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3.6 PROBLEMS AND COMPLEMENTS

Problems for Section 3.2

L. Show that if X1,..., X, is a N(8,0°) sample and 7 is the improper prior m(d) =1,
§ € © = R, then the improper Bayes rule for squared error loss is 6* (x) = Z.

2, Let X, ..., Xy be the indicators of n Bemouili trials with success probability 6. Sup-
pose (0, a) is the quadratic loss (8 — a)? and that the prior () is the beta, 5(r, ), density.
Find the Bayes estimate 6 g of § and write it as a weighted average wly + (1 — w)X of the

mean 6 of the prior and the sample mean X = §/n. Show that 85 = (5+1)/(n+2) for
the uniform prior.

3. In Problem 3.2.2 preceeding, give the MLE of the Bemoulli variance ¢(8) = E?(l — )

and give the Bayes estimate of ¢(8). Check whether g(8, 8) = E(¢(8) | x), where dp is the
Bayes estimate of 4.

4. In the Bernoulli Problem 3.2.2 with uniform prior on the probabilility of success 2, we
found that (S5 + 1}/(n + 2) is the Bayes rule. In some studies (see Section 6.4.3), the
parameter A = 8/(1 — 8), which is called the odds ratio (for success), is preferred to 6.
If we put a (improper) uniform prior on A, under what condition on § does the Bayes rule
exist and what 1s the Bayes rule?

5. Suppose 8 ~ w(8), (X |8 =8) ~p(z | 8).
(a) Show that the joint density of X and § is

f(z,0) =p(x| O)r(8) = c(z)n(8 | z)
where c(z) = [ #n(6)p(z | 8)dP.

(b) Let1(0, a) = (8 — a)* /w(B) for some weight function w{8) > 0, § € O. Show that
the Bayes rule is
(5* — Efu (ﬂ | :I:)

where
fo(z,8) = p(z | O)[m(8)/w(8))/c
and

e= [ [ pia|0)in(6)/u(6)dsdc

Is assumed to be finite. That is, if m and ! are changed to a(8)7x(#) and 1(8,a)/a(8),
a(#) > 0, respectively, the Bayes rule does not change.
Hint: See Problem 1.4.24.

(c) In Example 3.2.3, change the loss function to (8, a) = (8 — a)?/6%(1 — 8)°. Give
the conditions needed for the postetior Bayes risk to be finite and find the Bayes rule.

6. Find the Bayes risk »(m, §) of §(x) = X in Example 3.2.1. Consider the relative risk
e(d, 7) = R(x) /r(x,d), where R(r) is the Bayes risk. Compute the limit of e(d, w) as
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(@) T — oo, (b} n — o0, (€) 0% — 0.

7. For the following problems, compute the posterior risks of the possible actions and give
the optimal Bayes decisions when z = 0.

(a) Problem 1.3.1(d);
(b} Problem 1.3.2(d)(1) and (ii);
(¢) Problem 1.3.19{(c).

8. Suppose that Ny, ..., N, given @ = # are multinomial M(n, ), = {8;,...,6,)7, and
that & has the Dirichlet distribution D{a), & = (ay, ..., o)’ defined in Problem 1.2.15.
Let g(6) = >, ¢;0;, where ¢y, ..., ¢, are given constants.

@ Ifl(8,a) = [q{#)—a]?, find the Bayes decision rule §* and the minimum conditional
Bayes risk r(8*{z) | x).

Hint: 1If 8 ~ D(a), then E{8;) = a; /g, Var(8;) = a(ag — o) /ad(ag + 1), and
Cov(0;,8;) = —asay/ag(ao + 1), where ap = )77_; ;. (Use these results, do not
derive them.)

(b} When the loss function is I{#,a) = (g(6) — a)?/ [1;-, 9, find necessary and
sufficient conditions under which the Bayes risk is finite and under these conditions find
the Bayes rule.

(c) We want to estimate the vector (61, . .., 6, ) with loss function I(f, a) = z;f:l (6; —
a;)2. Find the Bayes decision rule.

