

1, . . . , 2j0 ; ψp
j,k, j ≥ j0 ≥ 0, k = 1, ..., 2j} is then an orthonormal basis of L2[0, 1], provided

the primary resolution level j0 is large enough to ensure that the support of the scaling

functions and wavelets at level j0 is not the whole of [0, 1]. The superscript “p” will

be suppressed from the notation for convenience. An orthonormal wavelet basis has an

associated orthogonal Discrete Wavelet Transform (DWT) which transforms sampled data

into the wavelet coefficients. See Daubechies (1992) and Strang (1992) for further details

about the wavelets and discrete wavelet transform. A square-integrable function g on [0, 1]

can be expanded into a wavelet series:

g(x) =
2j0∑

k=1

ξj0,kφj0,k(x) +
∞∑

j=j0

2j∑

k=1

θj,kψj,k(x) (6)

where ξj,k = 〈g, φj,k〉, θj,k = 〈g, ψj,k〉 are the wavelet coefficients of g.

Wavelet thresholding methods have been well developed for nonparametric function

estimation, especially for estimating the mean function in the setting of homoscedastic

Gaussian noise where one observes

yi = f(
i

n
) + σzi, zi

iid∼ N(0, 1), i = 1, ..., n. (7)

One of the best known wavelet thresholding procedures is Donoho-Johnstone’s VisuShrink

(Donoho and Johnstone (1994) and Donoho, et al.(1995)). A typical wavelet thresholding

procedure has three steps:

1. Transform the noisy data via the discrete wavelet transform;

2. Threshold the empirical wavelet coefficients by “killing” coefficients of small magni-

tude and keeping the large coefficients.

3. Estimate function f at the sample points by inverse discrete wavelet transform of the

denoised wavelet coefficients.
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Many wavelet procedures are adaptive and easy to implement. We shall develop in Section

2.2 a wavelet procedure for variance function estimation where the noise is heteroscedastic

and non-Gaussian.

2.2 Adaptive wavelet procedure for estimating the variance function

We now give a detailed description of our wavelet thresholding procedure for variance func-

tion estimation. The procedure begins with taking squared difference of the observations

and then applies wavelet thresholding to obtain an estimator of the variance function.

Set Di = 1√
2
(y2i−1 − y2i) for i = 1, 2, ..., n/2. Then one can write

Di =
1√
2
(f(x2i−1)− f(x2i) + V

1
2 (x2i−1)z2i−1 − V

1
2 (x2i)z2i) =

1√
2
δi + V

1
2

i εi (8)

where δi = f(x2i−1)− f(x2i), V
1
2

i =
√

1
2(V (x2i−1) + V (x2i)) and

εi = (V (x2i−1) + V (x2i))−
1
2 (V

1
2 (x2i−1)z2i−1 − V

1
2 (x2i)z2i) (9)

has zero mean and unit variance. Then D2
i can be written as

D2
i = Vi +

1
2
δ2
i +

√
2V

1
2

i δiεi + Vi(ε2i − 1). (10)

In the above expression Vi is what we wish to estimate, 1
2δ2

i is a bias term caused by

the mean function f , and
√

2V
1
2

i δiεi + Vi(ε2i − 1) is viewed as the noise term. By taking

squared differences, we have turned the problem of estimating the variance function into the

problem of estimating the mean function similar to the conventional Gaussian regression

model (7). The differences are of course that the noise is non-Gaussian and heteroscedastic

and that there are additional unknown deterministic errors. In principle, virtually any

good nonparametric regression procedure for estimating the mean function can then be

applied. In this paper we shall use a wavelet estimator for its spatial adaptivity, asymptotic

optimality, and computational efficiency.
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We now construct a wavelet thresholding estimator V̂ based on the squared differences

D2
i . Although the procedure is more complicated, the basic idea is similar to the one behind

the VisuShrink estimator for homoscedastic Gaussian regression described at the end of

Section 2.1. We first apply the discrete wavelet transform to D̃ =
√

2/n(D2
1, · · · , D2

n/2)
′.

Let d = W · D̃ be the empirical wavelet coefficients, where W is the discrete wavelet

transformation matrix. Then d can be written as

d = (d̃j0,1, · · · , d̃j0,2j0 , dj0,1, · · · , dj0,2j0 , · · · , dJ−2,1, · · · , dJ−2,2J−2)′ (11)

where d̃j0,k are the gross structure terms at the lowest resolution level, and dj,k (j =

j0, · · · , J−1, k = 1, · · · , 2j) are empirical wavelet coefficients at level j which represent fine

structure at scale 2j . For convenience, we use (j, k) to denote the number 2j + k. Then the

empirical wavelet coefficients can be written as

dj,k = τj,k + zj,k

where zj,k denotes the transformed noise part, i.e.

zj,k =

√
2
n

∑

i

W(j,k),i(
√

2V
1
2

i δiεi + Vi(ε2i − 1))

and

τj,k = θj,k +
∑

i

W(j,k),i

√
1
2n

δ2
i + γj,k.

Here θj,k is the true wavelet coefficients of V (x), i.e. θj,k = 〈V, ψj,k〉, and γj,k is the difference

between θj,k and the discrete wavelet coefficient of Vi,

γj,k =
∑

i

W(j,k),iVi − θj,k.

We shall see that the approximation error γj,k is negligible.

For the gross structure terms at the lowest resolution level, similarly, we can write

d̃j0,k = τ̃j0,k + z̃j0,k
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where

τ̃j0,k =
∑

i

W(j0,k),i

√
1
2n

δ2
i + ξj0,k + γ̃j0,k (12)

z̃j0,k =

√
2
n

∑

i

W(j0,k),i(
√

2V
1
2

i δiεi + Vi(ε2i − 1)) (13)

with ξj0,k = 〈V, φj0,k〉 and γ̃j0,k =
∑

i W(j0,k),iVi − ξj0,k.

Note that the squared differences D2
i are independent and the variance σ2

j,k of the

empirical wavelet coefficients dj,k can be calculated as follows,

σ2
j,k ≡ V ar(dj,k) =

2
n

n/2∑

i

W 2
(j,k),iV ar(D2

i ). (14)

We shall use this formula to construct an estimator of σ2
j,k and then use it for choosing the

threshold.

For any y and t ≥ 0, define the soft thresholding function ηt(y) = sgn(y)(|y| − t)+. Let

J1 be the largest integer satisfying 2J1 ≤ J−32J . Then the θj,k are estimated by

θ̂j,k =





ηλj,k
(dj,k) if j0 ≤ j ≤ J1

0 otherwise
(15)

where

λj,k = σ̂j,k

√
2 log(n/2) (16)

is the threshold level, and σ̂j,k is an estimate of the standard deviation σj,k. We shall discuss

estimation of σj,k in Section 2.3.

