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Shifting Inequality and Recovery of Sparse Signals
T. Tony Cai, Lie Wang, and Guangwu Xu

Abstract—In this paper, we present a concise and coherent anal-
ysis of the constrained �� minimization method for stable recov-
ering of high-dimensional sparse signals both in the noiseless case
and noisy case. The analysis is surprisingly simple and elemen-
tary, while leads to strong results. In particular, it is shown that the
sparse recovery problem can be solved via �� minimization under
weaker conditions than what is known in the literature. A key tech-
nical tool is an elementary inequality, called Shifting Inequality,
which, for a given nonnegative decreasing sequence, bounds the ��

norm of a subsequence in terms of the �� norm of another subse-
quence by shifting the elements to the upper end.

Index Terms— � minimization, restricted isometry property,
shifting inequality, sparse recovery.

I. INTRODUCTION

R ECONSTRUCTING a high-dimensional sparse signal
based on a small number of measurements, possibly cor-

rupted by noise, is a fundamental problem in signal processing.
This and other related problems in compressed sensing have
attracted much recent interest in a number of fields including
applied mathematics, electrical engineering, and statistics. In
signal processing setting, this new sampling theory has many
applications. For example, interesting applications of com-
pressed sensing in magnetic resonance imaging are described
in [14]. Compressed sensing is also closely connected to coding
theory, see, e.g., [1], and [8].

In compressed sensing, one considers the following model:

(1)

where the matrix (with ) and is a
vector of measurement errors. The goal is to reconstruct the un-
known signal . In this paper, our main interest is the
case where the signal is sparse and the noise is Gaussian,

. We shall approach the problem by consid-
ering first the noiseless case and then the bounded noise case,
both of significant interest in their own right. The results for the
Gaussian case will then follow easily.
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It is now well understood that the method of minimization
provides an effective way for reconstructing a sparse signal in
many settings. The minimization method in this context is

(2)

where is a bounded set determined by the noise structure. For
example, in the noiseless case and is the feasible set
of the noise in the case of bounded error.

The sparse recovery problem has now been well studied in the
framework of the Restricted Isometry Property (RIP) introduced
by [8]. A vector is -sparse if ,
where is the support of . For an
matrix and an integer , , the -restricted isometry
constant is the smallest constant such that

(3)

for every -sparse vector . If , the -restricted
orthogonality constant , is the smallest number that sat-
isfies

(4)

for all and such that and are -sparse and -sparse re-
spectively, and have disjoint supports. For notational simplicity,
we shall write for and for hereafter.

It has been shown that minimization can recover a sparse
signal with a small or zero error under various conditions on
and . See, for example, [8], [9], and [7]. These conditions
essentially require that every set of columns of with certain
cardinality approximately behaves like an orthonormal system.
For example, the condition was used in
[8], in [7], and in [9]. Simple
conditions involving only have also been used in the literature
on sparse recovery, for example, was used in [6].
In a recent paper, [5] sharpened the previous results by showing
that stable recovery can be achieved under the condition

(or a stronger but simpler condition
).1

In the present paper, we provide a concise and coherent anal-
ysis of the constrained minimization method for stable re-
covery of sparse signals. The analysis, which yields strong re-
sults, is surprisingly simple and elementary. At the heart of our
simplified analysis of the minimization method for stable re-
covery is an elementary, yet highly useful, inequality. This in-
equality, called Shifting Inequality, shows that, given a finite
decreasing sequence of nonnegative numbers, the norm of a
subsequence can be bounded in terms of the norm of another

1For a positive real number �, � , and � are understood as � and
� .
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subsequence by “shifting” the terms involved in the norm to
the upper end.

The main contribution of the present paper is twofold: first, it
is shown that the sparse recovery problem can be solved under
weaker conditions and second, the analysis of the minimiza-
tion method can be very elementary and much simplified. In
particular, we show that stable recovery of -sparse signals can
be achieved if

This condition is weaker than the ones known in the literature.
In particular, the results in [8], [9], [5], and [6] are extended. In
fact, our general treatment of this problem produces a family of
sparse recovery conditions. Interesting conditions include

In the case of Gaussian noise, one of the main results is the
following.

Theorem 1: Consider the model (1) with . If
is -sparse and

then, an minimizer

satisfies, with probability at least

(5)

and an minimizer

satisfies, with probability at least

(6)

See Section IV for a more general result. In comparison to [9,
Th. 1.1], the result given in (5) for weakens the condition
from to and improves the
constant in the bound from to

. Although our primary interest in this paper is
to recover sparse signals, all the main results in the subsequent
sections are given for general signals that are not necessarily

-sparse.
Weakening the RIP condition also has direct implications on

the construction of compressed sensing (CS) matrices. It is im-
portant to note that it is computationally difficult to verify the
RIP for a given design matrix when is large and the sparsity

is not too small. It is required to bound the condition num-
bers of submatrices. The spectral norm of a matrix is often
difficult to compute and the combinatorial complexity makes it
infeasible to check the RIP for reasonable values of and . A
general technique for avoiding checking the RIP directly is to

generate the entries of the matrix randomly and to show that
the resulting random matrix satisfies the RIP with high prob-
ability using the well-known Johnson-Lindenstrauss Lemma.
See, for example, Baraniuk, et al. [3]. Weakening the RIP con-
dition makes it easier to prove that the resulting random matrix
satisfies the CS properties.