= ele— e

9. Biceguivalence trials are used to test whether a generic drug 1s, to a close approximation,
equivalent to a name-brand drug. Let 6 = g — pg be the difference in mean effect of the
generic and name-brand drugs. Suppose we have a sample Xy, ..., X,, of differences in the
effect of generic and name-brand effects for a certain drug, where E(X ) = 6. A regulatory
agency specifies a number ¢ > O such that if # € {—¢, €), then the generic and brand-name
drugs are, by definition, bicequivalent. On the basis of X = (X,,...,X,,) we want to
decide whether or not 6 € (—¢,€). Assume that given 6, X,,..., X, are 1.i.d. N(8,05),
where ¢ is known, and that 8 is random with a A/ (r, 73 ) distribution.
There are two possible actions:

e TRl

T e Y -
H _—

a = (< Bioequivalent
a = 1< Not Bioequivalent

with losses {(#, 0) and {(#,1). Set
A(8) =1(6,0) — 1(6,1)

= difference in loss of acceptance and rejection of bioequivalence. Note that A(#) should
be negative when & € (—¢,¢) and positive when 8 ¢ (—e¢, €). One such function (Lindley,

1998} is

b el s =B am i rwma 3. om

1

A(f) = r—exp{—ﬁﬁﬂ} , €2 >0

i
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where 0 < 7 < 1. Nate that A{xe} = 0 implies that r satisfies
1,
logr = 5

This 1s an example with two possible actions 0 and 1 where (6, 0) and (8, 1) are not
constant. Any two functions with difference A(f) are possible loss functions at a = 0 and
1

(@) Show that the Bayes rule is equivalent to
“Accept bioequivalence if E(A(8) | X =x) < 0” (3.6.1}

and show that (3.6.1) is equivalent to

“Accept bioequivalence if [E(@ | x){? < (7§ (n) + ¢#)}{log (Tg(:;ﬁ) + :_:;}

where
1 n\ !
E@|x)=wnp+ (1 —w)Z, w=r15(n)/1¢ct, +3(n) = (_E 4 -—3) :
o Oy
Hint: See Example 3.2.1.

(b) It is proposed that the preceding prior is “uninformative” if it has 7y = 0 and 732
large (““r§ — ©0”). Discuss the preceding decision rule for this “prior.”

(c) Discuss the behavior of the preceding decision rule for large n (“n — 00”). Con-
sider the general case (a) and the specific case (b).

10. For the model defined by (3.2.16) and (3.2.17), find
(a) the linear Bayes estimate of A,
(b) the linear Bayes estimate of .

(¢) Is the assumption that the A’s are normal needed in (2) and (b)?

Problems for Section 3.3
1. In Example 3.3.2 show that L(x,0,v) > 7/(1 — 7) is equivalent to T > ¢.
2. Suppose g : S x T'— R. A point (zy, yo) is a saddle point of g if

g9(xo,yo) = sup g(z,yo) = igf g{xo, y).

Suppose S and T are subsets of B™, RP, respectively, (X0, ¥0) is in the interior of 5 x T,
and g is twice differentiable.

(a) Show that a necessary condition for (X0, ¥o) to be a saddle point is that, representing
X=(T1,...,Tm}, ¥ = (Y1,- -, Yp)s

%, %
351_ (x[h -YD) — Eyij(xﬂ:)’[l) = {,
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and
8%g
3%, 0%

foralll <i,a,b<m,1<j.¢cd<np.

325" (xﬂ ' Y D)
Oy.0yd

(xﬂayﬂ) EUT 20

(b) Suppose Sy, = {x:2; 20, 1 £i<m, )", &; =1}, the simplex, and g(x,y) =
ity 23— CijTiy; WithX € Sy, y € Sp. Show that the von Neumann minimax theorem
is equivalent to the existence of a saddle point for any twice differentiable g.

3. Suppose @ = {6y, 6,}, A = {0, 1}, and that the model is regular. Suppose

B:,0) =0, U{B;,7) =wiy; >0, 0,5 =0,1, 1 # 3.