In wavelet regression for estimating the mean function, the coefficients of the father

wavelets φj0,k at the lowest resolution level are conventionally estimated by the correspond-

ing empirical coefficients. Since there are only a small fixed number of coefficients, they

would not affect the rate of convergence and the numerical results show that the wavelet es-

timators perform well in general. But in the setting of the present paper for estimating the
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variance function it turns out that using the empirical coefficients directly, although not af-

fecting rate of convergence, often does not yield good numerical performance. We therefore

estimate these coefficients by a shrinkage estimator given in Berger (1976). The estima-

tor depends on the covariance matrix of the empirical coefficients d̃j0 = (d̃j0,1, · · · , d̃j0,2j0 )′

which is a function of the means and thus unknown. We shall use an estimated covariance

matrix. Specifically, the estimator ξ̂j0 of ξj0 is given by

ξ̂j0 =

(
I − min{d̃′j0Σ̂−1d̃j0 , 2

j0 − 2}Σ̂−1

d̃′j0Σ̂
−1Σ̂−1d̃j0

)
d̃j0 (17)

where ξ̂j0 = (ξ̂j0,1, ξ̂j0,2, · · · , ξ̂j0,2j0 )′ is the estimator and Σ̂ is the estimated covariance

matrix of d̃j0 . In our problem, we set

Σ̂ =
2
n

Wj0 V̂DW ′
j0

where Wj0 is the father wavelets part of the discrete wavelet transform matrix W . That is,

Wj0 is a 2j0 × n
2 matrix and in our setting Wj0 consists of the first 2j0 rows of W . V̂D is a

diagonal matrix given by

V̂D = Diag{ ̂V ar(D2
1),

̂V ar(D2
2), · · · , ̂V ar(D2

n/2)}

with ̂V ar(D2
i ) given in equation (20) in Section 2.3.

With θ̂j,k given in (15) and ξ̂j0,k in (17), the estimator of the variance function V is

defined by

V̂e(x) =
2j0∑

k=1

ξ̂j0,kφj0,k(x) +
J1∑

j=j0

2j∑

k=1

θ̂j,kψj,k(x). (18)

So far we have only used half of the differences. Similarly we can apply the same

procedure to the other half of differences, D′
i = 1√

2
(y2i−y2i+1), and obtain another wavelet

estimator V̂o(x). The final estimator of the variance function V is then given by

V̂ (x) =
1
2
(V̂e(x) + V̂o(x)). (19)
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The variance function at the sample points V = {V (2i
n ) : i = 1, · · · , n/2} can be

estimated by the inverse transform of the denoised wavelet coefficients: V̂ = W−1 · (n
2 )

1
2 Θ̂.

Remark: In principle other thresholding techniques such as BlockJS (Cai (1999)), Neigh-

Block (Cai and Silverman (2001)) and EbayesThresh (Johnstone and Silverman (2004)) can

also be adopted for estimating the wavelet coefficients here. However in the setting of the

present paper the empirical coefficients are non-Gaussian, heteroscedastic and correlated

and this makes the analysis of the properties of the resulting estimators very challenging.

2.3 Estimate of σ2
j,k

Our wavelet estimator (19) of the variance function V requires an estimate of variance

σ2
j,k of the empirical wavelet coefficients. To make the wavelet estimator V̂ perform well

asymptotically, we need a positively biased estimate of σ2
j,k. That is, the estimate σ̂2

j,k

is greater than or equal to σ2
j,k with large probability. This can be seen in the proof of

our theoretical results. On the other hand, the estimate σ̂2
j,k should be of the same order

as σ2
j,k. Combining the two requirements together we need an estimate σ̂2

j,k such that

P (
⋂

j,k σ2
j,k ≤ σ̂2

j,k ≤ Cσ2
j,k) → 1 for some constant C > 1. We shall construct such an

estimate here.

It is clear from equation (14) that an estimate of the variance of D2
i , i = 1, 2, · · · , n/2,

yields an estimate of σ2
j,k. It follows from equation (10) that we need an estimate of E(e2

i )

where ei =
√

2V
1
2

i δiεi + Vi(ε2i − 1). Note that D2
i = Vi + 1

2δ2
i + ei where δi is “small” and

Vi is “smooth”. We shall estimate V ar(D2
i ) = E(e2

i ) by the average squared differences of

D2
i over an subinterval. Specifically, we define the estimator of V ar(D2

i ) as follows.

Let ∆i = D2
2i−1 −D2

2i for i = 1, 2, ..., n/4. Fix 0 < r < 1 and divide the indices 1, 2, ...,

n/2 into non-overlapping blocks of length [(n
2 )r]. We estimate V ar(D2

i ) = E(e2
i ) in each

block by the same value. Let K be the total number of blocks and Bk be the set of indices

11



in the k-th block. For 1 ≤ k ≤ K, let

̂V ar(D2
i ) ≡ σ̂2

k =
2

(n/2)r(2− 1/ log n)

∑

2t∈Bk

∆2
t , for all i ∈ Bk. (20)

Lemma 6 in Section 6 shows that this estimate has the desired property for any 0 < r < 1.

With this estimator of V ar(D2
i ), we estimate σ2

j,k by

σ̂2
j,k =

2
n

n/2∑

i

W 2
(j,k),i

̂V ar(D2
i ). (21)

We shall use σ̂j,k in the threshold λj,k in (16) and construct the wavelet estimator of V as

in (18) and (19).

3 Global adaptivity of the wavelet procedure

We consider in this section the theoretical properties of the variance function estimator

V̂ given in (19) under the global MISE (2). The local adaptivity of the estimator under

pointwise MSE (3) is treated in Section 4. These results show that the variance function

estimator (19) is nearly optimally adaptive and spatially adaptive over a wide range of

function spaces for both the mean and variance functions.

3.1 Inhomogeneous function class H

To demonstrate the global adaptivity of the variance function estimator V̂ , we consider a

family of large function classes which contain spatially inhomogeneous functions that may

have, for example, jump discontinuities and high frequency oscillations. These function

classes are different from the more traditional smoothness classes. Functions in these classes

can be viewed as the superposition of smooth functions with irregular perturbations. These

and other similar function classes have been used in Hall, Kerkyacharian, and Picard (1998

and 1999) and Cai (2002) in the study of wavelet block thresholding estimators.

12



Definition 1 Let H = H(α1, α, γ,M1,M2,M3, D, v), where 0 ≤ α1 < α ≤ D, γ > 0, and

M1, M2,M3, v ≥ 0, denote the class of functions f such that for any j ≥ j0 > 0 there exists

a set of integers Aj with card(Aj) ≤ M32jγ for which the following are true:

• For each k ∈ Aj, there exist constants a0 = f(2−jk), a1, ..., aD−1 such that for all

x ∈ [2−jk, 2−j(k + v)], |f(x)−∑D−1
m=0 am(x− 2−jk)m| ≤ M12−jα1 ;

• For each k /∈ Aj, there exist constants a0 = f(2−jk), a1, ..., aD−1 such that for all

x ∈ [2−jk, 2−j(k + v)], |f(x)−∑D−1
m=0 am(x− 2−jk)m| ≤ M22−jα.

A function f ∈ H(α1, α, γ,M1,M2,M3, D, v) can be regarded as the superposition of a

regular function fs and an irregular perturbation τ : f = fs +τ . The perturbation τ can be,

for example, jump discontinuities or high frequency oscillations such as chirp and Doppler

of the form: τ(x) =
∑K

k=1 ak(x− xk)βk cos(x− xk)−γk . The smooth function fs belongs to

the conventional Besov class Bα∞∞(M2). Roughly speaking, a Besov space Bα
p,q contains

functions having α bounded derivatives in Lp space, the parameter q gives a finer gradation

of smoothness. See Triebel (1983) and Meyer (1992) for more details on Besov spaces.

Intuitively, the intervals with indices in Aj are “bad” intervals which contain less smooth

parts of the function. The number of the “bad” intervals is controlled by M3 and γ so that

the irregular parts do not overwhelm the fundamental structure of the function. It is easy

to see that H(α1, α, γ, M1,M2,M3, D, v) contains the Besov class Bα∞∞(M2) as a subset for

any given α1, γ, M1, M3, D, and v. See Hall, Kerkyacharian, and Picard (1999) for further

discussions on the function classes H.

