Hint: Condition on |T|.

3. Show that if $P[|X| \le 1] = 1$, then $Var(X) \le 1$ with equality iff $X = \pm 1$ with probability $\frac{1}{2}$.

Hint: $Var(X) \leq EX^2$.

4. Comparison of Bounds: Both the Hoeffding and Chebychev bounds are functions of n and ϵ through $\sqrt{n}\epsilon$.

(a) Show that the ratio of the Hoeffding function $h(\sqrt{n\epsilon})$ to the Chebychev function $c(\sqrt{n\epsilon})$ tends to 0 as $\sqrt{n\epsilon} \to \infty$ so that $h(\cdot)$ is arbitrarily better than $c(\cdot)$ in the tails.

(b) Show that the normal approximation $2\Phi\left(\frac{\sqrt{n\epsilon}}{\sigma}\right) - 1$ gives lower results than h in the tails if $P[|X| \le 1] = 1$ because, if $\sigma^2 \le 1, 1 - \Phi(t) \sim \varphi(t)/t$ as $t \to \infty$. Note: Hoeffding (1963) exhibits better bounds for known σ^2 .

5. Suppose $\lambda : R \to R$ has $\lambda(0) = 0$, is bounded, and has a bounded second derivative λ'' . Show that if X_1, \ldots, X_n are i.i.d., $EX_1 = \mu$ and $\operatorname{Var} X_1 = \sigma^2 < \infty$, then

$$E\lambda(\bar{X}-\mu) = \lambda'(0)\frac{\sigma}{\sqrt{n}}\sqrt{\frac{2}{\pi}} + O\left(\frac{1}{n}\right) \text{ as } n \to \infty.$$

Hint: $\sqrt{n}E(\lambda(|\bar{X} - \mu|) - \lambda(0)) = E\lambda'(0)\sqrt{n}|\bar{X} - \mu| + E\left(\frac{\lambda''}{2}(\tilde{X} - \mu)(\bar{X} - \mu)^2\right)$ where $|\tilde{X} - \mu| \le |\bar{X} - \mu|$. The last term is $\le \sup_x |\lambda''(x)|\sigma^2/n$ and the first tends to $\lambda'(0)\sigma \int_{-\infty}^{\infty} |z|\varphi(z)dz$ by Remark B.7.1(2).

A series of the series of the

Problems for Section 5.2

1. Using the notation of Theorem 5.2.1, show that

$$\sup\{P_{\mathbf{p}}(|\widehat{p}_n-\mathbf{p}|\geq\delta):\mathbf{p}\in\mathcal{S}\}\leq k/4n\delta^2.$$

2. Let X_1, \ldots, X_n be i.i.d. $\mathcal{N}(\mu, \sigma^2)$. Show that for all $n \ge 1$, all $\epsilon > 0$

$$\sup_{\sigma} P_{(\mu,\sigma)}[|\bar{X}-\mu| \ge \epsilon] = 1.$$

Hint: Let $\sigma \to \infty$.

3. Establish (5.2.5). *Hint*: $|\widehat{q}_n - q(\mathbf{p})| \ge \epsilon \Rightarrow |\widehat{p}_n - \mathbf{p}| \ge \omega^{-1}(\epsilon).$

4. Let (U_i, V_i) , $1 \le i \le n$, be i.i.d. $\sim P \in \mathcal{P}$.

(a) Let $\gamma(P) = P[U_1 > 0, V_1 > 0]$. Show that if $P = \mathcal{N}(0, 0, 1, 1, \rho)$, then

$$ho = \sin 2\pi \left(\gamma(P) - rac{1}{4}
ight)$$
 .

(b) Deduce that if P is the bivariate normal distribution, then

$$\tilde{\rho} \equiv \sin\left\{2\pi\left(\frac{1}{n}\sum_{i=1}^{n}\mathbbm{1}\{X_i > \bar{X}\}\mathbbm{1}\{Y_i > \bar{Y}\}\right)\right\}$$

is a consistent estimate of ρ .