Let Lx(8,01) = p(X,8;)/p(X, ) and suppose that L x {6y, @, ) has a continuous distri-
bution under both Fy, and Fp, . Show that

(a) For every 0 < 7w < 1, the test rule d, given by

§.(X) = 1ifLx(6g,6;) > L=rlwo

W10
= () otherwise

is Bayes against a prior such that P[@ = 8] = 7w =1 — P|@ = 8], and

(b) There exists 0 < «* < 1 such that the prior n* is least favorable against 4., that
18, the conclusion of von Neumann’s theorem holds.
Hint: Show that there ¢xists (a unique) «* so that

R(8),8x+) = R(81,).
4.1et S ~ B(n,8),1(8,a) = (§ —a)2, §(S) = X = S/n, and

5(8) = (S + v}/ (n+ V).

(a) Show that * has constant risk and is Bayes for the beta, 3(\/n/2, \/n/2), prior.
Thus, 4™ is minimax.
Hint: See Problem 3.2.2,

(b) Show that lim,,_,»,[R(8,6*)/R(8,8)] > 1 for 6§ # Z; and show that this limit
equals 1 when 8 = 3.

5, Let X1, ..., X, beiid N{g,02) and i(c?,d) = (% —1)".
(a) Show that if u is known to be (

1

0% (X1 Xn) = g > X?
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(b) If 1 = 0, show that §* is uniformly best among all rules of the form §.(X) =
¢ > XZ. Conclude that the MLE is inadmissible.

(¢) Show that if 4 is unknown, §(X) = 27 > (X; — X)? s best among all rules
of the form §,{X) = ¢) (X; — X)? and, hence, that both the MLE and the estimate
82 ={n—1)"' 3 (X; — X)? are inadmissible.

Hint: (a) Consider a gamma prior on § = 1/¢*. See Problem 1.2.12. (¢} Use (B.3.29).

6. Let X, ..., X, be independent with means i, . . ., ju, respectively, where

(1) = (g, ool ) 1 <o < il

is a known set of values, and ¢y, ..., 1% IS an arbitrary unknown permutation of 1,... k.
Let A= {(j:,...,7x) : Permutationsof 1,...,k}

(31, i)y Gy enJ6)) = ) 1(E < iy 51> )

Lm
Show that the minimax rule is to take
Xy, oo, Xi) = (Ry,. .o, Ry)

where R; is the rank of X ;, thatis, R; = 3" . 1(X; < X;).

Hine: Consider the uniform prior on permutations and compute the Bayes rule by show-
ing that the postenior risk of a permutation (¢,, . ..,%x) ts smaller than that of (#,...,i}),
where 1,; =1;,7 #Fa,ba <bil =1, =1 and B, < Ry
7. Show that X has a Poisson (A) distribution and I(A,a) = (A — a)?/X. Then X is
minimax.

Hint: Consider the gamma, I'(k~7, 1), prior. Let & — oo.

8. Let X; be independent N(ﬂz‘,l), 1 <1 <k p = (ﬁl,...,p:k)T. Wrile X =
(X1,-., Xe)T,d =(dy,...,d)T. Show that if

Kk

(e, d) = 3 (ds — pi)?

1=1

then 6(X) = X is minimax.
Remark: Stein (1956) has shown that if £ > 3, X is no longer unique minimax. For
instance,
k—2
FF(X)=[1~ X
0= (1= T
is also minimax and R{y,d8*) < R(u,6) for all u. See Volume II.

9. Show thatif (N, ..., N,) has a multinomial, M(n, py, ..., pe), distribution, 0 < p; <
1,1 <7<k, then % is minimax for the loss function

k

d; ~p;)?
U, ) = Y 42
113

j=1

whereg, =1 —p;, 1 < <k
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Hint; Consider Dirichlet priors on (py,...,pr—1} with density defined in Problem
1.2.15. See also Problem 3.2.8.

10. Let X;(Z = 1,...,n) be 1.i.d. with unknown distribution F'. For a given x we want to
estimate the proportion F'(x) of the population to the left of . Show that

5_Nn.qu1-£:r 1 n 1
B N 14+ 2(1+ n)

is minimax for estimating F(x) = P(X; < z) with squared error loss.
Hint: Consider the risk function of 4. See Problem 3.3.4.