3.2 Global adaptivity

The minimax rate of convergence for estimating the variance function V over the traditional

Lipschitz balls was derived in Wang et al. (2006). Define the Lipschitz ball Λα(M) in the
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usual way as

Λα(M) = {g : |g(k)(x)| ≤ M, and |g(bαc)(x)− g(bαc)(y)| ≤ M |x− y|α′

for all 0 ≤ x, y ≤ 1, k = 0, ..., bαc − 1}

where bαc is the largest integer less than α and α′ = α− bαc. Wang, et al. (2006) showed

that the minimax risks for estimating V over f ∈ Λα(Mf ) and V ∈ Λβ(MV ) under both

the global MISE and the MSE at a fixed point x∗ ∈ (0, 1) satisfy

inf
V̂

sup
f∈Λα(Mf ),V ∈Λβ(MV )

E‖V̂ − V ‖2
2 ³ inf

V̂
sup

f∈Λα(Mf ),V ∈Λβ(MV )

E(V̂ (x∗)− V (x∗))2

³ max{n−4α, n
− 2β

2β+1 }. (22)

We now consider the function class H(α1, α, γ,M1,M2,M3, D, v) defined in Section 3.1. Let

Hf (α) = H(α1, α, γf ,Mf1,Mf2,Mf3, Df , vf ) andHV (β) = H(β1, β, γV ,MV 1,MV 2,MV 3, DV , vV ).

Since H(α1, α, γ, M1,M2,M3, D, v) contains the Lipschitz ball Λα(M2) as a subset for any

given α1, γ, M1, M3, D, and v, a minimax lower bound for estimating V over f ∈ Hf (α)

and V ∈ HV (β) follows directly from (22):

inf
V̂

sup
f∈Hf (α),V ∈HV (β)

E‖V̂ − V ‖2
2 ≥ C ·max{n−4α, n

− 2β
1+2β }. (23)

The following theorem shows that the variance function estimator V̂ is adaptive over a

range of the function classes H. We shall assume that the error zi in the regression model

(1) satisfies the property that the moment generating function of z2
i , G(x) = E(exz2

i ), exists

when |x| < ρ for some constant ρ > 0. This condition implies that the moment generating

function of εi in (9), Gε(x) = E(exεi), exists in a neighborhood of 0.

Theorem 1 Let {y1, ..., yn} be given as in (1). Suppose the wavelets {φ, ψ} ∈ W (D) and

the moment generating function of z2
i exists in a neighborhood of the origin. Suppose also

γf ≤ 1 + 4α1− 4α, and γV ≤ 1+2β1

1+2β . Then the variance function estimator V̂ given in (19)

14



satisfies that for some constant C0 > 0 and all 0 < β ≤ D

sup
f∈Hf (α),V ∈HV (β)

E‖V̂ − V ‖2
2 ≤ C0 ·max{n−4α, (

log n

n
)

2β
1+2β }. (24)

Remark: The use of Coiflets in Theorem 1 is purely for technical reasons. If the following

mild local Lipschitz condition is imposed on functions in H in regions where the functions

are relatively smooth, then the Coiflets are not needed. Local adaptivity result given in

the next section does not require the use of Coiflets and our simulation shows no particular

advantages of using Coiflets in the finite sample case.

(i). If α > 1 ≥ α1, then for k /∈ Aj , |f(x)−f(2−jk)| ≤ M42−j , for x ∈ [2−jk, 2−j(k + v)].

(ii). If α > α1 > 1, then |f(x)− f(2−jk)| ≤ M42−j , for x ∈ [2−jk, 2−j(k + v)].

Comparing (24) with the minimax lower bound given in (23), the estimator V̂ is adap-

tively within a logarithmic factor of the minimax risk under global MISE. Thus, the variance

function estimator V̂ , without knowing the a priori degree or amount of smoothness of the

underlying mean and variance functions, achieves within a logarithmic factor of the true

optimal convergence rate that one could achieve by knowing the regularity.

For adaptive estimation of V over the traditional Lipschitz balls, the following is a direct

consequence of Theorem 1.

Corollary 1 Let {y1, ..., yn} be given as in (1). Suppose the wavelet ψ is r-regular and the

moment generating function of z2
i exists in a neighborhood of the origin. Then the variance

function estimator V̂ given in (19) satisfies that for some constant C0 > 0 and all 0 < β ≤ r

sup
f∈Λα(Mf ),V ∈Λβ(MV )

E‖V̂ − V ‖2
2 ≤ C0 ·max{n−4α, (

log n

n
)

2β
1+2β }. (25)
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4 Local adaptivity

For functions of spatial inhomogeneity, the local smoothness of the functions varies signif-

icantly from point to point and global risk measures such as (2) cannot wholly reflect the

performance of an estimator locally. The local risk measure (3) is more appropriate for

measuring the spatial adaptivity, where x∗ ∈ (0, 1) is any fixed point of interest.

Define the local Lipschitz class Λα(M, x∗, δ) by

Λα(M, x∗, δ) = {g : |g(bαc)(x)− g(bαc)(x∗)| ≤ M |x− x∗|α′ , x ∈ (x∗ − δ, x∗ + δ)}

where bαc is the largest integer less than α and α′ = α− bαc.

Theorem 2 Let {y1, ..., yn} be given as in (1). Suppose the wavelet ψ is r-regular and the

moment generating function of z2
i exists in a neighborhood of the origin. Then the variance

function estimator V̂ given in (19) satisfies that for any fixed x∗ ∈ (0, 1) there exists some

constant C0 > 0 such that for all α > 0 and all 0 < β ≤ r

sup
f∈Λα(Mf ,x∗,δf ),V ∈Λβ(MV ,x∗,δV )

E(V̂ (x∗)− V (x∗))2 ≤ C0 ·max{n−4α, (
log n

n
)

2β
1+2β }. (26)

Comparing (26) with the minimax rate of convergence given in (22), the estimator

V̂ is simultaneously within a logarithmic factor of the minimax risk under the pointwise

risk. We shall show in Section 4.1 that, under the pointwise risk, this logarithmic factor

is unavoidable for adaptive estimation. It is the minimum penalty for not knowing the

smoothness of the variance function V . Therefore the estimator V̂ is optimally adaptive

under the pointwise loss.

4.1 Lower bound for adaptive pointwise estimation

We now turn to the lower bound for adaptive estimation of the variance function V under

the pointwise MSE. The sharp lower bound we derive below demonstrates that the cost of
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adaptation for variance function estimation behaves in a more complicated way than that

for mean function estimation.

It is well known in estimating the mean function f that it is possible to achieve complete

adaptation for free under the global MISE in terms of the rate of convergence over a

collection of function classes. That is, one can do as well when the degree of smoothness

is unknown as one could do if the degree of smoothness is known. But for estimation at a

point, one must pay a price for adaptation. The optimal rate of convergence for estimating

the mean function f at point over Λα(Mf ) with α completely known is n−2α/(1+2α). In

the setting of adaptive estimation of the mean function, Lepski (1990) and Brown and Low

(1996) showed that one has to pay a price for adaptation of at least a logarithmic factor

even when α is known to be one of two values. It is shown that the best achievable rate is

( log n
n )2α/(1+2α), when the smoothness parameter α is unknown.