(c) Suppose $\rho(P)$ is defined generally as $\operatorname{Cov}_P(U, V)/\sqrt{\operatorname{Var}_P U} \operatorname{Var}_P V$ for $P \in \mathcal{P} = \{P : E_P U^2 + E_P V^2 < \infty, \operatorname{Var}_P U \operatorname{Var}_P V > 0\}$. Show that the sample correlation coefficient continues to be a consistent estimate of $\rho(P)$ but $\tilde{\rho}$ is no longer consistent.

5. Suppose X_1, \ldots, X_n are i.i.d. $\mathcal{N}(\mu, \sigma_0^2)$ where σ_0 is known.

(a) Show that condition (5.2.8) fails even in this simplest case in which $\overline{X} \xrightarrow{P} \mu$ is clear. *Hint:* $\sup_{\mu} \left| \frac{1}{n} \sum_{i=1}^{n} \left(\frac{(X_i - \mu)^2}{\sigma_0^2} - \left(1 + \frac{(\mu - \mu_0)^2}{\sigma_0^2} \right) \right) \right| = \infty.$

(b) Show that condition (5.2.14)(i),(ii) holds.

Hint: K can be taken as [-A, A], where A is an arbitrary positive and finite constant.

6. Prove that (5.2.14)(i) and (ii) suffice for consistency.

7. (Wald) Suppose $\theta \to \rho(X, \theta)$ is continuous, $\theta \in R$ and

(i) For some $\epsilon(\theta_0) > 0$

 $E_{\theta_0} \sup\{|\rho(X,\theta') - \rho(X,\theta)| : |\theta - \theta'| \le \epsilon(\theta_0)\} < \infty.$

(ii)
$$E_{\theta_0} \inf \{ \rho(X, \theta) - \rho(X, \theta_0) : |\theta - \theta_0| \ge A \} > 0 \text{ for some } A < \infty.$$

Show that the maximum contrast estimate $\hat{\theta}$ is consistent. *Hint:* From continuity of ρ , (i), and the dominated convergence theorem,

$$\lim_{\delta \to 0} E_{\theta_0} \sup\{|\rho(X, \theta') - \rho(X, \theta)| : \theta' \in S(\theta, \delta)\} = 0$$

where $S(\theta, \delta)$ is the δ ball about θ . Therefore, by the basic property of maximum contrast estimates, for each $\theta \neq \theta_0$, and $\epsilon > 0$ there is $\delta(\theta) > 0$ such that

$$E_{m{ heta}_0}\inf\{
ho(X, m{ heta}') -
ho(X, m{ heta}_0): m{ heta}' \in S(m{ heta}, \delta(m{ heta}))\} > \epsilon.$$

By compactness there is a finite number $\theta_1, \ldots, \theta_r$ of sphere centers such that

$$K \cap \{ heta: | heta - heta_0| \geq \lambda\} \subset igcup_{j=1}^r S(heta_j, ar{s}(heta_j)).$$

Now

$$\inf\left\{\frac{1}{n}\sum_{i=1}^{n} \{\rho(X_i,\theta) - \rho(X_i,\theta_0)\} : \theta \in K \cap \{\theta : |\theta - \theta_0| \ge \lambda\right\}$$

$$\geq \min_{1 \leq j \leq \tau} \left\{ \frac{1}{n} \sum_{i=1}^{n} \inf\{\rho(X_i, \theta') - \rho(X_i, \theta_0)\} : \theta' \in S(\theta_j, \delta(\theta_j)) \right\}$$

For r fixed apply the law of large numbers.

8. The condition of Problem 7(ii) can also fail. Let X_i be i.i.d. $\mathcal{N}(\mu, \sigma^2)$. Compact sets K can be taken of the form $\{|\mu| \le A, \epsilon \le \sigma \le 1/\epsilon, \epsilon > 0\}$. Show that the log likelihood tends to ∞ as $\sigma \to 0$ and the condition fails.