The paper is organized as follows. After Section II, in which
basic notations and definitions are reviewed, we introduce in
Section III-A the elementary Shifting Inequality, which enables
us to make finer analysis of the sparse recovery problem. We
then consider the problem of exact recovery in the noiseless
case in Section III-B and stable recovery of sparse signals in
Section III-C. The Gaussian noise case is treated in Section IV.
Section V discusses various conditions on RIP and effects of
the improvement of the RIP condition on the construction of
CS matrices. The proofs of some technical results are relegated
to the Appendix.

II. PRELIMINARIES

We begin by introducing basic notations and definitions re-
lated to the RIP. We also collect a few elementary results needed
for the later sections.

For a vector , we shall denote by the
vector with all but the largest entries (in absolute value) set to
zero and define , the vector with the
largest entries (in absolute value) set to zero. We use the standard
notation to denote the -norm of the
vector . We shall also treat a vector as a function

by assigning .
For a subset of , we use to denote the sub-

matrix obtained by extracting the columns of according to the
indices in . Let ,
and ,

. It can be seen that

Hence, (3) can be viewed as a condition on and
.

The following relations can be easily checked.

(7)

(8)

Candès and Tao [8] showed that the constants and are
related by the following inequalities:

(9)

Cai, Xu, and Zhang obtained the following properties for
and in [5], which are especially useful in producing simplified
recovery conditions:

(10)

It follows from (10) that for any positive integer , we have
. This can be further generalized.
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Lemma 1: For any and positive integers such that
is an integer

(11)

A proof of this lemma can be found in the Appendix.
Consider the minimization problem . Let be a fea-

sible solution to , i.e., . Without loss of gener-
ality we assume that . Let be a
solution to the minimization problem . Then it is clear that

. Let and for some
positive integer . Here denotes the indicator function
of a set , i.e., if and 0 if

.
The following is a widely used fact. See, for example, [5], [7],

[9], and [11].
Lemma 2:

This follows from the fact that

.
Note also that the Cauchy-Schwarz Inequality yields that for

(12)

III. SHIFTING INEQUALITY, EXACT AND STABLE RECOVERY

In this section, we consider exact recovery of high-dimen-
sional sparse signals in the noiseless case and stable recovery
in the bounded noise case. Recovery of sparse signals with
Gaussian noise will be discussed in Section IV. We begin by
introducing an elementary inequality which we call the Shifting
Inequality. This useful inequality plays a key role in our anal-
ysis of the properties of the solution to the minimization
problem.

A. The Shifting Inequality

The following elementary inequality enables us to perform
finer estimation involving and norms as can be seen from
the proofs of Theorem 2 in Section III-B and other main results.

Lemma 3 (Shifting Inequality): Let be positive integers
satisfying . Then any nonincreasing sequence of real
numbers

satisfies

(13)

Equivalently, any nonincreasing sequence of real numbers

satisfies

The proof of this lemma is presented in the Appendix.
We will see that the Shifting Inequality, albeit very elemen-

tary, not only simplifies the analysis of minimization method
but also weakens the required condition on the RIP.

B. Exact Recovery of Sparse Signals

We shall start with the simple setting where no noise is
present. In this case the goal is to recover the signal exactly
when it is sparse. This case is of significant interest in its own
right as it is also closely connected to the problem of decoding
of linear codes. See, for example, Candès and Tao [8]. The
ideas used in treating this special case can be easily extended
to treat the general case where noise is present.

Suppose . Based on , we wish to reconstruct
the vector exactly when it is sparse. Equivalently, we wish to
find the sparsest representation of the signal in the dictionary
consisting of the columns of the matrix . Let be the mini-
mizer to the problem

(14)

Note that this is a special case of the minimization problem
with . We have the following result.

Theorem 2: Suppose that is -sparse and that

(15)

holds for some positive integers and satisfying
. Then the solution to the minimization problem (Exact)

recovers exactly. In general, if (15) holds, then satisfies

Remark 1: We should note that in this and following main
theorems, we use the general condition

, which involves two positive integers and , in addition to
the sparsity parameter . The flexibility in the choice of and
in the condition allows one to derive interesting conditions for
compressed sensing matrices. More discussions on special cases
and comparisons with the existing conditions used in the current
literature are given in Section V.