Here we consider adaptive estimation of the variance function V at a point. The fol-

lowing lower bound characterizes the cost of adaptation for such a problem.

Theorem 3 Let α0, α1 > 0, β0 > β1 > 0 and 4α0 > 2β1

1+2β1
. Under the regression model

(1) with zi
iid∼ N(0, 1), for any estimator V̂ and any fixed x∗ ∈ (0, 1), if

lim
n→∞min

{
n4α0 , n

2β0
1+2β0

}
· sup

f∈Λα0 (Mf ),V ∈Λβ0 (MV )

E(V̂ (x∗)− V (x∗))2 < ∞, (27)

then

lim
n→∞

min



n4α1 ,

(
n

log n

) 2β1
1+2β1



 · sup

f∈Λα1 (Mf ),V ∈Λβ1 (MV )

E(V̂ (x∗)− V (x∗))2 > 0. (28)

The lower bound for adaptive estimation given in Theorem 3 is more complicated than

the corresponding lower bound for estimating the mean function given in Lepski (1990)

and Brown and Low (1996). Theorem 3 shows that, if an estimator is rate optimal for

f ∈ Λα0(Mf ) and V ∈ Λβ0(MV ), then one must pay a price of at least a logarithmic factor
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for f ∈ Λα1(Mf ) and V ∈ Λβ1(MV ) if the mean function is smooth, i.e., 4α1 ≥ 2β1

1+2β1
.

On the other hand, if 4α1 < 2β1

1+2β1
, then it is possible to achieve the exact minimax rate

simultaneously both over f ∈ Λα0(Mf ), V ∈ Λβ0(MV ) and f ∈ Λα1(Mf ), V ∈ Λβ1(MV ).

In contrast, for estimating the mean function at a point one must always pay a price of at

least a logarithmic factor for not knowing the exact smoothness of the function.

Comparing the lower bound (28) with the upper bound (26) given in Theorem 2, it

is clear that our wavelet estimator (19) is optimally adaptive under the pointwise risk.

The lower and upper bounds together show the following. When the mean function is not

smooth, i.e. 4α < 2β
1+2β , the minimax rate of convergence can be achieved adaptively. On

the other hand, when the effect of the mean function is negligible, i.e. 4α ≥ 2β
1+2β , the

minimax rate of convergence cannot be achieved adaptively and one has to pay a minimum

of a logarithmic factor as in the case of mean function estimation.

The proof of this theorem can be naturally divided into two parts. The first part

lim
n→∞

n4α1 · sup
f∈Λα1 (Mf ),V ∈Λβ1(MV )

E(V̂ (x∗)− V (x∗))2 > 0 (29)

follows directly from the minimax lower bound given in Wang, et al. (2006). We shall use

a two-point constrained risk inequality to prove the second part,

lim
n→∞

(
n

log n

) 2β1
1+2β1 · sup

f∈Λα1 (Mf ),V ∈Λβ1 (MV )

E(V̂ (x∗)− V (x∗))2 > 0. (30)

A detailed proof is given in Section 6.4.

5 Numerical results

The adaptive procedure for estimating the variance function introduced in Section 2.2 is

easily implementable. We implement the procedure in Splus and R. In this section we will

investigate the numerical performance of the estimator. The numerical study has three

18



goals. The first is to investigate the effect of the mean function on the estimation of the

variance function. Several different combinations of the mean and variance functions are

used and the MSE of each case is given. The second goal is to study the effect of different

choices of r in (20) on the performance of the estimator. The simulation results indicate

that the MISE of the estimator is not sensitive to the choice of r. Finally, we will make

a comparison between the wavelet estimator and a kernel estimator with the bandwidth

chosen by cross validation. For reasons of space, we only report here a summary of the

numerical results. See Cai and Wang (2007) for more detailed and additional simulation

results.

Four different variance functions were considered in the simulation study. They are

Bumps and Doppler functions from Donoho and Johnstone (1994) and also the following

two functions,

V1(x) =





3− 30x for 0 ≤ x ≤ 0.1

20x− 1 for 0.1 ≤ x ≤ 0.25

4 + (1− 4x)18/19 for 0.25 < x ≤ 0.725

2.2 + 10(x− 0.725) for 0.725 < x ≤ 0.89

3.85− 85(x− 0.89)/11 for 0.89 < x ≤ 1

V2(x) = 1 + 4(e−550(x−0.2)2 + e−200(x−0.8)2 + e−950(x−0.8)2)

These test functions are rescaled in the simulations to have the same L2 norm.

We begin by considering the effect of the mean function on the estimation of the variance

function. For each variance function V (x), we use five different mean functions, the constant

function f(x) = 0, the trigonometric function f = sin(20x), and Bumps, Blocks and Doppler

functions from Donoho and Johnstone (1994). Different combinations of wavelets and

sample size n yield basically the same qualitative results. As an illustration, Table 1

reports the average squared errors over 500 replications with sample size n = 4096 using
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Daubechies compactly supported wavelet Symmlet 8. In this part, we use r = 0.5 in (21).

Figure 1 provides a graphical comparison of the variance function estimators and the true

functions in the case the mean function f ≡ 0.

f(x) ≡ 0 f(x) = sin(20x) Bumps Blocks Doppler

V1(x) 0.0817 0.0842 0.0825 0.0860 0.0837

V2(x) 0.0523 0.0553 0.0557 0.0563 0.0567

Bumps 0.1949 0.2062 0.2146 0.2133 0.2060

Doppler 0.4162 0.5037 0.4817 0.4888 0.4902

Table 1: The average squared error over 500 replications with sample size n = 4096.

It can be seen from Table 1 that in all these examples the MISEs mostly depend on

the structure of the variance function. The effect of the mean function f is not significant.

For Bumps and Blocks, the spatial structure of the mean f only affect a small number of

wavelet coefficients, and the variance function estimator still performs well. But still, when

f is smooth, the estimator of the variance function V is slightly more accurate. We can

also see that the results here are not as good as the estimation of mean function under the

standard homoscedastic Gaussian regression model. This is primarily due to the difficulty

of the variance function estimation problem itself.

We now turn to the choice of r in (21). Using the same setting as in the previous

example, we apply our procedure for the four test functions with three different choices of

r in (21), r = 0.2, 0.5 and 0.8, respectively. The mean function is chosen to be f ≡ 0. The

average squared error over 500 replications are given in Table 2.

For each test function the MISEs are nearly identical for different choices of r. It is thus

clear from Table 2 that the performance of the estimator is not sensitive to the choice of r.

We suggest use r = 0.5 in practice.
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Figure 1: Wavelet estimates (solid) and true variance functions (dotted).

After taking squared differences, the problem of estimating the variance function be-

comes the problem of estimating the mean function and virtually any good procedure for

estimating the mean function can then be applied. We now compare the performance of our

wavelet estimator with a kernel estimator whose bandwidth is chosen via cross-validation.

Table 3 displays the average squared errors over 500 replications of the two estimators for

the four variance functions with the mean function f ≡ 0.

The wavelet estimator outperforms the kernel estimator for all the variance functions.

The MISEs of the kernel estimator are 14% to 47% higher than the corresponding wavelet

estimator. Although the bandwidth of the kernel estimator is chosen adaptive via cross-

validation, the spatial inhomogeneity of the variance functions limits the performance of

any kernel method with a single bandwidth.
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V1(x) V2(x) Bumps Doppler

r = 0.2 0.0838 0.0581 0.1981 0.4852

r = 0.5 0.0817 0.0523 0.1949 0.4162

r = 0.8 0.0859 0.0532 0.2065 0.4335

Table 2: The MISEs for different choices of r.