9. Indicate how the conditions of Problem 7 have to be changed to ensure uniform consistency on K.

10. Extend the result of Problem 7 to the case $\theta \in \mathbb{R}^p$, p > 1.

Problems for Section 5.3

- 1. Establish (5.3.9) in the exponential model of Example 5.3.1.
- **2.** Establish (5.3.3) for j odd as follows:
 - (i) Suppose X'_1, \ldots, X'_n are i.i.d. with the same distribution as X_1, \ldots, X_n but independent of them, and let $\bar{X}' = n^{-1} \Sigma X'_i$. Then $E|\bar{X} \mu|^j \leq E|\bar{X} \bar{X}'|^j$.
 - (ii) If ϵ_i are i.i.d. and take the values ± 1 with probability $\frac{1}{2}$, and if c_1, \ldots, c_n are constants, then by Jensen's inequality, for some constants M_j ,

ų

$$E\left|\sum_{i=1}^{n} c_i \epsilon_i\right|^j \le E^{\frac{j}{j+1}} \left(\sum_{i=1}^{n} c_i \epsilon_i\right)^{j+1} \le M_j \left(\sum_{i=1}^{n} c_i^2\right)^{\frac{j}{2}}$$

(iii) Condition on $|X_i - X'_i|$, i = 1, ..., n, in (i) and apply (ii) to get

(iv)
$$E \left| \sum_{i=1}^{n} (X_i - X'_i) \right|^j \le M_j E \left[\sum_{i=1}^{n} (X_i - X'_i)^2 \right]^{\frac{j}{2}} \le M_j n^{\frac{j}{2}} E \left[\frac{1}{n} \sum_{i=1}^{n} (X_i - X'_i)^2 \right]^{\frac{j}{2}} \le M_j n^{\frac{j}{2}} E \left(\frac{1}{n} \sum |X_i - X'_i|^j \right) \le M_j n^{\frac{j}{2}} E |X_1 - \mu|^j.$$

- 3. Establish (5.3.11). Hint: See part (a) of the proof of Lemma 5.3.1.
- 4. Establish Theorem 5.3.2. *Hint:* Taylor expand and note that if $i_1 + \cdots + i_d = m$

$$E\left|\prod_{k=1}^{d} (\bar{Y}_k - \mu_k)^{i_k}\right| \leq m^{m+1} \sum_{k=1}^{d} E|\bar{Y}_k - \mu_k|^n$$
$$\leq C_m n^{-k/2}.$$

Suppose $a_d \ge 0, 1 \le j \le m, \sum_{j=1}^d i_j = m$ then

$$a_1^{i_1}, \ldots, a_d^{i_d} \leq [\max(a_1, \ldots, a_d)]^m \leq \left(\sum_{j=1}^m a_j\right)^m$$
$$\leq m^{m-1} \sum_{j=1}^m a_j^m.$$

5. Let X_1, \ldots, X_n be i.i.d. R valued with $EX_1 = 0$. Show that

 $\sup\{|E(X_{i_1},\ldots,X_{i_j})|:i_1,\ldots,i_j; j=1,\ldots,n\}=E|X_1|.$

6. Show that if $E|X_1|^j < \infty$, $j \ge 2$, then $E|X_1 - \mu|^j \le 2^j E|X_1|^j$. *Hint:* By the iterated expectation theorem

$$egin{aligned} E[X_1-\mu|^j &= E\{|X_1-\mu|^j \mid |X_1| \geq |\mu|\}P(|X_1| \geq |\mu|)\ +E\{|X_1-\mu|^j \mid |X_1| < |\mu|\}P(|X_1| < |\mu|) \end{aligned}$$

7. Establish 5.3.28.

8. Let X_1, \ldots, X_{n_1} be i.i.d. F and Y_1, \ldots, Y_{n_2} be i.i.d. G, and suppose the X's and Y's are independent.

(a) Show that if F and G are $\mathcal{N}(\mu_1, \sigma_1^2)$ and $\mathcal{N}(\mu_2, \sigma_2^2)$, respectively, then the LR test of H: $\sigma_1^2 = \sigma_2^2$ versus K: $\sigma_1^2 \neq \sigma_2^2$ is based on the statistic s_1^2/s_2^2 , where $s_1^2 = (n_1 - 1)^{-1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2$, $s_2^2 = (n_2 - 1)^{-1} \sum_{j=1}^{n_2} (Y_j - \bar{Y})^2$.

