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SQUARE-ROOT LASSO: PIVOTAL RECOVERY OF SPARSE

SIGNALS VIA CONIC PROGRAMMING

ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV AND LIE WANG

Abstract. We propose a pivotal method for estimating high-dimensional
sparse linear regression models, where the overall number of regressors p is
large, possibly much larger than n, but only s regressors are significant. The
method is a modification of the lasso, called the square-root lasso. The method
is pivotal in that it neither relies on the knowledge of the standard deviation
σ or nor does it need to pre-estimate σ. Moreover, the method does not rely
on normality or sub-Gaussianity of noise. It achieves near-oracle performance,
attaining the convergence rate σ{(s/n) log p}1/2 in the prediction norm, and
thus matching the performance of the lasso with known σ. These performance
results are valid for both Gaussian and non-Gaussian errors, under some mild
moment restrictions. We formulate the square-root lasso as a solution to a
convex conic programming problem, which allows us to implement the estima-
tor using efficient algorithmic methods, such as interior-point and first-order
methods.

1. Introduction

We consider the linear regression model for outcome yi given fixed p-dimensional
regressors xi:

yi = x′
iβ0 + σǫi (i = 1, ..., n) (1)

with independent and identically distributed noise ǫi (i = 1, ..., n) having law F0

such that

EF0
(ǫi) = 0 , EF0

(ǫ2i ) = 1. (2)

The vector β0 ∈ R
p is the unknown true parameter value, and σ > 0 is the unknown

standard deviation. The regressors xi are p-dimensional, xi = (xij , j = 1, ..., p)′,
where the dimension p is possibly much larger than the sample size n. Accordingly,
the true parameter value β0 lies in a very high-dimensional space Rp. However, the
key assumption that makes the estimation possible is the sparsity of β0:

T = supp(β0) has s < n elements. (3)

The identity T of the significant regressors is unknown. Throughout, without loss
of generality, we normalize

1

n

n∑

i=1

x2
ij = 1 (j = 1, . . . , p). (4)

In making asymptotic statements below we allow for s → ∞ and p → ∞ as n → ∞.
The ordinary least squares estimator is not consistent for estimating β0 in the

setting with p > n. The lasso estimator [23] can restore consistency under mild
1
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conditions by penalizing through the sum of absolute parameter values:

β̄ ∈ arg min
β∈Rp

Q̂(β) +
λ

n
‖β‖1, (5)

where Q̂(β) = n−1
∑n

i=1(yi − x′
iβ)

2 and ‖β‖1 =
∑p

j=1 |βj |. The lasso estimator
is computationally attractive because it minimizes a structured convex function.
Moreover, when errors are normal, F0 = N(0, 1), and suitable design conditions
hold, if one uses the penalty level

λ = σc2n1/2Φ−1(1− α/2p) (6)

for some constant c > 1, this estimator achieves the near-oracle performance,
namely

‖β̄ − β0‖2 . σ {s log(2p/α)/n}1/2 , (7)

with probability at least 1−α. Remarkably, in (7) the overall number of regressors
p shows up only through a logarithmic factor, so that if p is polynomial in n, the

oracle rate is achieved up to a factor of log1/2 n. Recall that the oracle knows the
identity T of significant regressors, and so it can achieve the rate σ(s/n)1/2. Result
(7) was demonstrated by [4], and closely related results were given in [13], and [28].
[6], [25], [10], [5], [30], [8], [27], and [29] contain other fundamental results obtained
for related problems; see [4] for further references.

Despite these attractive features, the lasso construction (5) – (6) relies on know-
ing the standard deviation σ of the noise. Estimation of σ is non-trivial when p
is large, particularly when p ≫ n, and remains an outstanding practical and the-
oretical problem. The estimator we propose in this paper, the square-root lasso,
eliminates the need to know or to pre-estimate σ. In addition, by using moderate
deviation theory, we can dispense with the normality assumption F0 = Φ under
certain conditions.

The square-root lasso estimator of β0 is defined as the solution to the optimiza-
tion problem

β̂ ∈ arg min
β∈IRp

{Q̂(β)}1/2 + λ

n
‖β‖1, (8)

with the penalty level

λ = cn1/2Φ−1(1− α/2p), (9)

for some constant c > 1. The penalty level in (9) is independent of σ, in contrast to
(6), and hence is pivotal with respect to this parameter. Furthermore, under rea-
sonable conditions, the proposed penalty level (9) will also be valid asymptotically
without imposing normality F0 = Φ, by virtue of moderate deviation theory.

We will show that the square-root lasso estimator achieves the near-oracle rates
of convergence under suitable design conditions and suitable conditions on F0 that
extend significantly beyond normality:

‖β̂ − β‖2 . σ {s log(2p/α)/n}1/2 , (10)

with probability approaching 1 − α. Thus, this estimator matches the near-oracle
performance of lasso, even though the noise level σ is unknown. This is the main
result of this paper. It is important to emphasize here that this result is not a direct
consequence of the analogous result for the lasso. Indeed, for a given value of the
penalty level, the statistical structure of the square-root lasso is different from that
of the lasso, and so our proofs are also different.
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Importantly, despite taking the square-root of the least squares criterion func-
tion, the problem (8) retains global convexity, making the estimator computa-
tionally attractive. The second main result of this paper is to formulate the
square-root lasso as a solution to a conic programming problem. Conic program-
ming can be seen as linear programming with conic constraints, so it generalizes
canonical linear programming with non-negative orthant constraints, and inherits
a rich set of theoretical properties and algorithmic methods from linear program-
ming. In our case, the constraints take the form of a second-order cone, leading to
a particular, highly tractable, form of conic programming. In turn, this allows us to
implement the estimator using efficient algorithmic methods, such as interior-point
methods, which provide polynomial-time bounds on computational time [16, 17],
and modern first-order methods [14, 15, 11, 1].

In what follows, all true parameter values, such as β0, σ, F0, are implicitly
indexed by the sample size n, but we omit the index in our notation whenever this
does not cause confusion. The regressors xi (i = 1, . . . , n) are taken to be fixed
throughout. This includes random design as a special case, where we condition on
the realized values of the regressors. In making asymptotic statements, we assume
that n → ∞ and p = pn → ∞, and we also allow for s = sn → ∞. The notation
o(·) is defined with respect to n → ∞. We use the notation (a)+ = max(a, 0),
a ∨ b = max(a, b) and a ∧ b = min(a, b). The ℓ2-norm is denoted by ‖‖2, and ℓ∞
norm by ‖‖∞. Given a vector δ ∈ IRp and a set of indices T ⊂ {1, . . . , p}, we
denote by δT the vector in which δTj = δj if j ∈ T , δTj = 0 if j /∈ T . We also
use En(f) = En{f(z)} =

∑n
i=1 f(zi)/n. We use a . b to denote a 6 cb for some

constant c > 0 that does not depend on n.

2. The choice of penalty level

2.1. The general principle and heuristics. The key quantity determining the

choice of the penalty level for square-root lasso is the score, the gradient of Q̂1/2

evaluated at the true parameter value β = β0:

S̃ = ∇Q̂1/2(β0) =
∇Q̂(β0)

2{Q̂(β0)}1/2
=

En(xσǫ)

{En(σ2ǫ2)}1/2 =
En(xǫ)

{En(ǫ2)}1/2
.

The score S̃ does not depend on the unknown standard deviation σ or the unknown
true parameter value β0, and therefore is pivotal with respect to (β0, σ). Under the
classical normality assumption, namely F0 = Φ, the score is in fact completely
pivotal, conditional on X . This means that in principle we know the distribution
of S̃ in this case, or at least we can compute it by simulation.

The score S̃ summarizes the estimation noise in our problem, and we may set
the penalty level λ/n to overcome it. For reasons of efficiency, we set λ/n at the
smallest level that dominates the estimation noise, namely we choose the smallest
λ such that

λ > cΛ, Λ = n‖S̃‖∞, (11)

with a high probability, say 1 − α, where Λ is the maximal score scaled by n, and
c > 1 is a theoretical constant of [4] to be stated later. The principle of setting λ to
dominate the score of the criterion function is motivated by [4]’s choice of penalty
level for the lasso. This general principle carries over to other convex problems,
including ours, and that leads to the optimal, near-oracle, performance of other
ℓ1-penalized estimators.
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In the case of the square-root lasso the maximal score is pivotal, so the penalty
level in (11) must also be pivotal. We used the square-root transformation in the
square-root lasso formulation (8) precisely to guarantee this pivotality. In con-

trast, for lasso, the score S = ∇Q̂(β0) = 2σEn(xǫ) is obviously non-pivotal, since
it depends on σ. Thus, the penalty level for lasso must be non-pivotal. These
theoretical differences translate into obvious practical differences. In the lasso, we
need to guess conservative upper bounds σ̄ on σ, or we need to use preliminary
estimation of σ using a pilot lasso, which uses a conservative upper bound σ̄ on
σ. In the square-root lasso, none of these is needed. Finally, the use of pivotality
principle for constructing the penalty level is also fruitful in other problems with
pivotal scores, for example, median regression [3].

The rule (11) is not practical, since we do not observe Λ directly. However, we
can proceed as follows:

1. When we know the distribution of errors exactly, e.g., F0 = Φ, we propose to
set λ as c times the (1− α) quantile of Λ given X . This choice of the penalty level
precisely implements (11), and is easy to compute by simulation.

2. When we do not know F0 exactly, but instead know that F0 is an element
of some family F , we can rely on either finite-sample or asymptotic upper bounds
on quantiles of Λ given X . For example, as mentioned in the introduction, under
some mild conditions on F , λ = cn1/2Φ−1(1− α/2p) is a valid asymptotic choice.

What follows below elaborates these approaches. Before describing the details,
it is useful to mention some heuristics for the principle (11). These arise from
considering the simplest case, where none of the regressors are significant, so that
β0 = 0. We want our estimator to perform at a near-oracle level in all cases,

including this one. Here the oracle estimator is β̃ = β0 = 0. We also want β̂ =
β0 = 0 in this case, at least with a high probability 1 − α. From the subgradient
optimality conditions of (8), in order for this to be true we must have −S̃j +λ/n >

0 and S̃j + λ/n > 0 (j = 1, . . . , p). We can only guarantee this by setting the

penalty level λ/n such that λ > nmax16j6p |S̃j | = n‖S̃‖∞ with probability at least
1− α. This is precisely the rule (11), and, as it turns out, this delivers near-oracle
performance more generally, when β0 6= 0.