V1(x) V2(x) Bumps Doppler

Wavelet 0.0817 0.0523 0.1949 0.4762

Kernel 0.1208 0.0631 0.2296 0.5463

Table 3: Comparison of the MISEs for the wavelet and kernel estimators.

In summary, the simulation study shows that the effect of the mean function on the

performance of the wavelet estimator is not significant. In this sense our wavelet procedure

is robust against the mean function interference. The procedure is also not sensitive to the

choice of r. In addition, the wavelet estimator uniformly outperforms the kernel estimator

whose bandwidth is chosen by cross-validation.

6 Proofs

We begin by introducing and proving several technical lemmas in Section 6.1 that will be

used in the proof of the main results. Throughout this section, we use C (as well as C0,

C1, etc.) to denote constants that may vary from place to place.

6.1 Preparatory results

Oracle inequality for the soft thresholding estimator was given in Donoho and Johnstone

(1994) in the case when the noise is i.i.d. normal. In the present paper we need the following
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risk bound for the soft thresholding estimator without the normality assumption. This risk

bound is useful in turning the analysis of the variance function estimator into the bias-

variance trade-off calculation which is often used in more standard Gaussian nonparametric

regression.

Lemma 1 Let y = θ + Z, where θ is an unknown parameter and Z is a random variable

with EZ = 0. Then

E(η(y, λ)− θ)2 ≤ θ2 ∧ (4λ2) + 2E(Z2I(|Z| > λ)).

Proof. Note that

E(η(y, λ)− θ)2 ≤ 2E(η(y, λ)− y)2 + 2E(y − θ)2 ≤ 2λ2 + 2EZ2 ≤ 4λ2 + 2E(Z2I(|Z| > λ)).

On the other hand,

E(η(y, λ)− θ)2 = θ2P (−λ− θ ≤ Z ≤ λ− θ) + E((Z − λ)2I(Z > λ− θ))

+E((Z + λ)2I(Z < −λ− θ))

≤ θ2 + E((Z − λ)2I(Z > λ)) + E((Z + λ)2I(Z < −λ))

≤ θ2 + E(Z2I(|Z| > λ)).

The following lemma bounds the wavelet coefficients of the functions in H.

Lemma 2 (i). Let g ∈ H(α1, α, γ, M1,M2,M3, D, v). Assume the wavelets {φ, ϕ} ∈ W (D)

with supp(φ) = supp(ψ) ⊂ [0, v]. Let n = 2J , ξJ,k =
∫

gφJ,k, and θj,k =
∫

gψj,k. Then

| ξJ,k − n−1/2g(k/n) |≤ M1 ‖ φ ‖1 n−(1/2+α1) for all k ∈ AJ ;

| ξJ,k − n−1/2g(k/n) |≤ M2 ‖ φ ‖1 n−(1/2+α) for all k /∈ AJ ;

| θj,k |≤ M1 ‖ ψ ‖1 2−j(1/2+α1) for all k ∈ Aj ;
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| θj,k |≤ M1 ‖ ψ ‖1 2−j(1/2+α) for all k /∈ Aj .

(ii). For all functions g ∈ Λα(M), the wavelet coefficients of g satisfy | θj,k |≤ C2−j(1/2+α)

where constant C depends only on the wavelets, α and M only.

Lemma 2 (ii) is a standard result, see for example, Daubechies (1992). For a proof of

Lemma 2 (i), see Hall, Kerkyacharian and Picard (1999) and Cai (2002). It follows from

this lemma that

sup
g∈Λβ(M)

n∑

k=1

(ξJ,k − n−
1
2 g(

k

n
))2 ≤ Cn−(2β∧1). (31)

The next lemma gives a large deviation result, which will be used to control the tail

probability of the empirical wavelet coefficients.

Lemma 3 Suppose εi, i = 1, 2, · · · , are independent random variables with Eεi = 0,

V ar(εi) = vi ≤ v0 for all i. Moreover, suppose the moment generating function M i(x) ,

E(exp(xεi)) exists when |x| < ρ for some ρ > 0 and all i. Let

Zm =
1√
v0

m∑

i=1

amiεi

with
m∑

i=1
a2

mi = 1 and |ami| ≤ c0/
√

m for some constant c0, then for λ = o(m−1/4) and

sufficiently large m

P (|Zm| > σmλ)
2(1− Φ(λ))

≤ exp(C
λ3

m1/4
)(1 + O(m−1/4))

where σ2
m =

∑
a2

mivi/v0 and C > 0 is a constant.
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Proof. Let Sm = m1/4Zm and Mm(x) = E(exp(xSm)). Suppose µik denote the k-th

moment of εi. Note that |ami| ≤ c0m
−1/2 for any m and 1 ≤ i ≤ m, we have

log(Mm(x))
m1/2

=
1

m1/2

m∑

i=1

log M i

(
x

amim
1/4

√
v0

)

=
1

m1/2

m∑

i=1

log(1 +
m1/2a2

mi

2v0
x2 +

m3/4a3
mi

6v
3/2
0

µi3x
3 + · · · )

=
1

m1/2

m∑

i=1

(
m1/2a2

mi

2v0
x2 + m−3/4x3 ·∆m(x))

=
x2

2v0
+ m−1/4x3 ·∆m(x)

where ∆m(x) is uniformly bounded for all m when x < ρ. This means that Mm(x) can be

written in the form Mm(x) = em1/2(x2/2v0)(1 + O(m−1/4)) for |x| < ρ. It then follows from

Theorem 1 of Hwang (1996) that for λ = o(m−1/4) and sufficiently large m

P (|Zm| > σmλ)
2(1− Φ(λ))

≤ exp(C
λ3

m1/4
)(1 + O(m−1/4)).

A special case of Lemma 3 is when m ≥ (log n)k for a positive integer n and some k > 2

and λ =
√

2 log n. In this case, we have

P (|Zm| > σm
√

2 log n)
2(1− Φ(

√
2 log n))

≤ exp(C
(2 log n)3/2

(log n)k/4
)(1 + O(

√
2 log n

(log n)k/4
)).

Since k > 2, exp{(log n)3/2−k/4} = o(na) for any a > 0 as n →∞. Therefore

P (|Zm| > σm

√
2 log n) ≤ O(

1
n1−a

) (32)

for any a > 0.

The following two lemmas bounds the difference between the mean τj,k of the empirical

wavelet coefficient dj,k and the true wavelet coefficient θj,k, globally and individually.
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Lemma 4 Using the notations in Section 2.2 and under the conditions of Theorem 1, we

have

sup
f∈Hf (α),V ∈HV (β)





∑

k

(τ̃j0,k − ξj0,k)2 +
∑

j,k

(τj,k − θj,k)2



 = O(n−(1∧4α∧2β∧(1+2β1−γV )))

Proof. Note that

∑

k

(τ̃j0,k − ξj0,k)2 +
∑

j,k

(τj,k − θj,k)2 =
∑

j,k

(
∑

i

W(j,k),i

√
1
2n

δ2
i + γj,k)2

≤ 2
∑

j,k

(
∑

i

W(j,k),i

√
1
2n

δ2
i )

2 + 2
∑

j,k

γ2
j,k.