(b) Show that when F and G are normal as in part (a), then $(s_1^2/\sigma_1^2)/(s_2^2/\sigma_2^2)$ has an $\mathcal{F}_{k,m}$ distribution with $k = n_1 - 1$ and $m = n_2 - 1$.

(c) Now suppose that F and G are not necessarily normal but that

$$G \in \mathcal{G} = \left\{ F\left(\frac{\cdot - a}{b}\right) : a \in \mathbb{R}, \ b > 0 \right\}$$

and that $0 < Var(X_1^2) < \infty$. Show that if $m = \lambda k$ for some $\lambda > 0$ and

$$c_{k,m} = 1 + \sqrt{\frac{\kappa(k+m)}{km}} z_{1-\alpha}, \ \kappa = \operatorname{Var}[(X_1 - \mu_1)/\sigma_1]^2, \ \mu_1 = E(X_1), \ \sigma_1^2 = \operatorname{Var}(X_1).$$

Then, under H: Var (X_1) = Var (Y_1) , $P(s_1^2/s_2^2 \le c_{k,m}) \rightarrow 1 - \alpha$ as $k \rightarrow \infty$.

(d) Let $\hat{c}_{k,m}$ be $c_{k,m}$ with κ replaced by its method of moments estimate. Show that under the assumptions of part (c), if $0 < EX_1^8 < \infty$, $P_H(s_1^2/s_2^2 \leq \hat{c}_{k,m}) \rightarrow 1 - \alpha$ as $k \rightarrow \infty$.

(e) Next drop the assumption that $G \in \mathcal{G}$. Instead assume that $0 < \operatorname{Var}(Y_1^2) < \infty$. Under the assumptions of part (c), use a normal approximation to find an approximate critical value $q_{k,m}$ (depending on $\kappa_1 = \operatorname{Var}[(X_1 - \mu_1)/\sigma_1]^2$ and $\kappa_2 = \operatorname{Var}[(X_2 - \mu_2)/\sigma_2]^2$ such that $P_H(s_1^2/s_2^2 \leq q_{k,m}) \to 1 - \alpha$ as $k \to \infty$.

(f) Let $\hat{q}_{k,m}$ be $q_{k,m}$ with κ_1 and κ_2 replaced by their method of moment estimates. Show that under the assumptions of part (e), if $0 < EX_1^8 < \infty$ and $0 < EY_1^8 < \infty$, then $P(s_1^2/s_2^2 \le \hat{q}_{k,m}) \to 1 - \alpha$ as $k \to \infty$.

9. In Example 5.3.6, show that

(a) If $\mu_1 = \mu_2 = 0$, $\sigma_1 = \sigma_2 = 1$, $\sqrt{n}((\widehat{C} - \rho), (\widehat{\sigma}_1^2 - 1), (\widehat{\sigma}_2^2 - 1))^T$ has the same asymptotic distribution as $n^{\frac{1}{2}} [n^{-1} \Sigma X_i Y_i - \rho, n^{-1} \Sigma X_i^2 - 1, n^{-1} \Sigma Y_i^2 - 1]^T$.

(b) If $(X, Y) \sim \mathcal{N}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, then $\sqrt{n}(r^2 - \rho^2) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 4\rho^2(1 - \rho^2)^2)$ and, if $\rho \neq 0$, then $\sqrt{n}(r - \rho) \to \mathcal{N}(0, (1 - \rho^2)^2)$.

(c) Show that if $\rho = 0$, $\sqrt{n}(r - \rho) \rightarrow \mathcal{N}(0, 1)$.

Hint: Use the central limit theorem and Slutsky's theorem. Without loss of generality, $\mu_1 = \mu_2 = 0$, $\sigma_1^2 = \sigma_2^2 = 1$.

10. Show that $\frac{1}{2} \log \left(\frac{1+\rho}{1-\rho} \right)$ is the variance stabilizing transformation for the correlation coefficient in Example 5.3.6.

Hint: Write
$$\frac{1}{(1-\rho)^2} = \frac{1}{2} \left(\frac{1}{1-\rho} + \frac{1}{1+\rho} \right)$$
.