2.2. The formal choice of penalty level and its properties. In order to de-
scribe our choice of λ formally, define for 0 < α < 1

ΛF (1− α | X) = (1− α)–quantile of ΛF | X, (12)

Λ(1− α) = n1/2Φ−1(1 − α/2p) 6 {2n log(2p/α)}1/2, (13)

where ΛF = n‖En(xξ)‖∞/{En(ξ
2)}1/2, with independent and identically distributed

ξi (i = 1, . . . , n) having law F . We can compute (12) by simulation.
In the normal case, F0 = Φ, λ can be either of

λ = cΛΦ(1− α | X),
λ = cΛ(1− α) = cn1/2Φ−1(1− α/2p),

(14)

which we call here the exact and asymptotic options, respectively. The parameter
1−α is a confidence level which guarantees near-oracle performance with probability
1 − α; we recommend 1 − α = 0.95. The constant c > 1 is a theoretical constant
of [4], which is needed to guarantee a regularization event introduced in the next
section; we recommend c = 1.1. The options in (14) are valid either in finite or large
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samples under the conditions stated below. They are also supported by the finite-
sample experiments reported in Section C. We recommend using the exact option
over the asymptotic option, because by construction the former is better tailored to
the given sample size n and design matrix X . Nonetheless, the asymptotic option
is easier to compute. Our theoretical results in section 3 show that the options in
(14) lead to near-oracle rates of convergence.

For the asymptotic results, we shall impose the following condition:

Condition G. We have that log2(p/α) log(1/α) = o(n) and p/α → ∞ as
n → ∞.

The following lemma shows that the exact and asymptotic options in (14) im-
plement the regularization event λ > cΛ in the Gaussian case with the exact or
asymptotic probability 1 − α respectively. The lemma also bounds the magnitude
of the penalty level for the exact option, which will be useful for stating bounds on
the estimation error. We assume throughout the paper that 0 < α < 1 is bounded
away from 1, but we allow α to approach 0 as n grows.

Lemma 1. Suppose that F0 = Φ. (i) The exact option in (14) implements λ > cΛ
with probability at least 1 − α. (ii) Assume that p/α > 8. For any 1 < ℓ <
{n/ log(1/α)}1/2, the asymptotic option in (14) implements λ > cΛ with probability
at least

1− ατ, τ =

{
1 +

1

log(p/α)

}
exp[2 log(2p/α)ℓ{log(1/α)/n}1/2]

1− ℓ{log(1/α)/n}1/2 − αℓ2/4−1,

where, under Condition G, we have τ = 1 + o(1) by setting ℓ → ∞ such that

ℓ = o[n1/2/{log(p/α) log1/2(1/α)}] as n → ∞. (iii) Assume that p/α > 8 and
n > 4 log(2/α). Then

ΛΦ(1− α | X) 6 νΛ(1− α) 6 ν{2n log(2p/α)}1/2, ν =
{1 + 2/ log(2p/α)}1/2
1− 2{log(2/α)/n}1/2 ,

where under Condition G, ν = 1 + o(1) as n → ∞.

In the non-normal case, λ can be any of

λ = cΛF (1− α | X),
λ = cmaxF∈F ΛF (1− α | X),

λ = cΛ(1− α) = cn1/2Φ−1(1− α/2p),
(15)

which we call the exact, semi-exact, and asymptotic options, respectively. We set
the confidence level 1 − α and the constant c > 1 as before. The exact option is
applicable when F0 = F , as for example in the previous normal case. The semi-
exact option is applicable when F0 is a member of some family F , or whenever
the family F gives a more conservative penalty level. We also assume that F in
(36) is either finite or, more generally, that the maximum in (36) is well defined.
For example, in applications, where the regression errors ǫi are thought of having
a potentially wide range of tail behavior, it is useful to set F = {t(4), t(8), t(∞)}
where t(k) denotes the Student distribution with k degrees of freedom. As stated
previously, we can compute the quantiles ΛF (1 − α | X) by simulation. Therefore,
we can implement the exact option easily, and if F is not too large, we can also
implement the semi-exact option easily. Finally, the asymptotic option is applicable
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when F0 and design X satisfy Condition M and has the advantage of being trivial
to compute.

For the asymptotic results in the non-normal case, we impose the following mo-
ment conditions.

Condition M. There exist a finite constant q > 2 such that the law F0 is an
element of the family F such that supn>1 supF∈F EF (|ǫ|q) < ∞; the design X obeys
supn>1,16j6p En(|xj |q) < ∞.

We also have to restrict the growth of p relative to n, and we also assume that α
is either bounded away from zero or approaches zero not too rapidly. See also the
Supplementary Material for an alternative condition.

Condition R. As n → ∞, p 6 αnη(q−2)/2/2 for some constant 0 < η < 1, and
α−1 = o[n{(q/2−1)∧(q/4)}∨(q/2−2)/(logn)q/2], where q > 2 is defined in Condition M.

The following lemma shows that the options (36) implement the regularization
event λ > cΛ in the non-Gaussian case with exact or asymptotic probability 1−α.
In particular, Conditions R and M, through relations (32) and (34), imply that for
any fixed v > 0,

pr{|En(ǫ
2)− 1| > v} = o(α), n → ∞. (16)

The lemma also bounds the magnitude of the penalty level λ for the exact and
semi-exact options, which is useful for stating bounds on the estimation error in
section 3.

Lemma 2. (i) The exact option in (36) implements λ > cΛ with probability at
least 1− α, if F0 = F . (ii) The semi-exact option in (36) implements λ > cΛ with
probability at least 1 − α, if either F0 ∈ F or ΛF (1 − α | X) > ΛF0

(1 − α | X)
for some F ∈ F . Suppose further that Conditions M and R hold. Then, (iii) the
asymptotic option in (36) implements λ > cΛ with probability at least 1−α− o(α),
and (iv) the magnitude of the penalty level of the exact and semi-exact options in
(36) satisfies the inequality

max
F∈F

ΛF (1 − α | X) 6 Λ(1− α){1 + o(1)} 6 {2n log(2p/α)}1/2{1 + o(1)}, n → ∞.

Thus all of the asymptotic conclusions reached in Lemma 1 about the penalty
level in the Gaussian case continue to hold in the non-Gaussian case, albeit under
more restricted conditions on the growth of p relative to n. The growth condition
depends on the number of bounded moments q of regressors and the error terms: the
higher q is, the more rapidly p can grow with n. We emphasize that Conditions M
and R are only one possible set of sufficient conditions that guarantees the Gaussian-
like conclusions of Lemma 2. We derived them using the moderate deviation theory
of [22]. For example, in the Supplementary Material, we provide an alternative
condition, based on the use of the self-normalized moderate deviation theory of [9],
which results in much weaker growth condition on p in relation to n, but requires
much stronger conditions on the moments of regressors.
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3. Finite-sample and asymptotic bounds on the estimation error

3.1. Conditions on the Gram matrix. We shall state convergence rates for

δ̂ = β̂ − β0 in the Euclidean norm ‖δ‖2 = (δ′δ)1/2 and also in the prediction norm

‖δ‖2,n = [En{(x′δ)2}]1/2 = {δ′En(xx
′)δ}1/2.

The latter norm directly depends on the Gram matrix En(xx
′). The choice of

penalty level described in Section 2 ensures the regularization event λ > cΛ, with
probability 1 − α or with probability approaching 1 − α. This event will in turn

imply another regularization event, namely that δ̂ belongs to the restricted set ∆c̄,
where

∆c̄ = {δ ∈ R
p : ‖δT c‖1 6 c̄‖δT ‖1, δ 6= 0}, c̄ =

c+ 1

c− 1
.

Accordingly, we will state the bounds on estimation errors ‖δ̂‖2,n and ‖δ̂‖2 in
terms of the following restricted eigenvalues of the Gram matrix En(xx

′):

κc̄ = min
δ∈∆c̄

s1/2‖δ‖2,n
‖δT ‖1

, κ̃c̄ = min
δ∈∆c̄

‖δ‖2,n
‖δ‖2

. (17)

These restricted eigenvalues can depend on n and T , but we suppress the depen-
dence in our notation.

In making simplified asymptotic statements, such as those appearing in Section
1, we invoke the following condition on the restricted eigenvalues:

Condition RE. There exist finite constants n0 > 0 and κ > 0, such that the
restricted eigenvalues obey κc̄ > κ and κ̃c̄ > κ for all n > n0.

The restricted eigenvalues (17) are simply variants of the restricted eigenvalues
introduced in [4]. Even though the minimal eigenvalue of the Gram matrix En(xx

′)
is zero whenever p > n, [4] show that its restricted eigenvalues can be bounded away
from zero, and they and others provide sufficient primitive conditions that cover
many fixed and random designs of interest, which allow for reasonably general,
though not arbitrary, forms of correlation between regressors. This makes condi-
tions on restricted eigenvalues useful for many applications. Consequently, we take
the restricted eigenvalues as primitive quantities and Condition RE as primitive.
The restricted eigenvalues are tightly tailored to the ℓ1-penalized estimation prob-
lem. Indeed, κc̄ is the modulus of continuity between the estimation norm and the
penalty-related term computed over the restricted set, containing the deviation of
the estimator from the true value; and κ̃c̄ is the modulus of continuity between the
estimation norm and the Euclidean norm over this set.

It is useful to recall at least one simple sufficient condition for bounded restricted
eigenvalues. If for m = s logn, the m–sparse eigenvalues of the Gram matrix
En(xx

′) are bounded away from zero and from above for all n > n′, i.e.,

0 < k 6 min
‖δTc‖06m,δ 6=0

‖δ‖22,n
‖δ‖22

6 max
‖δTc‖06m,δ 6=0

‖δ‖22,n
‖δ‖22

6 k′ < ∞, (18)

for some positive finite constants k, k′, and n′, then Condition RE holds once n
is sufficiently large. In words, (18) only requires the eigenvalues of certain small
m × m submatrices of the large p × p Gram matrix to be bounded from above
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and below. The sufficiency of (18) for Condition RE follows from [4], and many
sufficient conditions for (18) are provided by [4], [28], [13], and [20].