It follows from the isometry property of the orthogonal wavelet transform that

∑

j,k

(
∑

i

W(j,k),i

√
1
2n

δ2
i )

2 =
1
2n

∑

i

δ4
i .

From the definition of the function class H, if 2i − 1 ∈ AJ then δi ≤ Cn−(1∧α1) for some

constant C > 0; if 2i− 1 /∈ AJ , δi ≤ Cn−(1∧α) for some constant C > 0. This means

1
n

∑

i

δ4
i =

1
n

∑

i∈AJ

δ4
i +

1
n

∑

i/∈AJ

δ4
i

≤ 1
n

Mf3n
γf Cn−4(1∧α1) +

1
n

(n−Mf3n
γf )Cn−4(1∧α)

= C1n
−4(1∧α) + C2n

γf−1−4(1∧α1) = O(n−(1∧4α)).

On the other hand,

2
∑

j,k

γ2
j,k = 2

∑

j,k

(
∑

i

W(j,k),i(Vi − V (2i− 1)) +
∑

i

W(j,k),iV (2i− 1)− θj,k)2

≤ 4
∑

j,k

(
∑

i

W(j,k),i(Vi − V (2i− 1)))2 + 4
∑

j,k

(
∑

i

W(j,k),iV (2i− 1)− θj,k)2

= 4
∑

i

(Vi − V (2i− 1))2 + 4
∑

j,k

(
∑

i

W(j,k),iV (2i− 1)− θj,k)2.

Similar to the previous calculation, we have

∑

i

(Vi − V (2i− 1))2 = O(nγV −1−2(1∧β1) + n−2(1∧β)).
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It follows from Lemma 2 that

∑

j,k

(
∑

i

W(j,k),iV (2i− 1)− θj,k)2 =
∑

k

(ξJ/2,k − V (2i− 1))2

=
∑

k∈AJ/2

(ξJ/2,k − V (2i− 1))2 +
∑

k/∈AJ/2

(ξJ/2,k − V (2i− 1))2 ≤ C1n
−2β + C2n

γV −1−2β1 .

The lemma is proved by putting these together.

Lemma 5 Using the notations in Section 2.2, for any x∗ ∈ (0, 1),

sup
f∈Λα(Mf ,x∗,δ),V ∈Λβ(MV ,x∗,δ)

(
∑

k

(τ̃j0,k − ξj0,k)φj0,k(x∗) +
∑

j,k

(τj,k − θj,k)ψj,k(x∗))2

= O(n−(4α∧2β∧1)).

Proof. It follows from the property of DWT that,

(
∑

k

(τ̃j0,k − ξj0,k)φj0,k(x∗) +
∑

j,k

(τj,k − θj,k)ψj,k(x∗))2 = (
∑

i

(

√
2
n

(
1
2
δ2
i + Vi)− ξJ−1,i)φJ−1,i(x∗))2.

Note that φ(x) has compact support, say supp(φ) ⊂ [−L, L]. So φJ−1,i(x∗ 6= 0 only if

2i
n /∈ (x∗ − 2L

n , x∗ + 2L
n ). This means in the previous summation we only need to consider

those i’s for which 2i
n ∈ (x∗ − 2L

n , x∗ + 2L
n ). For those i, supp(φJ−1,i) ⊂ (x∗ − δ, x∗ + δ) for

all sufficiently large n. On the interval (x∗ − δ, x∗ + δ), both f(x) and V (x) has Lipschitz

property and the lemma now follows from (31).

Lemma 6 below shows that the estimator ̂V ar(D2
i ) given in (20) has the desired property

of being slightly positively biased.

Lemma 6 Suppose V (x) is bounded away from zero and zi’s are iid random variables.

Suppose σ̂2
k is the estimator mentioned in section 2.3. Then for any m > 0 there exist

constants Cm > 0 such that

P

(⋂

k

⋂

i∈ block k

(E(e2
i ) < σ̂2

k < 4E(e2
i ))

)
> 1− Cmn−m.
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Proof. Let uk denote the k-th moment of zi. It is easy to see that

E∆i = V ′
2i−1 − V ′

2i ≤ 2MV (
1
n

)β∧1 + Mf (
1
n

)2(α∧1)

E∆2
i = (V ′

2i−1 − V ′
2i)

2 + E(e2
2i−1) + E(e2

2i).

Since E(e2
i ) = V 2

i (u4 − 1) + 2δ2
i Vi + 2

√
2V

3/2
i δiu3, we know that

E(e2
i )− E(e2

j ) ≤ C0((
|i− j|

n
)β∧1 + (

|i− j|
n

)α∧1)

for some constant C0. Denote by Bk the set of indices in block k. Let ωk = maxi∈Bk
{E(e2

i )}.

Then for any j ∈ Bk,

ωk − E(e2
j ) ≤ C0(n−(1−r)(β∧1) + n−(1−r)(α∧1)) ≤ C0n

−(1−r)(α∧β∧1)

and hence

E(σ̂2
k) =

2
(2− 1/ log n)(n/2)r

∑

2i∈Bk

((V ′
2i−1 − V ′

2i)
2 + E(e2

2i−1) + E(e2
2i))

≥ 2
(2− 1/ log n)(n/2)r

∑

2i∈Bk

(E(e2
2i−1) + E(e2

2i))

≥ 2
(2− 1/ log n)(n/2)r

∑

2i∈Bk

(2ωk − 2C0n
−(1−r)(α∧β∧1))

= ωk +
1/ log n

2− 1/ log n
ωk − 2

2− 1/ log n
C0n

−(1−r)(α∧β∧1).

Since V (x) is bounded away from zero, we know that ωk ≥ C for some constant C > 0. So

when n is sufficiently large, there exists some constant C1 > 0 such that

1/ log n

2− 1/ log n
ωk − 2

2− 1/ log n
C0n

−(1−r)(α∧β∧1) > C1/ log n.
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Since all the moments of ei exist, all the moments of ∆i exist. Then for any fixed positive

integer l,

P (σ̂2
k > ωk) = P (σ̂2

k −E(σ̂2
k) > ωk − E(σ̂2

k))

≥ P

(
σ̂2

k − E(σ̂2
k) > −(

1/ log n

2− 1/ log n
ωk − 2

2− 1/ log n
C0n

−(1−r)(α∧β∧1))
)

≥ P
(|σ̂2

k − E(σ̂2
k)| < C1/ log n

)

≥ 1− E
[
(σ̂2

k − E(σ̂2
k))

2l
]

(C1/ log n)2l

= 1− 1
(C1/ log n)2ln2rl(2− 1/ log n)2l

E


 ∑

2t∈Bk

(∆2
t − E∆2

t )




2l

.

Since ∆t’s are independent random variables, we know that E
(∑

2t∈Bk
(∆2

t − E∆2
t )

)2l
is

of order (nr)l for sufficiently large n. This means

P (σ̂2
k ≥ ωk) = 1−O(

(log n)2l

nrl
). (33)

So

P (
n1−r⋂

k=1

(σ̂2
k > ωk)) ≥ (1−O((

log2 n

nr
)l))n1−r

= 1−O(
(log n)2l

n(l+1)r−1
).

Since l is an arbitrary positive integer, this means for any m > 0 there exists a constant

Cm > 0 such that

P

(⋂

k

⋂

i∈ block k

(σ̂2
k > E(e2

i ))

)
> 1− Cmn−m.

Similarly, we know that for any m > 0 there exists a constant C ′
m > 0 such that

P

(⋂

k

⋂

i∈ block k

(σ̂2
k < 4E(e2

i ))

)
> 1− C ′

mn−m.