11. In survey sampling the *model-based* approach postulates that the population

an an a share an ann an Anna an Anna an Anna an Anna an Anna an Anna. An an Anna an A

 $\{x_1, \ldots, x_N\}$ or $\{(u_1, x_1), \ldots, (u_N, x_N)\}$ we are interested in is itself a sample from a superpopulation that is known up to parameters; that is, there exists T_1, \ldots, T_N i.i.d. P_{θ} , $\theta \in \Theta$ such that $T_i = t_i$ where $t_i \equiv (u_i, x_i)$, $i = 1, \ldots, N$. In particular, suppose in the context of Example 3.4.1 that we use T_{i_1}, \ldots, T_{i_n} , which we have sampled at random from $\{t_1, \ldots, t_N\}$, to estimate $\bar{x} \equiv \frac{1}{N} \sum_{i=1}^N x_i$. Without loss of generality, suppose $i_j = j$, $1 \leq j \leq n$. Consider as estimates

(i)
$$\bar{X} = \frac{X_1 + \dots + X_n}{n}$$
 when $T_i \equiv (U_i, X_i)$.

(ii)
$$\widehat{X}_R = \widehat{b}_{opt}(\widetilde{U} - \overline{u})$$
 as in Example 3.4.1.

Show that, if $\frac{n}{N} \to \lambda$ as $N \to \infty$, $0 < \lambda < 1$, and if $EX_1^2 < \infty$ (in the supermodel), then

(a)
$$\sqrt{n}(\bar{X} - \bar{x}) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \tau^2(1 - \lambda))$$
 where $\tau^2 = \operatorname{Var}(X_1)$.

(b) Suppose P_θ is such that X₁ = bU_i+ε_i, i = 1,..., N where the ε_i are i.i.d., Eε_i = 0, Var(ε_i) = σ² < ∞ and Var(U) > 0. Show that √n(X_R-x̄) → N(0, (1-λ)σ²), σ² < τ². Hint: (a) X̄ - x̄ = (1 - n/N) (X̄ - X̄^c) where X̄^c = 1/N-n ∑^N_{i=n+1} X_i. (b) Use the delta method for the multivariate case and note (b_{opt} - b)(Ū - ū) = o_p(n^{-1/2}).

12. (a) Suppose that E|Y₁|³ < ∞. Show that |E(Y
_a - μ_a)(Y
_b - μ_b)(Y
_c - μ_c)| ≤ Mn⁻².
(b) Deduce formula (5.3.14). Hint: If U is independent of (V, W), EU = 0, E(WV) < ∞, then E(UVW) = 0.
13. Let S_n have a χ²_n distribution.

(a) Show that if n is large, $\sqrt{S_n} - \sqrt{n}$ has approximately a $\mathcal{N}(0, \frac{1}{2})$ distribution. This is known as *Fisher's approximation*.

(b) From (a) deduce the approximation $P[S_n \le x] \approx \Phi(\sqrt{2x} - \sqrt{2n})$.

(c) Compare the approximation of (b) with the central limit approximation $P[S_n \le x] = \Phi((x-n)/\sqrt{2n})$ and the exact values of $P[S_n \le x]$ from the χ^2 table for $x = x_{0.90}$, $x = x_{0.99}$, n = 5, 10, 25. Here x_q denotes the qth quantile of the χ^2_n distribution.

14. Suppose X_1, \ldots, X_n is a sample from a population with mean μ , variance σ^2 , and third central moment μ_3 . Justify formally

$$E[h(\bar{X}) - E(h(\bar{X}))]^3 = \frac{1}{n^2} [h'(\mu)]^3 \mu_3 + \frac{3}{n^2} h''(\mu) [h'(\mu)]^2 \sigma^4 + 0(n^{-3}).$$

Hint: Use (5.3.12).

15. It can be shown (under suitable conditions) that the normal approximation to the distribution of $h(\bar{X})$ improves as the coefficient of skewness γ_{1n} of $h(\bar{X})$ diminishes.

(a) Use this fact and Problem 5.3.14 to explain the numerical results of Problem

5.3.13(c).