3.2. Finite-sample and asymptotic bounds on estimation error. We now
present the main result of this paper. Recall that we do not assume that the noise
is sub-Gaussian or that σ is known.

Theorem 1. Consider the model described in (1)–(4). Let c > 1, c̄ = (c+1)/(c−1),
and suppose that λ obeys the growth restriction λs1/2 6 nκc̄ρ, for some ρ < 1. If
λ > cΛ, then

‖β̂ − β0‖2,n 6 Anσ{En(ǫ
2)}1/2λs

1/2

n
, An =

2(1 + 1/c)

κc̄(1 − ρ2)
.

In particular, if λ > cΛ with probability at least 1 − α, and En(ǫ
2) 6 ω2 with

probability at least 1− γ, then with probability at least 1− α− γ,

κ̃c̄‖β̂ − β0‖2 6 ‖β̂ − β0‖2,n 6 Anσω
λs1/2

n
.

This result provides a finite-sample bound for δ̂ that is similar to that for the lasso
estimator with known σ, and this result leads to the same rates of convergence as
in the case of lasso. It is important to note some differences. First, for a given value
of the penalty level λ, the statistical structure of square-root lasso is different from
that of lasso, and so our proof of Theorem 1 is also different. Second, in the proof we
have to invoke the additional growth restriction, λs1/2 < nκc̄, which is not present
in the lasso analysis that treats σ as known. We may think of this restriction as
the price of not knowing σ in our framework. However, this additional condition is
very mild and holds asymptotically under typical conditions if (s/n) log(p/α) → 0,
as the corollaries below indicate, and it is independent of σ. In comparison, for the
lasso estimator, if we treat σ as unknown and attempt to estimate it consistently
using a pilot lasso, which uses an upper bound σ̄ > σ instead of σ, a similar growth
condition (σ̄/σ)(s/n) log(p/α) → 0 would have to be imposed, but this condition
depends on σ and is more restrictive than our growth condition when σ̄/σ is large.

Theorem 1 implies the following bounds when combined with Lemma 1, Lemma
2, and the concentration property (16).

Corollary 1. Consider the model described in (1)-(4). Suppose further that F0 =
Φ, λ is chosen according to the exact option in (14), p/α > 8, and n > 4 log(2/α).
Let c > 1, c̄ = (c + 1)/(c − 1), ν = {1 + 2/ log(2p/α)}1/2/[1 − 2{log(2/α)/n}1/2],
and for any ℓ such that 1 < ℓ < {n/ log(1/α)}1/2, set ω2 = 1+ ℓ{log(1/α)/n}1/2 +
ℓ2 log(1/α)/(2n) and γ = αℓ2/4. If s log p is relatively small as compared to n,
namely cν{2s log(2p/α)}1/2 6 n1/2κc̄ρ for some ρ < 1, then with probability at
least 1− α− γ,

κ̃c̄‖β̂ − β0‖2 6 ‖β̂ − β0‖2,n 6 Bnσ

{
2s log(2p/α)

n

}1/2

, Bn =
2(1 + c)νω

κc̄(1− ρ2)
.

Corollary 2. Consider the model described in (1)-(4) and suppose that F0 = Φ,
Conditions RE and G hold, and (s/n) log(p/α) → 0, as n → ∞. Let λ be specified
according to either the exact or asymptotic option in (14). There is an o(1) term



SQUARE-ROOT LASSO 9

such that with probability at least 1− α− o(α),

κ‖β̂ − β0‖2 6 ‖β̂ − β0‖2,n 6 Cnσ

{
2s log(2p/α)

n

}1/2

, Cn =
2(1 + c)

κ{1− o(1)} .

Corollary 3. Consider the model described in (1)-(4). Suppose that Conditions
RE, M, and R hold, and (s/n) log(p/α) → 0 as n → ∞. Let λ be specified according
to the asymptotic, exact, or semi-exact option in (36). There is an o(1) term such
that with probability at least 1− α− o(α)

κ‖β̂ − β0‖2 6 ‖β̂ − β0‖2,n 6 Cnσ

{
2s log(2p/α)

n

}1/2

, Cn =
2(1 + c)

κ{1− o(1)} .

As in Lemma 2, in order to achieve Gaussian-like asymptotic conclusions in the
non-Gaussian case, we impose stronger restrictions on the growth of p relative to
n.

4. Computational properties of square-root lasso

The second main result of this paper is to formulate the square-root lasso as a
conic programming problem, with constraints given by a second-order cone, also
informally known as the ice-cream cone. This allows us to implement the estimator
using efficient algorithmic methods, such as interior-point methods, which provide
polynomial-time bounds on computational time [16, 17], and modern first-order
methods that have been recently extended to handle very large conic programming
problems [14, 15, 11, 1]. Before describing the details, it is useful to recall that a
conic programming problem takes the form minu c

′u subject to Au = b and u ∈ C,
where C is a cone. Conic programming has a tractable dual form maxw b′w subject
to w′A+s = c and s ∈ C∗, where C∗ = {s : s′u > 0, for all u ∈ C} is the dual cone
of C. A particularly important, highly tractable class of problems arises when C
is the ice-cream cone, C = Qn+1 = {(v, t) ∈ R

n × R : t > ‖v‖}, which is self-dual,
C = C∗.

The square-root lasso optimization problem is precisely a conic programming
problem with second-order conic constraints. Indeed, we can reformulate (8) as
follows:

min
t,v,β+,β−

t

n1/2
+

λ

n

p∑

i=1

(
β+
j + β−

j

)
:

vi = yi − x′
iβ

+ + x′
iβ

−, i = 1, . . . , n,
(v, t) ∈ Qn+1, β+ ∈ R

p
+, β− ∈ R

p
+.

(19)
Furthermore, we can show that this problem admits the following strongly dual
problem:

max
a∈Rn

1

n

n∑

i=1

yiai : |∑n
i=1 xijai/n| 6 λ/n, j = 1, . . . , p, ‖a‖ 6 n1/2. (20)

Recall that strong duality holds between a primal and its dual problem if their
optimal values are the same, i.e., there is no duality gap. This is typically an
assumption needed for interior-point methods and first-order methods to work.
From a statistical perspective, this dual problem maximizes the sample correlation
of the score variable ai with the outcome variables yi subject to the constraint that
the score ai is approximately uncorrelated with the covariates xij . The optimal

scores âi equal the residuals yi − x′
iβ̂, for all i = 1, . . . , n, up to a renormalization
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factor; they play a key role in deriving sparsity bounds on β̂. We formalize the
preceding discussion in the following theorem.

Theorem 2. The square-root lasso problem (8) is equivalent to the conic pro-
gramming problem (19), which admits the strongly dual problem (20). Moreover,

if the solution β̂ to the problem (8) satisfies Y 6= Xβ̂, the solution β̂+, β̂−,

v̂ = (v̂1, . . . , v̂n) to (19), and the solution â to (20) are related via β̂ = β̂+ − β̂−,

v̂i = yi − x′
iβ̂ (i = 1, . . . , n), and â = n1/2v̂/‖v̂‖.

The conic formulation and the strong duality demonstrated in Theorem 2 allow
us to employ both the interior-point and first-order methods for conic programs to
compute the square-root lasso. We have implemented both of these methods, as well
as a coordinatewise method, for the square-root lasso and made the code available
through the authors’ webpages. The square-root lasso runs at least as fast as the
corresponding implementations of these methods for the lasso, for instance, the
Sdpt3 implementation of interior-point method [24], and the Tfocs implementation
of first-order methods by Becker, Candès and Grant described in [2]. We report
the exact running times in the Supplementary Material.

5. Empirical performance of square-root lasso relative to lasso

In this section we use Monte Carlo experiments to assess the finite sample per-
formance of (i) the infeasible lasso with known σ which is unknown outside the
experiments, (ii) the post infeasible lasso, which applies ordinary least squares to
the model selected by infeasible lasso, (iii) the square-root lasso with unknown σ,
and (iv) the post square-root lasso, which applies ordinary least squares to the
model selected by square-root lasso.

We set the penalty level for the infeasible lasso and the square-root lasso accord-
ing to the asymptotic options (6) and (9) respectively, with 1−α = 0.95 and c = 1.1.
We have also performed experiments where we set the penalty levels according to
the exact option. The results are similar, so we do not report them separately.

We use the linear regression model stated in the introduction as a data-generating
process, with either standard normal or t(4) errors: (a) ǫi ∼ N(0, 1), (b) ǫi ∼
t(4)/21/2, so that E(ǫ2i ) = 1 in either case. We set the true parameter value
as β0 = (1, 1, 1, 1, 1, 0, . . . , 0)′, and vary σ between 0.25 and 3. The number of
regressors is p = 500, the sample size is n = 100, and we used 1000 simulations for
each design. We generate regressors as xi ∼ N(0,Σ) with the Toeplitz correlation
matrix Σjk = (1/2)|j−k|. We use as benchmark the performance of the oracle
estimator with known true support of β0 which is unknown outside the experiment.

We present the results of computational experiments for designs (a) and (b)
in Figs. 5 and 2. For each model, Figure 5 shows the relative average empirical

risk with respect to the oracle estimator β∗, E(‖β̃ − β0‖2,n)/E(‖β∗ − β0‖2,n), and
Figure 2 shows the average number of regressors missed from the true model and
the average number of regressors selected outside the true model, E(|supp(β0) \
supp(β̃)|) and E(|supp(β̃) \ supp(β0)|), respectively.