As noted earlier, for a real number , and are
meant to be and . A particularly interesting choice
is and . Theorem 2 shows that if is -sparse
and

(16)

then the minimization method recovers exactly. This con-
dition is weaker than other conditions on RIP currently avail-
able in the literature. Compare, for example, Candès and Tao
[8], [9], Candès, Romberg, and Tao [7], Candès [6], and Cai,
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Xu, and Zhang [5]. See more discussions in Section V. For a
general signal , under (16), one has

(17)

Proof: The proof of Theorem 2 is elementary. The key to
the proof is the Shifting Inequality. Again, set .
We shall cut the error vector into pieces and then apply the
Shifting Inequality to subvectors.

Without loss of generality, we assume the first coordinates
of are the largest in magnitude. Making rearrangement if nec-
essary, we may also assume that

Set , and
, , with

the last subset of size less than or equal to . Let ,
and for .

To apply the Shifting Inequality, we shall first divide each
vector into two pieces. Set

and

We note that and for all . Let
and .

Note that . Applying the Shifting Inequality
(13) to the vectors and for

yields

It then follows from Lemma 2 and (12) that

Now the fact that yields

This implies

Therefore

If is -sparse, then , which implies .
The key argument used in the proof of Theorem 2 is the

Shifting Inequality. This simple analysis requires a condition
on the RIP that is weaker than other conditions on the RIP used
in the literature.

In addition to Theorem 2, we also have the following result
under a simpler condition.

Theorem 3: Let be a positive integer. Suppose is -sparse
and

(18)

then the minimization recovers exactly.
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Proof: The proof is similar to that of Theorem 2. For each
, let and . Note that .

Hence,

Since , this implies and, hence,
.

Remark 2: Another commonly used condition in the sparse
recovery literature is the mutual incoherence property (MIP),
which requires that the maximum pairwise correlation of the
columns of ,

(19)

be small. Here are the columns of ( ’s are also
assumed to be of length 1 in -norm). A sharp MIP condition
for the stable recovery of -sparse signals in the noisy case is

(20)

See [4]. It is easy to check that (18) is weaker than (20). This
can be seen from the facts that and .
(See, e.g., [5].)

For a general signal , a slightly modified proof yields that
the minimizer satisfies

under (18). Note that this bound is not as strong as the error
bound given in (17) obtained under (16).

C. Recovery in the Presence of Errors

We now consider reconstruction of high dimensional sparse
signals in the presence of bounded noise. Let be a
bounded set. Suppose we observe where with
the error vector , and we wish to reconstruct by solving
the minimization problem . Specifically, we consider
two types of bounded errors:
and . We shall use to denote the
solution of the minimization problem with
and use to denote the solution of with .

The Shifting Inequality again plays a key role in our analysis
in this case. In addition, the analysis of the Gaussian noise case
follows easily from that of the bounded noise case.

Theorem 4: Suppose

(21)

holds for positive integers , , and where . Then
the minimizers and satisfy

and

where

(22)

(23)

(24)

A proof of Theorem 4 based on the ideas of that for Theorem 2
is given in the Appendix.

Remark 3: As in the noiseless setting, an especially inter-
esting case is and . In this case, Theorem 4
yields that if is -sparse and

(25)

holds, then the minimizers and satisfy

(26)

and

(27)

Again, (25) for stable recovery in the noisy case is weaker than
the existing RIP conditions in the literature. See, for example,
[9], [7], [6]), and [5].

IV. GAUSSIAN NOISE

The Gaussian noise case is of particular interest in statistics
and several methods have been developed. See, for example,
[16], [12], and [9]. The results presented in Section III-C on the
bounded noise case are directly applicable to the case where the
noise is Gaussian. This is due to the fact that Gaussian noise is
“essentially bounded.” Suppose we observe

(28)
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and wish to recover the signal based on . We assume
that is known and that the columns of are normalized to
have unit norm. Define two bounded sets

(29)

The following result, which follows from standard probability
calculations, shows that Gaussian noise is essentially bounded.
The readers are referred to [5] for a proof.

Lemma 4: The Gaussian error satisfies

(30)

Lemma 4 indicates that the Gaussian variable is in the bounded
sets and with high probability. The results obtained in
the previous sections for bounded errors can, thus, be applied
directly to treat Gaussian noise. In this case, we shall consider
two particular constrained minimization problems. Let
be the minimizer of

(31)

and let be the minimizer of

(32)

The following theorem is a direct consequence of Lemma 4
and Theorem 4.