(b) Let $S_n \sim \chi_n^2$. The following approximation to the distribution of S_n (due to Wilson and Hilferty, 1931) is found to be excellent

$$P[S_n \le x] \approx \Phi\left\{\left[\left(\frac{x}{n}\right)^{1/3} - 1 + \frac{2}{9n}\right]\sqrt{\frac{9n}{2}}\right\}.$$

Use (5.3.6) to explain why.

16. Normalizing Transformation for the Poisson Distribution. Suppose X_1, \ldots, X_n is a sample from a $\mathcal{P}(\lambda)$ distribution.

(a) Show that the only transformations h that make $E[h(\bar{X}) - E(h(\bar{X}))]^3 = 0$ to terms up to order $1/n^2$ for all $\lambda > 0$ are of the form $h(t) = ct^{2/3} + d$.

(b) Use (a) to justify the approximation

$$P\left[\bar{X} \le \frac{k}{n}\right] \approx \Phi\left\{\sqrt{n}\left[\left(\frac{k+\frac{1}{2}}{n}\right)^{2/3} - \lambda^{2/3}\right] \middle/ \frac{2}{3}\lambda^{1/6}\right\}.$$

17. Suppose X_1, \ldots, X_n are independent, each with Hardy-Weinberg frequency function f given by

where $0 < \theta < 1$.

(a) Find an approximation to $P[\bar{X} \leq t]$ in terms of θ and t.

(b) Find an approximation to $P[\sqrt{\bar{X}} \le t]$ in terms of θ and t.

(c) What is the approximate distribution of $\sqrt{n}(\bar{X} - \mu) + \bar{X}^2$, where $\mu = E(X_1)$?

18. Variance Stabilizing Transformation for the Binomial Distribution. Let X_1, \ldots, X_n be the indicators of n binomial trials with probability of success θ . Show that the only variance stabilizing transformation h such that h(0) = 0, h(1) = 1, and $h'(t) \ge 0$ for all t, is given by $h(t) = (2/\pi) \sin^{-1}(\sqrt{t})$.

19. Justify formally the following expressions for the moments of $h(\bar{X}, \bar{Y})$ where $(X_1, Y_1), \ldots, (X_n, Y_n)$ is a sample from a bivariate population with $E(X) = \mu_1, E(Y) = \mu_2$, $Var(X) = \sigma_1^2$, $Var(Y) = \sigma_2^2$, $Cov(X, Y) = \rho\sigma_1\sigma_2$.

(a)

$$E(h(\bar{X}, \bar{Y})) = h(\mu_1, \mu) + 0(n^{-1}).$$

(b)

$$\operatorname{Var}(h(\bar{X},\bar{Y})) \cong \frac{1}{n} \{ [h_1(\mu_1,\mu_2)]^2 \sigma_1^2 + 2h_1(\mu_1,\mu_2)h_2(\mu_1,\mu_2)\rho\sigma_1\sigma_2 + [h_2(\mu_1,\mu_2)]^2 \sigma_2^2 \} + 0(n^{-2}) \}$$

where

$$h_1(x,y) = \frac{\partial}{\partial x}h(x,y), \ h_2(x,y) = \frac{\partial}{\partial y}h(x,y).$$

Hint: $h(\bar{X}, \bar{Y}) - h(\mu_1, \mu_2) = h_1(\mu_1, \mu_2)(\bar{X} - \mu_1) + h_2(\mu_1, \mu_2)(\bar{Y} - \mu_2) + 0(n^{-1}).$

20. Let $B_{m,n}$ have a beta distribution with parameters m and n, which are integers. Show that if m and n are both tending to ∞ in such a way that $m/(m+n) \rightarrow \alpha$, $0 < \alpha < 1$, then

$$P\left[\sqrt{m+n}\frac{(B_{m,n}-m/(m+n))}{\sqrt{\alpha(1-\alpha)}} \leq x\right] \rightarrow \Phi(x).$$

Hint: Use $B_{m,n} = (m\bar{X}/n\bar{Y})[1 + (m\bar{X}/n\bar{Y})]^{-1}$ where $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ are independent standard exponentials.