Figure 5 shows the empirical risk of the estimators. We see that, for a wide range
of the noise level σ, the square-root lasso with unknown σ performs comparably to
the infeasible lasso with known σ. These results agree with our theoretical results,
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Figure 1. Average relative empirical risk of infeasible lasso
(solid), square-root lasso (dashes), post infeasible lasso (dots), and
post square-root lasso (dot-dash), with respect to the oracle esti-
mator, that knows the true support, as a function of the standard
deviation of the noise σ.
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Figure 2. Average number of regressors missed from the true
support for infeasible lasso (solid) and square-root lasso (dashes),
and the average number of regressors selected outside the true sup-
port for infeasible lasso (dots) and square-root lasso (dot-dash), as
a function of the noise level σ.

which state that the upper bounds on empirical risk for the square-root lasso asymp-
totically approach the analogous bounds for infeasible lasso. The finite-sample dif-
ferences in empirical risk for the infeasible lasso and the square-root lasso arise
primarily due to the square-root lasso having a larger bias than the infeasible lasso.
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This bias arises because the square-root lasso uses an effectively heavier penalty

induced by Q̂(β̂) in place of σ2; indeed, in these experiments, the average values of

Q̂(β̂)1/2/σ varied between 1.18 and 1.22.
Figure 5 shows that the post square-root lasso substantially outperforms both

the infeasible lasso and the square-root lasso. Moreover, for a wide range of σ, the
post square-root lasso outperforms the post infeasible lasso. The post square-root
lasso is able to improve over the square-root lasso due to removal of the relatively
large shrinkage bias of the square-root lasso. Moreover, the post square-root lasso
is able to outperform the post infeasible lasso primarily due to its better spar-
sity properties, which can be observed from Figure 2. These results on the post
square-root lasso agree closely with our theoretical results reported in the arXiv
working paper “Pivotal Estimation of Nonparametric Functions via Square-root
Lasso” by the authors, which state that the upper bounds on empirical risk for the
post square-root lasso asymptotically are no larger than the analogous bounds for
the square-root lasso or the infeasible lasso, and can be strictly better when the
square-root lasso acts as a near-perfect model selection device. We see this hap-
pening in Figure 5, where as the noise level σ decreases, the post square-root lasso
starts to perform as well as the oracle estimator. As we see from Figure 2, this hap-
pens because as σ decreases, the square-root lasso starts to select the true model
nearly perfectly, and hence the post square-root lasso starts to become the oracle
estimator with a high probability.

Next let us now comment on the difference between the normal and t(4) noise
cases, i.e., between the right and left panels in Figure 5 and 2. We see that the re-
sults for the Gaussian case carry over to t(4) case with nearly undetectable changes.
In fact, the performance of the infeasible lasso and the square-root lasso under t(4)
errors nearly coincides with their performance under Gaussian errors, as predicted
by our theoretical results in the main text, using moderate deviation theory, and
in the Supplementary Material, using self-normalized moderate deviation theory.

In the Supplementary Material, we provide further Monte Carlo comparisons
that include asymmetric error distributions, highly correlated designs, and feasible
lasso estimators based on the use of conservative bounds on σ and cross valida-
tion. Let us briefly summarize the key conclusions from these experiments. First,
presence of asymmetry in the noise distribution and of a high correlation in the
design does not change the results qualitatively. Second, naive use of conserva-
tive bounds on σ does not result in good feasible lasso estimators. Third, the use
of cross validation for choosing the penalty level does produce a feasible lasso es-
timator performing well in terms of empirical risk but poorly in terms of model
selection. Nevertheless, even in terms of empirical risk, the cross-validated lasso
is outperformed by the post square-root lasso. In addition, cross-validated lasso is
outperformed by the square-root-lasso with the penalty level scaled by 1/2. This is
noteworthy, since the estimators based on the square-root lasso are much cheaper
computationally. Lastly, in the 2011 arXiv working paper “Pivotal Estimation of
Nonparametric Functions via Square-Root Lasso” we provide a further analysis of
the post square-root lasso estimator and generalize the setting of the present paper
to the fully nonparametric regression model.
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Supplementary Material

The online Supplementary Material contains a complementary analysis of the
penalty choice based on moderate deviation theory for self-normalizing sums, dis-
cussion on computational aspects of square-root lasso as compared to lasso, and
additional Monte Carlo experiments. We also provide the omitted part of proof of
Lemma 2, and list the inequalities used in the proofs.

Appendix 1

Proofs of Theorems 1 and 2.

Proof of Theorem 1. Step 1. We show that δ̂ = β̂ − β0 ∈ ∆c̄ under the prescribed

penalty level. By definition of β̂

{Q̂(β̂)}1/2 − {Q̂(β0)}1/2 6
λ

n
‖β0‖1 −

λ

n
‖β̂‖1 6

λ

n
(‖δ̂T ‖1 − ‖δ̂T c‖1), (21)

where the last inequality holds because

‖β0‖1 − ‖β̂‖1 = ‖β0T‖1 − ‖β̂T‖1 − ‖β̂T c‖1 6 ‖δ̂T ‖1 − ‖δ̂T c‖1. (22)

Also, if λ > cn‖S̃‖∞ then

{Q̂(β̂)}1/2 − {Q̂(β0)}1/2 > S̃′δ̂ > −‖S̃‖∞‖δ̂‖1 > − λ

cn
(‖δ̂T ‖1 + ‖δ̂T c‖1),(23)

where the first inequality hold by convexity of Q̂1/2. Combining (21) with (23) we
obtain

− λ

cn
(‖δ̂T ‖1 + ‖δ̂T c‖1) 6

λ

n
(‖δ̂T ‖1 − ‖δ̂T c‖1), (24)

that is

‖δ̂T c‖1 6
c+ 1

c− 1
‖δ̂T‖1 = c̄‖δ̂T ‖1. (25)

Step 2. We derive bounds on the estimation error. We shall use the following
relations:

Q̂(β̂)− Q̂(β0) = ‖δ̂‖22,n − 2En(σǫx
′δ̂), (26)

Q̂(β̂)− Q̂(β0) =
[
{Q̂(β̂)}1/2 + {Q̂(β0)}1/2

] [
{Q̂(β̂)}1/2 − {Q̂(β0)}1/2

]
,(27)

2|En(σǫx
′δ̂)| 6 2{Q̂(β0)}1/2‖S̃‖∞‖δ̂‖1, (28)

‖δ̂T‖1 6
s1/2‖δ̂‖2,n

κc̄
, δ̂ ∈ ∆c̄, (29)

where (28) holds by Holder inequality and (29) holds by the definition of κc̄.
Using (21) and (26)–(29) we obtain

‖δ̂‖22,n 6 2{Q̂(β0)}
1/2‖S̃‖∞‖δ̂‖1 +

[
{Q̂(β̂)}1/2 + {Q̂(β0)}

1/2
] λ

n

(s1/2‖δ̂‖2,n
κc̄

− ‖δ̂Tc‖1
)
.

(30)
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Also using (21) and (29) we obtain

{Q̂(β̂)}1/2 6 {Q̂(β0)}1/2 +
λ

n

(
s1/2‖δ̂‖2,n

κc̄

)
. (31)

Combining inequalities (31) and (30), we obtain ‖δ̂‖22,n 6 2{Q̂(β0)}1/2‖S̃‖∞‖δ̂‖1 +
2{Q̂(β0)}1/2 λs1/2

nκc̄
‖δ̂‖2,n+

(
λs1/2

nκc̄
‖δ̂‖2,n

)2
−2{Q̂(β0)}1/2 λ

n‖δ̂T c‖1. Since λ > cn‖S̃‖∞,

we obtain

‖δ̂‖22,n 6 2{Q̂(β0)}1/2‖S̃‖∞‖δ̂T‖1 + 2{Q̂(β0)}1/2
λs1/2

nκc̄
‖δ̂‖2,n +

(
λs1/2

nκc̄
‖δ̂‖2,n

)2

,

and then using (29) we obtain
{
1−

(λs1/2
nκc̄

)2}
‖δ̂‖22,n 6 2

(
1

c
+ 1

)
{Q̂(β0)}1/2

λs1/2

nκc̄
‖δ̂‖2,n.

Provided that (nκc̄)
−1λs1/2 6 ρ < 1 and solving the inequality above we obtain

the bound stated in the theorem. �

Proof of Theorem 2. The equivalence of square-root lasso problem (8) and the conic
programming problem (19) follows immediately from the definitions. To establish
the duality, for e = (1, . . . , 1)′, we can write (19) in matrix form as

min
t,v,β+,β−

t

n1/2
+

λ

n
e′β+ +

λ

n
e′β− :

v +Xβ+ −Xβ− = Y
(v, t) ∈ Qn+1, β+ ∈ R

p
+, β− ∈ R

p
+.

By the conic duality theorem, this has dual

max
a,st,sv ,s+,s−

Y ′a :
st = 1/n1/2, a+ sv = 0, X ′a+ s+ = λe/n,−X ′a+ s− = λe/n
(sv, st) ∈ Qn+1, s+ ∈ R

p
+, s− ∈ R

p
+.

The constraints X ′a + s+ = λ/n and −X ′a + s− = λ/n leads to ‖X ′a‖∞ 6 λ/n.
The conic constraint (sv, st) ∈ Qn+1 leads to 1/n1/2 = st > ‖sv‖ = ‖a‖. By scaling
the variable a by n we obtain the stated dual problem.

Since the primal problem is strongly feasible, strong duality holds by Theorem

3.2.6 of [17]. Thus, by strong duality, we have n−1
∑n

i=1 yiâi = n−1/2‖Y −Xβ̂‖ +
n−1λ

∑p
j=1 |β̂j |. Since n−1

∑n
i=1 xij âiβ̂j = λ|β̂j |/n for every j = 1, . . . , p, we have

1

n

n∑

i=1

yiâi =
‖Y −Xβ̂‖

n1/2
+

p∑

j=1

1

n

n∑

i=1

xij âiβ̂j =
‖Y −Xβ̂‖

n1/2
+

1

n

n∑

i=1

âi

p∑

j=1

xij β̂j .

Rearranging the terms we have n−1
∑n

i=1{(yi − x′
iβ̂)âi} = ‖Y − Xβ̂‖/n1/2. If

‖Y − Xβ̂‖ > 0, since ‖â‖ 6 n1/2, the equality can only hold for â = n1/2(Y −
Xβ̂)/‖Y −Xβ̂‖ = (Y −Xβ̂)/{Q̂(β̂)}1/2. �

Appendix 2

Proofs of Lemmas 1 and 2.