A direct consequence of Lemma 6 is that P (
⋂

j,k σ2
j,k ≤ σ̂2

j,k ≤ Cσ2
j,k) ≥ 1− Cmn−m for

any m > 0 and some constant Cm.
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6.2 Upper bound: Proof of Theorem 1

It is clear that the estimators V̂e, V̂0, and thus V̂ have the same rate of convergence. Here

we will only prove the convergence rate result for V̂e. We shall write V̂ for V̂e in the proof.

Note that

E ‖ V̂ − V ‖2
L2

= E
2j0∑

i=1

(ξ̂j0,i − ξj0,i)2 + E

J1∑

j=j0

∑

k

(θ̂j,k − θj,k)2 +
∞∑

j=J1+1

∑

k

θ2
j,k. (34)

There are a fixed number of terms in the first sum on the RHS of (34). Equation (13) and

Lemma 4 show that the empirical coefficients d̃j0,k have variance of order n−1 and sum of

squared biases of order O(n−(1∧4α∧2β∧(1+2β1−γV ))). Note that γV − 1− 2β1 < 2β
1+2β , so

sup
V ∈Λβ(M)

E
2j0∑

i=1

(ξ̂j0,i − ξj0,i)2 = O(n−(1∧4α∧2β∧(1+2β1−γV ))) + O(n−1)

= max(O(n−4α), O(
n

log n
)−2β/(1+2β)).

Also, it is easy to see that the third sum on the RHS of (34) is small. Note that for

θj,k = 〈V, ψj,k〉, from Lemma 2

∞∑

j=J1+1

∑

k

θ2
j,k =

∞∑

j=J1+1

(
∑

k∈Aj

θ2
j,k +

∑

k/∈Aj

θ2
j,k)

≤
∞∑

j=J1+1

(C12j(γV −1−2β1) + C22−2jβ) = O((
n

log n
)−2β/(1+2β)).

We now turn to the main term E
∑J1

j=j0

∑
k(θ̂j,k − θj,k)2. Note that

E

J1∑

j=j0

∑

k

(θ̂j,k − θj,k)2 ≤ 2E

J1∑

j=j0

∑

k

(θ̂j,k − τj,k)2 + 2E

J1∑

j=j0

∑

k

(τj,k − θj,k)2

The second term is controlled by Lemma 4. We now focus on the first term. Note that

the thresholds λj,k are random. We shall denote by E|λ(·) the conditional expectation given

all the thresholds λj,k. It follows from Lemma 1 that

E(θ̂j,k − τj,k)2 = E(E|λ(θ̂j,k − τj,k)2) ≤ E(τ2
j,k ∧ 4λ2

j,k) + E(z2
j,kI(|zj,k| > λj,k)).
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Note that

E(z2
j,kI(|zj,k| > λj,k))

= E(z2
j,kI(|zj,k| > λj,k)I(σ̂2

j,k ≥ σ2
j,k)) + E(z2

j,kI(|zj,k| > λj,k)I(σ̂2
j,k ≤ σ2

j,k))

≤ E(z2
j,kI(|zj,k| ≥ σj,k

√
2 log n)) + E(z2

j,kI(σ̂2
j,k ≤ σ2

j,k))

, S1 + S2.

Set ρj,k = σj,k

√
2 log n. Since the moment generating functions of all z2

i exist in a neigh-

borhood of the origin, there exists a constant a > 0 such that E(eazj,k/σj,k) < ∞. Let

A = C log n for some constant C > max(1/a, 1), then

S1 = E(z2
j,kI((Aσ2

j,k ∨ ρ2
j,k) ≥ |zj,k| ≥ ρj,k)) + σ2

j,kE(
z2
j,k

σ2
j,k

I(|zj,k| > (Aσ2
j,k ∨ ρ2

j,k)))

≤ (A2σ4
j,k ∨ ρ4

j,k)P (|zj,k| ≥ σj,k

√
2 log n) + σ2

j,k

A2 ∨ 4(log n)2

ea(A∨ 2 log n)
E(eazj,k/σj,k)

Note that, when 2j < n/(log(n/2))2, each wavelet coefficient at level j is a linear

combination of m ≥ (log n)2 of the yi’s. It then follows from Lemma 3 and (32) that

P (|zj,k| > σj,k

√
2 log(n/2)) ≤ O(n−(1−a))

for any a > 0. Also,

A2 ∨ 4(log n)2

ea(A∨ 2 log n)
≤ C2 log2 n

eaC log n
≤ O(

log2 n

n
).

Combining these together, and since σ2
j,k = O(1/n), we have

S1 ≤ O(
log2 n

n2
).

This means S1 is negligible as compared to the upper bound given in (25).

It is easy to see that S2 ≤ (E(z4
j,k)P (σ̂2

j,k ≤ σ2
j,k))

1/2. Lemma 6 yields P (σ̂2
j,k ≤ σ2

j,k) =

O(n−m) for any m > 0. So S2 is also negligible.

We now turn to E(τ2
j,k ∧ 4λ2

j,k). Note that

E(τ2
j,k ∧ 4λ2

j,k) ≤ 2(τj,k − θj,k)2 + 2E(θ2
j,k ∧ 4λ2

j,k). (35)
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The first part is controlled by Lemma 4. For the second part,

E(θ2
j,k ∧ 4λ2

j,k) ≤ E(θ2
j,k ∧ (4× 4ρ2

j,k)) + E(θ2
j,kI(σ̂2

j,k > 4σ2
j,k))

≤ 4(θ2
j,k ∧ 4ρ2

j,k) + θ2
j,kP (σ̂2

j,k > 4σ2
j,k).

Note that θ2
j,k is bounded (see Lemma 2). From Lemma 6, P (σ̂2

j,k > 4σ2
j,k) = O(n−m) for

any m > 0. So θ2
j,kP (σ̂2

j,k > 4σ2
j,k) is negligible as compared to the upper bound in (25).

We now turn to θ2
j,k ∧ 4ρ2

j,k, note that j ≥ J−log2 J
2β+1 implies 2j ≥ ( n

log n)1/(2β+1), and




θ2
j,k ∧ 4ρ2

j,k ≤ 4ρ2
j,k ≤ C( log n

n ) if j ≤ J−log2 J
2β+1 and k /∈ Aj

θ2
j,k ∧ 4ρ2

j,k ≤ θ2
j,k ≤ C2−j(1+2β) if j ≥ J−log2 J

2β+1 and k /∈ Aj

θ2
j,k ∧ 4ρ2

j,k ≤ θ2
j,k ≤ C2−j(1+2β1) if k ∈ Aj

This means

∑

j,k

θ2
j,k ∧ 4ρ2

j,k ≤
∑

j≤J−log2 J
2β+1

C2j(
log n

n
) +

∑

j>
J−log2 J

2β+1

C2−j2β +
∑

j

∑

k∈Aj

C2−j(1+2β1)

≤ C(
log n

n
)2

J−log2 J
2β+1 + C2−2β

J−log2 J
2β+1 + C2γV −1−2β1

≤ C(
log n

n
)2β/(1+2β).

Putting the above bounds together, one can easily see that

∑

(j,k)

E((τj,k)2 ∧ 4λ2
j,k) ≤ M4

f n−4α + 4M2
V (n−2 ∧ n−2β) + C(

n

log n
)−2β/(1+2β)

≤ C max(n−4α, (
n

log n
)−2β/(1+2β)).