21. Show directly using Problem B.2.5 that under the conditions of the previous problem, if $m/(m+n) - \alpha$ tends to zero at the rate $1/(m+n)^2$, then

$$E(B_{m,n}) = \frac{m}{m+n}$$
, Var $B_{m,n} = \frac{\alpha(1-\alpha)}{m+n} + R_{m,n}$

where $R_{m,n}$ tends to zero at the rate $1/(m+n)^2$.

22. Let $S_n \sim \chi_n^2$. Use Stirling's approximation and Problem B.2.4 to give a direct justification of

$$E(\sqrt{S_n}) = \sqrt{n} + R_n$$

where $R_n/\sqrt{n} \to 0$ as in $n \to \infty$. Recall Stirling's approximation:

$$\Gamma(p+1)/(\sqrt{2\pi}e^{-p}p^{p+\frac{1}{2}}) \to 1 \text{ as } p \to \infty.$$

(It may be shown but is not required that $|\sqrt{nR_n}|$ is bounded.)

23. Suppose that X_1, \ldots, X_n is a sample from a population and that h is a real-valued function of \bar{X} whose derivatives of order k are denoted by $h^{(k)}, k > 1$. Suppose $|h^{(4)}(x)| \le M$ for all x and some constant M and suppose that μ_4 is finite. Show that $Eh(\bar{X}) = h(\mu) + \frac{1}{2}h^{(2)}(\mu) + \frac{\sigma^2}{n} + R_n$ where $|R_n| \le h^{(3)}(\mu)|\mu_3|/6n^2 + M(\mu_4 + 3\sigma^2)/24n^2$. *Hint:*

$$\left|h(x) - h(\mu) - h^{(1)}(\mu)(x - \mu) - \frac{h^{(2)}(\mu)}{2}(x - \mu)^2 - \frac{h^{(3)}(\mu)}{6}(x - \mu)^3\right| \le \frac{M}{24}(x - \mu)^4.$$

Therefore,

$$\begin{aligned} &\left| Eh(\bar{X}) - h(\mu) - h^{(1)}(\mu) E(\bar{X} - \mu) - \frac{h^{(2)}(\mu)}{2} E(\bar{X} - \mu)^2 \right| \\ &\leq \frac{|h^{(3)}(\mu)|}{6} |E(\bar{X} - \mu)^3| + \frac{M}{24} E(\bar{X} - \mu)^4 \\ &\leq \frac{|h^{(3)}(\mu)|}{6} \frac{|\mu_3|}{n^2} + \frac{M}{24} \frac{(\mu_4 + 3\sigma^4)}{n^2}. \end{aligned}$$

24. Let X_1, \ldots, X_n be a sample from a population with mean μ and variance $\sigma^2 < \infty$. Suppose h has a second derivative $h^{(2)}$ continuous at μ and that $h^{(1)}(\mu) = 0$.

(a) Show that $\sqrt{n}[h(\bar{X}) - h(\mu)] \to 0$ while $n[h(\bar{X} - h(\mu)]$ is asymptotically distributed as $\frac{1}{2}h^{(2)}(\mu)\sigma^2 V$ where $V \sim \chi_1^2$.

(b) Use part (a) to show that when $\mu = \frac{1}{2}$, $n[\bar{X}(1-\bar{X}) - \mu(1-\mu)] \xrightarrow{L} -\sigma^2 V$ with $V \sim \chi_1^2$. Give an approximation to the distribution of $\bar{X}(1-\bar{X})$ in terms of the χ_1^2 distribution function when $\mu = \frac{1}{2}$.

25. Let X_1, \ldots, X_n be a sample from a population with $\sigma^2 = Var(X) < \infty, \mu = E(X)$ and let $T = \overline{X}^2$ be an estimate of μ^2 .

(a) When $\mu \neq 0$, find the asymptotic distribution of $\sqrt{n}(T-\mu^2)$ using the delta method.

(b) When $\mu = 0$, find the asymptotic distribution of nT using $P(nT \le t) = P(-\sqrt{t} \le \sqrt{nX} \le \sqrt{t})$. Compare your answer to the answer in part (a).

(c) Find the limiting laws of $\sqrt{n}(\bar{X}-\mu)^2$ and $n(\bar{X}-\mu)^2$.