Proof of Lemma 1. Statement (i) holds by definition. To show statement (ii), we
define tn = Φ−1(1 − α/2p) and 0 < rn = ℓ{log(1/α)/n}1/2 < 1. It is known that
log(p/α) < t2n < 2 log(2p/α) when p/α > 8. Then since Zj = n1/2En(xjǫ) ∼
N(0, 1) for each j, conditional on X , we have by the union bound and F0 = Φ,
pr(cΛ > cn1/2tn | X) 6 p pr{|Zj| > tn(1 − rn) | X} + pr{En(ǫ

2) < (1 − rn)
2} 6
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2p Φ̄{tn(1 − rn)} + pr{En(ǫ
2) < (1 − rn)

2}. Statement (ii) follows by observing
that by Chernoff tail bound for χ2(n), Lemma 1 in [12], pr{En(ǫ

2) < (1− rn)
2} 6

exp(−nr2n/4), and

2p Φ̄{tn(1− rn)} 6 2p
φ{tn(1− rn)}
tn(1 − rn)

= 2p
φ(tn)

tn

exp(t2nrn − 1
2 t

2
nr

2
n)

1− rn

6 2pΦ̄(tn)
1 + t2n
t2n

exp(t2nrn − 1
2 t

2
nr

2
n)

1− rn
6 α

(
1 +

1

t2n

)
exp(t2nrn)

1− rn

6 α

{
1 +

1

log(p/α)

}
exp{2 log(2p/α)rn}

1− rn
,

where we have used the inequality φ(t)t/(1 + t2) 6 Φ̄(t) 6 φ(t)/t for t > 0.
For statement (iii), it is sufficient to show that pr(ΛΦ > vn1/2tn | X) 6 α.

It can be seen that there exists a v′ such that v′ > {1 + 2/ log(2p/α)}1/2 and
1− v′/v > 2{log(2/α)/n}1/2 so that pr(ΛΦ > vn1/2tn | X) 6 pmax16j6p pr(|Zj | >
v′tn | X)+pr{En(ǫ

2) < (v′/v)2} = 2pΦ̄(v′tn)+pr[{En(ǫ
2)}1/2 < v′/v]. Proceeding

as before, by Chernoff tail bound for χ2(n), pr[{En(ǫ
2)}1/2 < v′/v] 6 exp{−n(1−

v′/v)2/4} 6 α/2, and

2pΦ̄(v′tn) 6 2p
φ(v′tn)

v′tn
= 2p

φ(tn)

tn

exp{− 1
2 t

2
n(v

′2 − 1)}
v′

6 2pΦ̄(tn)

(
1 +

1

t2n

)
exp{− 1

2 t
2
n(v

′2 − 1)}
v′

= α

(
1 +

1

t2n

)
exp{− 1

2 t
2
n(v

′2 − 1)}
v′

6 α

{
1 +

1

log(p/α)

}
exp{− log(2p/α)(v′2 − 1)}

v′

6 2α exp{− log(2p/α)(v′2 − 1)} < α/2.

Putting the inequalities together, we conclude that pr(ΛΦ > vn1/2tn | X) 6 α.
Finally, the asymptotic result follows directly from the finite sample bounds and

noting that p/α → ∞ and that under the growth condition we can choose ℓ → ∞
so that ℓ log(p/α) log1/2(1/α) = o(n1/2). �

Proof of Lemma 2. Statements (i) and (ii) hold by definition. To show (iii), con-
sider first the case of 2 < q 6 8, and define tn = Φ−1(1 − α/2p) and rn =

α− 2
q n−{(1−2/q)∧1/2}ℓn, for some ℓn which grows to infinity but so slowly that the

condition stated below is satisfied. Then for any F0 = F0n and X = Xn that obey
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Condition M:

pr(cΛ > cn1/2tn | X)

6(1) p max
16j6p

pr{|n1/2En(xjǫ)| > tn(1 − rn) | X}+ pr[{En(ǫ
2)}1/2 < 1− rn]

6(2) p max
16j6p

pr{|n1/2En(xjǫ)| > tn(1 − rn) | X}+ o(α)

=(3) 2p Φ̄{tn(1− rn)}{1 + o(1)} + o(α)

=(4) 2p
φ{tn(1 − rn)}
tn(1− rn)

{1 + o(1)}+ o(α)

= 2p
φ(tn)

tn

exp(t2nrn − t2nr
2
n/2)

1− rn
{1 + o(1)} + o(α)

=(5) 2p
φ(tn)

tn
{1 + o(1)}+ o(α) =(6) 2p Φ̄(tn){1 + o(1)}+ o(α) = α{1 + o(1)},

where (1) holds by the union bound; (2) holds by the application of either Rosen-
thal’s inequality (Rosenthal 1970) for the case of q > 4 and Vonbahr–Esseen’s
inequalities (von Bahr & Esseen 1965) for the case of 2 < q 6 4,

pr[{En(ǫ
2)}1/2 < 1− rn] 6 pr{|En(ǫ

2)− 1| > rn} . αℓ−q/2
n = o(α), (32)

(4) and (6) by φ(t)/t ∼ Φ̄(t) as t → ∞; (5) by t2nrn = o(1), which holds if

log(p/α)α− 2
q n−{(1−2/q)∧1/2}ℓn = o(1). Under our condition log(p/α) = O(log n),

this condition is satisfied for some slowly growing ℓn, if

α−1 = o{n(q/2−1)∧q/4/ logq/2 n}. (33)

To verify relation (3), by Condition M and Slastnikov’s theorem on moderate de-

viations, see [22] and [19], we have that uniformly in 0 6 |t| 6 k log1/2 n for some
k2 < q−2, uniformly in 1 6 j 6 p and for any F0 = F0n ∈ F , pr{n1/2|En(xjǫ)| > t |
X}/{2Φ̄(t)} → 1, so the relation (3) holds for t = tn(1 − rn) 6 {2 log(2p/α)}1/2 6

{η(q − 2) logn}1/2 for η < 1 by Condition R. We apply Slastnikov’s theorem
to n−1/2|

∑n
i=1 zi,n| for zi,n = xijǫi, where we allow the design X , the law F0,

and index j to be indexed by n. Slastnikov’s theorem then applies provided
supn,j6p En{EF0

(|zn|q)} = supn,j6p En(|xj |q)EF0
(|ǫ|q) < ∞, which is implied by

our Condition M, and where we used the condition that the design is fixed, so
that ǫi are independent of xij . Thus, we obtained the moderate deviation result
uniformly in 1 6 j 6 p and for any sequence of distributions F0 = F0n and designs
X = Xn that obey our Condition M.

Next suppose that q > 8. Then the same argument applies, except that now
relation (2) could also be established by using Slastnikov’s theorem on moderate
deviations. In this case redefine rn = k{logn/n}1/2; then, for some constant k2 <
{(q/2)− 2}1/2 we have

pr{En(ǫ
2) < (1− rn)

2} 6 pr{|En(ǫ
2)− 1| > rn} . n−k2

, (34)

so the relation (2) holds if

1/α = o(nk2

). (35)

This applies whenever q > 4, and this results in weaker requirements on α if q > 8.
The relation (5) then follows if t2nrn = o(1), which is easily satisfied for the new rn,
and the result follows.
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Combining conditions in (33) and (35) to give the weakest restrictions on the
growth of α−1, we obtain the growth conditions stated in the lemma.

To show statement (iv) of the lemma, it suffices to show that for any ν′ > 1, and
F ∈ F , pr(ΛF > ν′n1/2tn | X) = o(α), which follows analogously to the proof of
statement (iii); we relegate the details to the Supplementary Material. �
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Supplementary Appendix for “Square-root lasso: pivotal
recovery of sparse signals via conic programming”

Abstract. In this appendix we gather additional theoretical and
computational results for “Square-root lasso: pivotal recovery of
sparse signals via conic programming.” We include a complemen-
tary analysis of the penalty choice based on moderate deviation
theory for self-normalizing sums. We provide a discussion on com-
putational aspects of square-root lasso as compared to lasso. We
carry out additional Monte Carlo experiments. We also provide the
omitted part of proof of Lemma 2, and list the inequalities used in
the proofs.

Appendix A. Additional Theoretical Results

In this section we derive additional results using moderate deviation theory for
self-normalizing sums to bound the penalty level. These results are complementary
to the results given in the main text since conditions required here are not implied
nor imply the conditions there. These conditions require stronger moment assump-
tions but in exchange they result in weaker growth requirements on p in relation to
n.

Recall the definition of the choices of penalty levels

exact: λ = cΛF0
(1− α | X),

asymptotic: λ = cn1/2Φ−1(1− α/2p),
(36)

where ΛF0
(1 − α | X) = (1 − α)-quantile of n‖En(xǫ)‖∞/{En(ǫ

2)}1/2. We will
make use of the following condition.

Condition SN. There is a q > 4 such that the noise obeys supn>1 EF0
(|ǫ|q) <

∞, and the design X obeys supn>1 max16i6n ‖xi‖∞ < ∞. Moreover, we also as-

sume log(p/α)α−2/qn−1/2 log1/2(n ∨ p/α) = o(1) and En(x
2
j ) = 1 (j = 1, . . . , p).

Lemma 3. Suppose that condition SN holds and n → ∞. Then, (1) the asymptotic
option in (36) implements λ > cΛ with probability at least 1−α{1+ o(1)}, and (2)

ΛF0
(1− α | X) 6 {1 + o(1)}n1/2Φ−1(1 − α/2p).

This lemma in combination with Theorem 1 of the main text imply the following
result:

Corollary 4. Consider the model described in the main text. Suppose that Con-
ditions RE and SN hold, and (s/n) log(p/α) → 0 as n → ∞. Let λ be specified
according to the asymptotic or exact option in (36). There is an o(1) term such
that with probability at least 1− α{1 + o(1)}

κ‖β̂ − β0‖2 6 ‖β̂ − β0‖2,n 6 Cnσ

{
2s log(2p/α)

n

}1/2

, Cn =
2(1 + c)

κ{1− o(1)} .
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Appendix B. Additional Computational Results

B.1. Overview of Additional Computational Results. In the main text we
formulated the square-root lasso as a convex conic programming problem. This fact
allows us to use conic programming methods to compute the square-root lasso esti-
mator. In this section we provide further details on these methods, specifically on (i)
the first-order methods, (ii) the interior-point methods, and (iii) the componentwise
search methods, as specifically adapted to solving conic programming problems. We
shall also compare the adaptation of these methods to square-root lasso with the
respective adaptation of these methods to lasso.