This proves the global upper bound (25).

6.3 Upper bound: Proof of Theorem 2

We now consider the bound given in (26) under pointwise MSE. Without loss of generality,

we shall assume that f and V are in the Lipschitz classes instead of the local Lipschitz
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classes, i.e., we assume f ∈ Λα(Mf ) and V ∈ Λβ(MV ). Note that

E(V̂ (x∗)− V (x∗))2

= E




2j0∑

i=1

(ξ̂j0,i − ξj0,i)2φj0,k(x∗) +
J1∑

j=j0

∑

k

(θ̂j,k − θj,k)ψj,k(x∗) +
∑

j>J1,k

θj,kψj,k(x∗)




2

≤ 3(
2j0∑

i=1

(ξ̂j0,i − ξj0,i)2φj0,k(x∗))2 + 3(
J1∑

j=j0

∑

k

(θ̂j,k − θj,k)ψj,k(x∗))2 + 3(
∑

j>J1

∑

k

θj,kψj,k(x∗))2

, I1 + I2 + I3

I1 is bounded in the same way as in the global case. Since we are using wavelets of

compact support, there are at most L basis functions ψj,k at each resolution level j that

are nonvanishing at x∗ where L is the length of the support of the wavelet ψ. Denote

K(j, x∗) = {k : ψj,k(x∗) 6= 0}. Then |K(j, x∗)| ≤ L. Hence

I3 = 3(
∑

j>J1

∑

k∈K(j,x∗)

θj,kψj,k(x∗))2 ≤ 3(
∑

j>J1

CL2−j(β+1/2)2j/2)2 = O(2−J1β) = o(n−
2β

1+2β ).

We now turn to I2. First,

I2 ≤ 3


∑

j,k

(E(θ̂j,k − θj,k)2)1/2|ψj,k(x∗)|



2

Note that

E(θ̂j,k − θj,k)2 ≤ 2E(θ̂j,k − τj,k)2 + 2(τj,k − θj,k)2

≤ 4(τj,k − θj,k)2 + 2E(θ2
j,k ∧ 4λ2

j,k) + 2E(z2
j,kI(|zj,k| > λj,k))

≤ 4(τj,k − θj,k)2 + 8(θ2
j,k ∧ 4ρ2

j,k) + 2θ2
j,kP (σ̂2

j,k > 4σ2
j,k) + 2E(z2

j,kI(|zj,k| > λj,k)).

This means

I2 ≤ 96


∑

j,k

((θ2
j,k ∧ 4ρ2

j,k)
1/2ψj,k(x∗)




2

+ 48


∑

j,k

(τj,k − θj,k)ψj,k(x∗)




2

+24
(
(θ2

j,kP (σ̂2
j,k > 4σ2

j,k))
1/2ψj,k(x∗)

)2
+ 24

(
(E(z2

j,kI(|zj,k| > λj,k))ψj,k(x∗))1/2
)2

.
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The last two terms follow from the proof of the global upper bound and the second term is

controlled by Lemma 5. For the first term, from the discussion in the proof of global upper

bound, we have

∑

j,k

(θ2
j,k ∧ 4ρ2

j,k)
1/2ψj,k(x∗)

=
∑

j0≤j≤J−log2 J
2β+1

∑

k∈K(j,x∗)

(θ2
j,k ∧ 4ρ2

j,k)
1/2ψj,k(x∗) +

∑

j>
J−log2 J

2β+1

∑

k∈K(j,x∗)

(θ2
j,k ∧ 4ρ2

j,k)
1/2ψj,k(x∗)

≤
∑

j0≤j≤J−log2 J
2β+1

CL2j/2(
log n

n
)1/2 +

∑

j>
J−log2 J

2β+1

CL2j/22−j(β+1/2) = O((
log n

n
)

β
1+2β )

Putting these together, one can see that I2 ≤ C max(n−4α, ( n
log n)

2β
1+2β ). This proves the

local upper bound (26).

6.4 Lower bound: Proof of Theorem 3

We first outline the main ideas. The constrained risk inequality of Brown and Low (1996)

implies that if an estimator has a small risk ε2 at one parameter value θ0 and (θ1−θ0)2 À ερ

where ρ is the chi-square affinity between the distributions of the data under θ0 and θ1, then

its risk at θ1 must be “large”. Now the assumption (27) means that the estimator V̂ (x∗)

has a small risk at θ0 = V0(x∗). If we can construct a sequence of functions Vn such that Vn

is “close” to V0 in the sense that ρ is small and at the same time ∆ = |Vn(x∗)− V0(x∗)| is

“large”, then it follows from the constrained risk inequality that V̂ (x∗) must have a “large”

risk at θ1 = Vn(x∗). So the first step of the proof is a construction for such a sequence of

functions Vn.

Set V0 ≡ 1 and let g be a compactly supported, infinitely differentiable function such

that g(0) > 0,
∫

g = 0 and
∫

g2 = 1. Set

Vn(x) = V0(x) + τβ
n g(τ−1

n (x− x∗))
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where τn = ( c log n
n )

1
1+2β and 0 < c ≤ 1 is a constant. It is easy to check that fn are in

Λβ(M) if the constant c is chosen sufficiently small.

The chi-square affinity can be bounded same as before. Note that the chi-square affinity

between Φ = N(0, 1) and Ψ = N(0, 1 + γn) is

ρ(Φ, Ψ) = (1− γ2
n)−

1
2 . (36)

Let yi = V (xi)zi, i = 1, ..., n, where zi are iid N(0, 1) variables. Denote by P0 and Pn the

joint distributions of y1, ..., yn under V = V0 and V = Vn, respectively. Then it follows from

(36) that

ρn ≡ ρ(P0, Pn) =
n∏

i=1

[1− τ2β
n g2(τ−1

n (xi − x∗))]−
1
2 = exp{−1

2

n∑

i=1

log(1− τ2β
n g2(τ−1

n (xi − x∗))}

≤ exp{τ2β
n

n∑

i=1

g2(τ−1
n (xi − x∗))}

where the last step follows from the fact −1
2 log(1 − z) ≤ z for 0 < z < 1

2 . Note that

(nτn)−1
∑n

i=1 g2(τ−1
n (xi−x∗)) →

∫
g2 = 1, so

∑n
i=1 g2(τ−1

n (xi−x∗)) ≤ 2nτn for sufficiently

large n, and hence ρn ≤ exp(2nτ1+2β
n ) ≤ n2c. Since the zero function is in Λα0(Mf ) and

V0 ∈ Λβ0(MV ), equation (27) implies that for some constant C > 0,

E(V̂ (x∗)− V0(x∗))2 ≤ Cn
− 2β1

1+2β1 n−r

for r = min{4α0,
2β0

1+2β0
} − 2β1

1+2β1
> 0. Hence, for sufficiently large n, it follows from the

constrained risk inequality of Brown and Low (1996) that

E(V̂ (x∗)− Vn(x∗))2 ≥ τ2β
n g2(0)


1− 2C

1
2 n

− β1
1+2β1 n−

r
2 nc

τβ
n g(0)




=
(

c log n

n

) 2β
1+2β

g2(0)


1− 2C

1
2 n

− β1
1+2β1 n−

r
2 nc

( c log n
n )

β1
1+2β1 g(0)




≥ 1
2
c

2β1
1+2β1 g2(0) ·

(
log n

n

) 2β1
1+2β1

by choosing the constant c ≤ r/2.
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