Theorem 5: Suppose

(33)

holds for some positive integers , and with .
Then with probability at least , the mini-
mizer satisfies

and with probability at least , the minimizer sat-
isfies

where the constants , and are given as in Theorem 4.
Remark: Again, a special case is and . In

this case, if is -sparse and

then, with high probability, the minimizers and sat-
isfy

(34)

(35)

The result given in (34) for improves [9, Th. 1.1] by weak-
ening the condition from to
and reducing the constant in the bound from
to . The improvement on the error
bound is minor. The improvement on the condition is more sig-
nificant as it shows signals with larger support can be recovered
accurately for fixed and .

Candès and Tao [9] also derived an oracle inequality for
in the Gaussian noise setting under the condition

. Our method can also be used to improve [9, Ths. 1.2 and 1.3]
by weakening the condition to .

V. DISCUSSIONS

The flexibility in the choice of and in the condition
used in Theorems 2, 4, and 5 enables us to

deduce interesting conditions for compressed sensing matrices.
We shall highlight several of them here and compare with the
existing conditions used in the current literature. As mentioned
in the introduction, it is sometimes more convenient to use con-
ditions only involving the restricted isometry constant and for
this reason we shall mainly focus on . By choosing different
values of and and using (10), it is easy to show that each of
the following conditions is sufficient for the exact recovery of

-sparse signals in the noiseless case and stable recovery in the
noisy case:

1) ;
2) ;2

3) ;
4) ;
5) ;
6) .
The derivation of Condition 1 has been discussed in the re-

marks of Theorem 2 and Theorem 4.
By Lemma 1 and (9), we have

. Therefore, Condition 1 implies Condition 2.
Condition 3 follows from Condition 1 and (10). In fact, if

, then

Condition 4 is stronger than Condition 2. This is because if
, then

To get Condition 5, let , . The condition
becomes .

This condition is met if . In fact, by Lemma 1
and (9)

Condition 5 can be obtained in a similar manner.
These conditions for stable recovery improve the conditions

used in the literature, e.g., the conditions in [7],

2As � is for � , this condition should actually read � �

���������� � �. There is a similar explanation for Condition 4.
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in [9], in [5],
in [6], in [5], and in [13]. It is
also interesting to note that Condition 5 allows to be larger
than 0.5.

The flexibility in also enables us to
discuss the asymptotic properties of the RIP conditions. Letting

, and using (7), (8), and (10), it is easy to see that
each of the following conditions is sufficient for stable recovery
of -sparse signals:

1) ,
2) ,
3) ,
These conditions reveal two asymptotic properties of the re-

stricted isometry constant . The first is that can be close to 1
(as gets large), provided that checking the RIP for must be
done for sets of columns whose cardinality is much bigger than

, the sparsity for recovery. The second is that if is allowed to
be small, then checking the RIP for can be done for sets of
columns whose cardinality is close to (as gets small). It is
noted that checking the RIP remains quite impractical even in
this case.

It is clear that with weaker RIP conditions, more matrices can
be verified to be compressed sensing matrices. As aforemen-
tioned, for a given matrix, it is computationally difficult
to check its restricted isometry property. However, it has been
very successful in constructing random compressed sensing ma-
trices which satisfy the RIP conditions with high probability, see
[2], [3], [7], [8], [9], [15].

For example, Baraniuk et al. [3] showed that if is an
matrix whose entries are drawn independently according to

Gaussian distribution or Bernoulli distri-
bution ( is either or , each with probability
1/2), then fails to have RIP

with probability less than

where is a constant.
It is not hard to see that the probability of failing drops at a

considerable rate as the bound increases and/or the index
decreases. In fact, with a weaker condition , this
rate is

This ratio is very large if is large.
On the other hand, the improvement of RIP conditions can

be interpreted as enlarging the sparsity of the signals to be re-
covered. For example, one of the previous results showed that
the condition ensures the recovery of a -sparse
signal. Replacing the condition by , we see that
the sparsity of the signals to be recovered is relaxed

times.

APPENDIX A
PROOF OF LEMMA 1

We just need to prove, for any vector with disjoint
supports and sparsity and , respectively, that

Without loss of generality, we assume that the support of is
. For , when the th coordinate

of is mentioned, we actually mean the th one.
For , let be a vector such that

keeps the th, th, , th nonzero coordinates
of and replaces other coordinates by zero.

APPENDIX B
PROOF OF THE SHIFTING INEQUALITY (LEMMA 3)

Let for . Then

and

Since is nonnegative for all , we know that

Also, it can be seen that for any , the coeffi-
cient of in is
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.3 And the coefficient of in is
. Since , we know that

This means

Hence, the inequality is proved.
APPENDIX C

PROOF OF THEOREM 4

Similar to the proof of theorem 2, we have

Case I. : It is easy to see that

Therefore

Now

Case II. : By assumption, there is a
such that . So

3The number ��� �� �� is 1 unless � � � , in which case it is 0.

This implies

Similar to Case I, we have
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