B.2. Computational Times. Our main message here is that the average running
times for solving lasso and the square-root lasso are comparable in practical prob-
lems. We document this in Table 1, where we record the average computational
times, in seconds, of the three computation methods mentioned above. The de-
sign for computational experiments is the same as in the main text. In fact, we
see that the square-root lasso is often slightly easier to compute than the lasso.
The table also reinforces the typical behavior of the three principal computational
methods. As the size of the optimization problem increases, the running time for
an interior-point method grows faster than that for a first-order method. We also
see, perhaps more surprisingly, that a simple componentwise method is particularly
effective, and this might be due to a high sparsity of the solutions in our examples.
An important remark here is that we did not attempt to compare rigorously across
different computational methods to isolate the best ones, since these methods have
different initialization and stopping criteria and the results could be affected by
that. Rather our focus here is comparing the performance of each computational
method as applied to lasso and the square-root lasso. This is an easier compari-
son problem, since given a computational method, the initialization and stopping
criteria are similar for two problems.

n = 100, p = 500 Componentwise First Order Interior Point

lasso 0·2173 10·99 2·545
square-root lasso 0·3268 7·345 1·645

n = 200, p = 1000 Componentwise First Order Interior Point

lasso 0·6115 19·84 14·20
square-root lasso 0·6448 19·96 8·291

n = 400, p = 2000 Componentwise First Order Interior Point

lasso 2·625 84·12 108·9
square-root lasso 2·687 77·65 62·86

Table 1. We use the same design as in the main text, with s = 5
and σ = 1, we averaged the computational times over 100 simula-
tions.
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B.3. Details on Computational Methods. Below we discuss in more detail the
applications of these methods for the lasso and the square-root lasso. The similari-
ties between the lasso and the square-root lasso formulations derived below provide
a theoretical justification for the similar computational performance.

Interior-point methods. Interior-point method (ipm) solvers typically focus
on solving conic programming problems in standard form:

min
w

c′w : Aw = b, w ∈ K, (37)

where K is a cone. The main difficulty of the problem arises because the conic
constraint is binding at the optimal solution. To overcome the difficulty, ipms
regularize the objective function with a barrier function so that the optimal solution
of the regularized problem naturally lies in the interior of the cone. By steadily
scaling down the barrier function, an ipm creates a sequence of solutions that
converges to the solution of the original problem (37).

In order to formulate the optimization problem associated with the lasso es-
timator as a conic programming problem (37), specifically, associated with the

second-order cone Qk+1 = {(v, t) ∈ IRk+1 : t > ‖v‖}, we let β = β+ − β− for
β+ > 0 and β− > 0. For any vector v ∈ IRn and scalar t > 0, we have that v′v 6 t
is equivalent to ‖(v, (t − 1)/2)‖2 6 (t + 1)/2. The latter can be formulated as a
second-order cone constraint. Thus, the lasso problem can be cast as

min
t,β+,β−,a1,a2,v

t

n
+
λ

n

p∑

j=1

(β+
j +β−

j ) :
v = Y −Xβ+ +Xβ−, t = −1 + 2a1, t = 1 + 2a2
(v, a2, a1) ∈ Qn+2, t > 0, β+ ∈ IRp

+, β− ∈ IRp
+.

Recall from the main text that the square-root lasso optimization problem can be
cast similarly, but without auxiliary variables a1, a2:

min
t,β+,β−,v

t

n1/2
+

λ

n

p∑

j=1

(β+
j + β−

j ) :
v = Y −Xβ+ +Xβ−

(v, t) ∈ Qn+1, β+ ∈ IRp
+, β− ∈ IRp

+.

These conic formulations allow us to make several different computational methods
directly applicable to compute these estimators.

First-order methods. Modern first-order methods focus on structured convex
problems of the form:

min
w

f{A(w) + b}+ h(w) or min
w

h(w) : A(w) + b ∈ K,

where f is a smooth function and h is a structured function that is possibly non-
differentiable or having extended values. However it allows for an efficient proximal
function to be solved, see ‘Templates for Convex Cone Problems with Applications
to Sparse Signal Recovery’ arXiv working paper 1009.2065 by Becker, Candès and
Grant. By combining projections and subgradient information, these methods con-
struct a sequence of iterates with strong theoretical guarantees. Recently these
methods have been specialized for conic problems, which includes the lasso and the
square-root lasso problems.

Lasso is cast as

min
w

f{A(w) + b}+ h(w)
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where f(·) = ‖ · ‖2/n, h(·) = (λ/n)‖ · ‖1, A = X , and b = −Y . The projection
required to be solved on every iteration for a given current point βk is

β(βk) = argmin
β

2En{x(y − x′βk)}′β +
1

2
µ‖β − βk‖2 + λ

n
‖β‖1,

where µ is a smoothing parameter. It follows that the minimization in β above is
separable and can be solved by soft-thresholding as

βj(β
k) = sign

[
βk
j +

2En{xj(y − x′βk)}
µ

]
max

[∣∣∣∣β
k
j +

2En{xj(y − x′βk)}
µ

∣∣∣∣−
λ

nµ
, 0

]
.

For the square-root lasso the “conic form” is

min
w

h(w) : A(w) + b ∈ K.

Letting Qn+1 = {(z, t) ∈ IRn × IR : t > ‖z‖} and h(w) = f(β, t) = t/n1/2 +
(λ/n)‖β‖1 we have that

min
β,t

t

n1/2
+

λ

n
‖β‖1 : A(β, t) + b ∈ Qn+1

where b = (−Y ′, 0)′ and A(β, t) 7→ (β′X ′, t)′.
In the associated dual problem, the dual variable z ∈ IRn is constrained to be

‖z‖ 6 1/n1/2 (the corresponding dual variable associated with t is set to 1/n1/2 to
obtain a finite dual value). Thus we obtain

max
‖z‖61/n1/2

inf
β

λ

n
‖β‖1 +

1

2
µ‖β − βk‖2 − z′(Y −Xβ).

Given iterates βk, zk, as in the case of lasso, the minimization in β is separable and
can be solved by soft-thresholding as

βj(β
k, zk) = sign

{
βk
j + (X ′zk/µ)j

}
max

{∣∣βk
j + (X ′zk/µ)j

∣∣− λ/(nµ), 0
}
.

The dual projection accounts for the constraint ‖z‖ 6 1/n1/2 and solves

z(βk, zk) = arg min
‖z‖61/n1/2

θk
2tk

‖z − zk‖2 + (Y −Xβk)′z

which yields

z(βk, zk) =
zk + (tk/θk)(Y −Xβk)

‖zk + (tk/θk)(Y −Xβk)‖ min

{
1

n1/2
, ‖zk + (tk/θk)(Y −Xβk)‖

}
.

It is useful to note that, in the Tfocs package, the following command line com-
putes the square-root lasso estimator:
opts = tfocs SCD;
[ beta, out ] = tfocs SCD( prox l1(lambda/n), { X, -Y }, proj l2(1/sqrt(n)), 1e-6 );
where n denotes the sample size, lambda the penalty choice, X denote the n by p
design matrix, and Y a vector with n observations of the response variable. The
square-root lasso estimator is stored in the vector beta.

Componentwise Search. A common approach to solve unconstrained multi-
variate optimization problems is to do componentwise minimization, looping over
components until convergence is achieved. This is particulary attractive in cases
where the minimization over a single component can be done very efficiently.
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Consider the following lasso optimization problem:

min
β∈IRp

En{(y − x′β)2}+ λ

n

p∑

j=1

γj |βj |.

Under standard normalization assumptions we would have γj = 1 and En(x
2
j ) = 1

(j = 1, . . . , p). The main ingredient of the componentwise search for lasso is the
rule that sets optimally the value of βj given fixed the values of the remaining
variables:

For a current point β, let β−j = (β1, β2, . . . , βj−1, 0, βj+1, . . . , βp)
′:

If 2En{xj(y − x′β−j)} > λγj/n, the optimal choice for βj is

βj = [−2En{xj(y − x′β−j)}+ λγj/n] /En(x
2
j ).

If 2En{xj(y − x′β−j)} < −λγj/n, the optimal choice for βj is

βj = [2En{xj(y − x′β−j)} − λγj/n] /En(x
2
j ).

If 2|En{xj(y − x′β−j)}| 6 λγj/n, then βj = 0.

This simple method is particularly attractive when the optimal solution is sparse
which is typically the case of interest under choices of penalty levels that dominate
the noise like λ > cn‖S‖∞.

Despite the additional square-root, which creates a non-separable criterion func-
tion, it turns out that the componentwise minimization for the square-root lasso
also has a closed form solution. Consider the following optimization problem:

min
β∈IRp

[
En{(y − x′β)2}

]1/2
+

λ

n

p∑

j=1

γj |βj |.

As before, under standard normalization assumptions we would have γj = 1 and
En(x

2
j ) = 1 for j = 1, . . . , p.

The main ingredient of the componentwise search for square-root lasso is the rule
that sets optimally the value of βj given fixed the values of the remaining variables:

If En{xj(y − x′β−j)} > (λ/n)γj{Q̂(β−j)}1/2, set

βj = −
En{xj(y − x′β−j)]

En(x2
j)

+
λγj

En(x2
j)

[
Q̂(β−j)− {En(xjy − xjx

′β−j)}
2{En(x

2
j)}

−1
]1/2

[
n2 − {λ2γ2

j /En(x2
j)}

]1/2 .

If En{xj(y − x′β−j)} < −(λ/n)γj{Q̂(β−j)}1/2, set

βj = −
En{xj(y − x′β−j)}

En(x2
j)

−
λγj

En(x2
j)

[
Q̂(β−j)− {En(xjyi − xjx

′β−j)}
2{En(x

2
j)}

−1
]1/2

[n2 − {λ2γ2
j /En(x2

j)}]
1/2

.

If |En{xj(y − x′β−j)}| 6 (λ/n)γj{Q̂(β−j)}1/2, set βj = 0.

Appendix C. Additional Monte Carlo Results

C.1. Overview of Additional Monte Carlo Results. In this section we provide
more extensive Monte Carlo experiments to assess the finite sample performance
of the proposed square-root lasso estimator. First we compare the performances
of lasso and square-root lasso for different distributions of the noise and different
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designs. Second we compare square-root lasso with several feasible versions of lasso
that estimate the unknown parameter σ.

C.2. Detailed performance comparison of lasso and square-root lasso. Re-
garding the parameters for lasso and square-root lasso, we set the penalty level
according to the asymptotic options defined in the main text:

lasso penalty: σc 2n1/2Φ−1(1−α/2p) square-root lasso penalty: c n1/2Φ−1(1−α/2p)

respectively, with 1−α = 0.95 and c = 1.1. As noted in the main text, experiments
with the penalty levels according to the exact option led to similar behavior.

We use the linear regression model stated in the introduction of the main text
as a data-generating process, with either standard normal, t(4), or asymmetric
exponential errors: (a) ǫi ∼ N(0, 1), (b) ǫi ∼ t(4)/21/2, or (c) ǫi ∼ exp(1)−
1 so that E(ǫ2i ) = 1 in either case. We set the true parameter value as β0 =
(1, 1, 1, 1, 1, 0, . . . , 0)′, and we vary the parameter σ between 0.25 and 3. The number
of regressors is p = 500, the sample size is n = 100, and we used 100 simulations
for each design. We generate regressors as xi ∼ N(0,Σ). We consider two design
options for Σ: Toeplitz correlation matrix Σjk = (1/2)|j−k| and equicorrelated
correlation matrix Σjk = (1/2).

The results of computational experiments for designs a), b) and c) in Figures 3
and 3 illustrates the theoretical results indicated obtained in the paepr. That is,
the performance of the non-Gaussian cases b) and c) is very similar to the Gaussian
case. Moreover, as expected, higher correlation between covariates translates into
larger empirical risk.

The performance of square-root lasso and post square-root lasso are relatively
close to the performance of lasso and post lasso that knows σ. These results are in
close agreement with our theoretical results, which state that the upper bounds on
empirical risk for square-root lasso asymptotically approach the analogous bounds
for infeasible lasso.

C.3. Comparison with feasible versions of lasso. Next we focus on the Toeplitz
design above to compare many traditional estimators related to lasso. More specifi-
cally we consider the following estimators: (1) oracle estimator, which is ols applied
to the true minimal model (which is unknown outside the experiment), (2) infeasi-
ble lasso with known σ (which is unknown outside the experiment), (3) post lasso,
which applies ols to the model selected by infeasible lasso, (4) square-root lasso,
(5) post square-root lasso, which applies least squares to the model selected by
square-root lasso, (6) 1-step feasible lasso, which is lasso with an estimate of σ
given by the conservative upper bound σ̂ = [En{(y− ȳ)2}]1/2 where ȳ = En(y), (7)
post 1-step lasso, which applies least squares to the model selected by 1-step lasso,
(8) 2-step lasso, which is lasso with an estimates of σ given by the 1-step lasso esti-

mator β̃, namely σ̂ = {Q̂(β̃)}1/2, (9) post 2-step lasso, which applies least squares
to the model selected by 2-step lasso, (10) cv-lasso, which is lasso with an estimate
of λ given by K-fold cross validation, (10) post cv-lasso, which applies OLS to the
model selected by K-fold lasso, (11) square-root lasso (1/2), which uses the penalty
of square-root lasso multiplied by 1/2, (12) post square-root lasso (1/2), which ap-
plies least squares to the model selected by square-root lasso (1/2). We generate
regressors as xi ∼ N(0,Σ) with the Toeplitz correlation matrix Σjk = (1/2)|j−k|.
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We focus our evaluation of the performance of an estimator β̃ on the relative av-

erage empirical risk with respect to the oracle estimator β∗, E(‖β̃−β0‖2,n)/E(‖β∗−
β0‖2,n).

We present the results comparing square-root lasso to lasso where the penalty
parameter λ is chosen based on K-fold cross-validation procedure. We report the
experiments for designs a), b) and c) in Figure 5. The first observation is that as
indicated by theoretical results of the paper, the performance of the non-Gaussian
cases b) and c) is very similar to the Gaussian case so we focus on the later.

We observe that cv-lasso does improve upon square-root lasso (and infeasible
lasso as well) with respect to empirical risk. The cross-validation procedure se-
lects a smaller penalty level, which reduces the bias. However, cv-lasso is uniformly
dominated by a square-root lasso method with penalty scaled by 1/2. Note the com-
putational burden of cross-validation is substantial since one needs to solve several
different lasso instances. Importantly, cv-lasso does not perform well for purposes
of model selection. This can be seen from the fact that post cv-lasso performs
substantially worse than cv-lasso. Figure 5 also illustrates that square-root lasso
performs substantially better than cv-lasso for purposes of models selection since
post square-root lasso thoroughly dominates all other feasible methods considered.

Figure 6 compares other feasible lasso methods that are not as computational
intense as cross-validation. The estimator with the best performance for all noise
levels considered was the post square-root lasso reflecting the good model selec-
tion properties of the square-root lasso. The simple 1-step lasso with conservative
estimate of σ does very poorly. The 2-step lasso does better, but it is still domi-
nated by square-root lasso. The post 1-step lasso and the post 2-step lasso are also
dominated by the post square-root lasso on all noise levels tested.

Appendix D. Proofs of Additional Theoretical Results

Proof of Lemma 3. Part 1. Let tn = Φ−1(1 − α/2p) and for some wn → ∞ slowly

enough let un = wnα
−2/qn−1/2 log1/2(n ∨ p) < 1/2 for n large enough. Thus,

pr
(
Λ > n1/2tn | X

)
6 pr

[
max16j6p

n1/2|En(xjǫ)|

{En(x2
jǫ

2)}1/2 > (1− un)tn | X
]
+

+pr

[
max16j6p

{
En(x

2
jǫ

2)

En(ǫ2)

}1/2

> 1 + un | X
]
,

since (1 + un)(1 − un) < 1. To bound the first term above, by Condition SN, we
have that for n large enough tn + 1 6 n1/6/[ℓnmax16j6p{En(|xj |3)E(|ǫi|3)}1/3]
where ℓn → ∞ slowly enough. Thus, by the union bound and Lemma 7

pr

[

max
16j6p

n1/2|En(xjǫ)|
{
En(x2

jǫ
2)
}1/2

> (1− un)tn | X

]

6 p max
16j6p

pr

[
n1/2|En(xjǫ)|

{En(x2
jǫ

2)}1/2
> (1− un)tn | X

]

6 2pΦ̄{(1− un)tn}
(
1 + A

ℓ3n

)

6 α
(
1 + 1

t2n

)
exp(t2nun)

1−un

(
1 + A

ℓ3n

)

where t2nun = o(1) under condition SN, and the last inequality follows from stan-
dard bounds on Φ̄ = 1−Φ, and calculations similar to those in the proof of Lemma
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1 of the main text. Moreover,

pr

[

max
16j6p

{
|En(x

2
jǫ

2)|

En(ǫ2)

}1/2

> 1 + un | X

]

6 pr

{
max
16j6p

|En(x
2
jǫ

2)| > 1 + un | X

}
+

+pr
{
En(ǫ

2) < 1− (un/2)
}

since 1/(1 + un) 6 1− un + u2
n 6 1− (un/2) since un 6 1/2. It follows that

pr{En(ǫ
2) < 1− (un/2)} 6 pr{|En(ǫ

2)− 1| > un/2}
. αw

−q/2
n log−q/4(n ∨ p) = o(α)

by the choice of un and the application of Rosenthal’s inequality.

Moreover, for n sufficiently large, letting τ1 = τ2 = α/w
1/2
n , we have

un = wnα
−2/qn−1/2 log1/2(p ∨ n)

> 4
{

2 log(2p/τ1)
n

}1/2 (
E(|ǫi|

q)
τ2

)2/q
max16i6n ‖xi‖2∞

by condition SN since we have q > 4, max16i6n ‖xi‖∞ is uniformly bounded above,
log(2p/τ1) . log(p∨n), and wn → ∞. Thus, applying Lemma 8, noting the relation
above, we have

pr
(
max16j6p En(x

2
j ǫ

2) > 1 + un | X
)

6 pr

(
max
16j6p

|En{x2
j(ǫ

2 − 1)}| > un | X
)

6 τ1 + τ2 = o(α).

Part 2. Let tn = Φ−1(1 − α/2p) and for some wn → ∞ slowly enough let

un = wnα
−2/qn−1/2 log1/2(n ∨ p) < 1/2 for n large enough. Thus,

pr
{
Λ > (1 + un)(1 + 1/tn)n

1/2tn | X
}

6 pr

[
max
16j6p

n1/2|En(xjǫ)|

{En(x2
jǫ

2)}1/2
> (1 + 1/tn)tn | X

]
+

+pr

[
max
16j6p

{
En(x

2
jǫ

2)

En(ǫ2)

}1/2

> 1 + un | X

]
.

By the same argument as in part 1 we have

pr


 max
16j6p

{
En(x

2
j ǫ

2)

En(ǫ2)

}1/2

> 1 + un | X


 = o(α).

To bound the first term above, by Condition SN, we use that for n large enough
(1 + 1/tn)tn + 1 6 n1/6/ℓnmax16j6p{En(|xij |3)E(|ǫi|3)}1/3 where ℓn → ∞ slowly
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enough. Thus, by the union bound and Lemma 7

pr


 max
16j6p

n1/2|En(xjǫ)|
{
En(x2

j ǫ
2)
}1/2 > (1 + 1/tn)tn | X




6 p max
16j6p

pr

[
n1/2|En(xjǫ)|
{En(x2

j ǫ
2)}1/2 > tn + 1 | X

]

6 2pΦ̄(tn + 1)

(
1 +

A

ℓ3n

)

6 α exp(−tn − 1/2)
tn

tn + 1

{
1 +

1

(tn + 1)2

}(
1 +

A

ℓ3n

)

= α{1 + o(1)} exp(−tn − 1/2),

where the last inequality follows from standard bounds on Φ̄ and calculations and
calculations similar to those in the proof of Lemma 1 of the main text.

Therefore, for n sufficiently large,

pr{Λ > (1 + un)(1 + 1/tn)n
1/2tn | X} < α

so that ΛF0
(1− α | X) 6 (1 + un)(1 + 1/tn)n

1/2tn = {1 + o(1)}n1/2tn. �

Appendix E. Omitted Proofs from the Main Text

E.1. Omitted Part of Proof of Lemma 1. Claim in the proof of Lemma 1: For
independent random variables ǫi ∼ N(0, 1) (i = 1, . . . , n) and any 0 < rn < 1, we
have

pr{En(ǫ
2) < (1 − rn)

2} 6 exp(−nr2n/4).

It follows from

pr{En(ǫ
2) < (1− rn)

2} = pr{En(ǫ
2) < 1− 2rn + r2n}

6 pr{En(ǫ
2) < 1− rn}

= pr{En(ǫ
2 − 1) < −rn}

= pr{∑n
i=1(ǫ

2
i − 1) < −nrn}

= pr{∑n
i=1 ai(ǫ

2
i − 1) < −2|a|2

√
nrn/2}

where we have ai = 1 (i = 1, . . . , n), so that |a|2 =
√
n. Applying the second

inequality of Lemma 1 of [12] for
√
x =

√
nrn/2, we have

pr{En(ǫ
2) < (1 − rn)

2} 6 exp(−nr2n/4).

E.2. Omitted Part of Proof of Lemma 2. To show statement (iv) of Lemma
2, it suffices to show that for any ν′ > 1, pr(cΛ > cν′n1/2tn | X) = o(α), which
follows analogously to the proof of statement (iii).
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Indeed, for some constants 1 < ν < ν′,

pr(cΛ > cν′n1/2tn | X)

6(1) p max
16j6p

pr{|n1/2En(xjǫ)| > tnν | X}+ pr
[
{En(ǫ

2)}1/2 < ν/ν′
]

6 p max
16j6p

pr{|n1/2En(xjǫ)| > tnν | X}+ pr{En(ǫ
2) < (ν/ν′)2}

6(2) p max
16j6p

pr{|n1/2En(xjǫ)| > tnν | X}+ o(α)

=(3) 2p Φ̄(tnν){1 + o(1)} + o(α) = o(α)

where (1) holds by the union bound; (2) holds by the application of the Rosenthal
and Vonbahr-Esseen inequalities:

pr[{En(ǫ
2)}1/2 < ν/ν′] . n−{ q

4
∧( q

2
−1)} = o(α)

provided that

α−1 = o{n q
4
∧( q

2
−1)}.

To verify relation (3), by Condition M and Slastnikov-Rubin-Sethuraman’s theorem

on moderate deviations, we have that uniformly in 0 6 |t| 6 k log1/2 n for some
k2 < q − 2, uniformly in 1 6 j 6 p and for any F = Fn ∈ F , pr{n1/2|En(xjǫ)| >
t}/{2Φ̄(t)} → 1, so the relation (3) holds to for t = tnν 6 {2 log(2p/α)}1/2ν 6

ν{η(q − 2) logn}1/2 for η < 1 by assumption, provided ν is set sufficiently close to
1 so that ν2η < 1.

When q > 4, for large n we can also bound pr{|En(ǫ
2 − 1)| > (ν/ν′)2} by

pr{|En(ǫ
2 − 1)| > rn} where rn = k{logn/n}1/2, k2 < q/2 − 2, and invoking

the Slastnikov’s theorem as previously, which gives pr{|En(ǫ
2 − 1)| > (ν/ν′)2} .

n−k2

= o(α) if 1/α = o(nk2

) = o(n
q
2
−2).

Taking the best conditions on 1/α gives the restriction:

α−1 = o




nq/2−1 if 2 6 q 6 4

nq/4 if 4 < q 6 8

nq/2−2 if 8 < q


 . (38)

Appendix F. Tools Used

F.1. Rosenthal and Von Bahr-Esseen Inequalities.

Lemma 4. Let X1, . . . , Xn be independent zero-mean random variables, then for
r > 2

E

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

r)
6 C(r)max




n∑

t=1

E(|Xi|r),
{

n∑

t=1

E(X2
i )

}r/2

 .

This is due to [18].

Corollary 5. Let r > 2, and consider the case of identically distributed zero-mean
variables Xi with E(X2

i ) = 1 and E(|Xi|r) bounded by C. Then for any ℓn → ∞

Pr

( |∑n
i=1 Xi|
n

> ℓnn
−1/2

)
6

2C(r)C

ℓrn
→ 0.
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To verify the corollary, we use Rosenthal’s inequality E
(
|∑n

i=1 Xi|r
)
6 Cnr/2,

and the result follows by Markov inequality,

P

( |∑n
i=1 Xi|
n

> c

)
6

C(r)Cnr/2

crnr
6

C(r)C

crnr/2
.

Lemma 5. Let X1, . . . , Xn be independent zero-mean random variables. Then for
1 6 r 6 2

E

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

r)
6 (2− n−1) ·

n∑

k=1

E(|Xk|r).

This result is due to [26].

Corollary 6. Let r ∈ [1, 2], and consider the case of identically distributed zero-
mean variables Xi with E(|Xi|r) bounded by C. Then for any ℓn → ∞

pr

{ |
∑n

i=1 Xi|
n

> ℓnn
−(1−1/r)

}
6

2C

ℓrn
→ 0.

The corollary follow by Markov and Vonbahr-Esseen’s inequalities,

pr

( |∑n
i=1 Xi|
n

> c

)
6

CE (|∑n
i=1 Xi|r)

crnr
6

nE(|Xi|r)
crnr

6 C
E(|Xi|r)
crnr−1

.

F.2. Moderate Deviations for Sums. Let Xni, i = 1, . . . , n;n > 1 be a double
sequence of row-wise independent random variables with E(Xni) = 0, E(X2

ni) < ∞,

i = 1, . . . , kn; n > 1, and B2
n =

∑kn

i=1 E(X2
ni) → ∞ as n → ∞. Let

Fn(x) = pr

(
kn∑

i=1

Xin < xBn

)
.

The following result is due to [21].

Lemma 6. If for sufficiently large n and some positive constant c,

kn∑

i=1

E{|Xni|2+c2ρ(|Xni|) log−(1+c2)/2(3 + |Xni|)} 6 g(Bn)B
2
n,

where ρ(t) is slowly varying function monotonically growing to infinity and g(t) =
o{ρ(t)} as t → ∞, then

1− Fn(x) ∼ 1− Φ(x), Fn(−x) ∼ Φ(−x), n → ∞,

uniformly in the region 0 6 x 6 c{logB2
n}1/2.

The following result is due to [21] and [19].

Corollary 7. If q > c2 + 2 and
∑kn

i=1 E(|Xni|q) 6 KB2
n, then

1− Fn(x) ∼ 1− Φ(x), Fn(−x) ∼ Φ(−x), n → ∞,

uniformly in the region 0 6 x 6 c{logB2
n}1/2.

Remark. Rubin-Sethuraman derived the corollary for x = t{logB2
n}1/2 for fixed

t. Slastnikov’s result adds uniformity and relaxes the moment assumption.
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F.3. Moderate Deviations for Self-Normalizing Sums. We shall be using the
following two technical results. The first follows from Theorem 7.4 in [7] which is
based on [9].

Lemma 7. Let X1,n, . . . , Xn,n be the triangular array of independent non-identically
distributed zero-mean random variables. Suppose

Mn =
{ 1
n

∑n
i=1 E(X2

i,n)}1/2

{ 1
n

∑n
i=1 E(|Xi,n|3)}1/3

> 0 and for some ℓn → ∞ we have n1/6Mn/ℓn > 1.

Then there is a universal constant A such that uniformly on 0 6 x 6 n1/6Mn/ℓn−1,
the quantities

Sn,n =

n∑

i=1

Xi,n, V 2
n,n =

n∑

i=1

X2
i,n

obey ∣∣∣∣
pr(|Sn,n/Vn,n| > x)

2Φ̄(x)
− 1

∣∣∣∣ 6
A

ℓ3n
→ 0.

The second follows from the proof of Lemma 10 given in the working paper
“Pivotal Estimation of Nonparametric Functions via Square-root Lasso”, arXiv
1105.1475v2, by the authors, which is based on symmetrization arguments.

Lemma 8. Let ǫi (i = 1, . . . , n) be independent identically distributed random
variables such that E(ǫ2i ) = 1 and supn>1 E(|ǫi|q) < ∞ for q > 4. Conditional on
x1, . . . , xn ∈ IRp, with probability 1− 4τ1 − 4τ2

max
16j6p

|En{x2
j(ǫ

2 − 1)}| 6 4

{
2 log(2p/τ1)

n

}1/2 {
E(|ǫi|q)

τ2

}2/q

max
16i6n

‖xi‖2∞.
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Figure 3. Average relative empirical risk of infeasible lasso (dots),
square-root lasso (solid), post infeasible lasso (dot-dash), and post
square-root lasso (solid with circle), with respect to the oracle esti-
mator, that knows the true support, as a function of the standard
deviation of the noise σ. In this experiment we used Toeplitz cor-
relation matrix Σjk = (1/2)|j−k|.
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Figure 4. Average relative empirical risk of infeasible lasso (dots),
square-root lasso (solid), post infeasible lasso (dot-dash), and post
square-root lasso (solid with circle), with respect to the oracle esti-
mator, that knows the true support, as a function of the standard
deviation of the noise σ. In this experiment we used equicorrelated
correlation matrix Σjk = (1/2).
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Comparison of square-root lasso to cross-validation choice of λ
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Figure 5. Average relative empirical risk of square-root lasso
(solid), post square-root lasso (solid with circle), cv-lasso (dots),
post cv-lasso (dot-dash), and square-root lasso (1/2) (dashes), with
respect to the oracle estimator, that knows the true support, as a
function of the standard deviation of the noise σ. In this experi-
ment we used Toeplitz correlation matrix Σjk = (1/2)|j−k|.
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Comparison of square-root lasso to other feasible lasso methods
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Figure 6. Average relative empirical risk of square-root lasso
(solid), post square-root lasso (solid with circle), 1-step lasso
(dots), post 1-step lasso (dot-dash), 2-step lasso (dashes), post 2-
step lasso (dots with triangle), with respect to the oracle estimator,
that knows the true support, as a function of the standard devia-
tion of the noise σ. In this experiment we used Toeplitz correlation
matrix Σjk = (1/2)|j−k|.
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