11. Let X4, ..., X,, be independent A/(u, 1). Define

i - d . d
(X)) = X+ —=ifX < ———
vn v
Uif|X|<:i
_ﬁ
_d - d
— X - = Bwily
Y

(a) Show that the risk (for squared error loss) E(y/n(3(X) — u))? of these estimates is
bounded for all n and u.

(b) How does the risk of these estimates compare to that of X7

12. Suppose that given @€ = 6, X has a binomial, B(n, #), distribution. Show that the
Bayes estimate of ¢ for the Kullback-Leibler loss function {,(#, ) is the posterior mean
E(8iX).

13. Suppose that given § = 8 = (61,...,0:)T, X = (X1,...,Xx)T has a multinomial,
M(n, 8), distribution. Let the loss function be the Kullback—Leibler divergence [,(8, a)
and let the prior be the uniform prior

k—1
n(6y,....01) =(k—1)!, 6; >0, ) 6; =1.
=1

Show that the Bayes estimate is (X; + 1) /(n + k).

14. Let K(pg, q) denote the K L D (Kullback—Leibler divergence) between the densities pg
and ¢ and define the Bayes KLD between P = {pg : § € 8} and g as

k(q, ) = [ K (po, qy(6)d8.

Show that the marginal density of X,

p(z) = ] po()(6)db,
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minimizes k(q. 7} and that the minimum is

= [ 8 {oa 202 o

Ig y is called the mutual information between & and X.
Hint: k(g,7) — kip,7m) = | [ {lﬂg I::EX% } 7(6)d0 > 0 by Jensen’s inequality.

15. Jeffrey’s “Prior” A density proportional to +/f,(€) is called Jeffrey’s pror. It is
often improper. Show that in the N(8,08), N(po, 68) and B(n, 9) cases, Jeffrey’s priors are

prupnrtmnal tol. 071, and ( 1—-6)" : , respectively. Give the Bayes rules for squared
error In these three cases.

Problems for Section 3.4

1. Let Xy, ..., X, be the indicators of n Bernoulli trials with success probability 8. Show
that X is an UMVU estimate of 4.

2. Let A = R. We shall say a loss function is convex, if {(8,aap + (1 — &)a;) <
ad(6,ap) + (1 - a)l(8,a;), for any ag,a;,8,0 < a < 1. Suppose that there is an unbiased
estimate ¢ of g(#) and that 7'(X) is sufficient. Show that if [(#, a) is convex and ¢* (X)) =
E(0(X) | ¢(X)), then £(8,6*) < R(8,6).

Hint: Use Jensen’s inequality: If g is a convex function and X 1s a random variable,
then E(g(X)) > g(E(X))

3. Equivariance. Let X ~ p{z,0) with @ ¢ © C R, suppose that assumptions I and
II hold and that & is a monotone increasing differentiable function from O onto ~2(8).
Reparametrize the model by setting n = h(6) and let ¢(z, ) = p{x,~~(n)) denote the
mode] in the new parametrization.

(a) Show that if 1,,(6} and 7,(n) denote the Fisher information in the two parametriza-

tions, then
Iq(n) = LW (m)/[R (B~ ().

That is, Fisher information is not equivariant under increasing transformations of the pa-
rameter.

(b} Equivariance of the Fisher Information Bound. Let By(8) and B,(n) denote the
information inequality lower bound (¢')? /I as in (3.4.12) for the two parametrizations
p(z,0) and ¢(z, n). Show that B, (n) = B,(h™'(7n)); that is, the Fisher information lower
bound 1s equivariant.

4, Prove Proposition 3.4.4.
S. Suppose X|,..., X, areiid. N{(p,6°) with 4 — pg known. Show that
(@) 58 =n~1 30 (X, — up)? is aUMVU estimate of o2.

(b) 52 is inadmissible.
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) | Hint: See Problem 3.3.5(b).

(¢) if ug is not known and the true distribution of X, is M{u, 0%), 4 # pg, find the bias
of G¢.

6. Show that assumption I implies that if A = {x : p(x,8) > 0} doesn’t depend on 8, then
for any set B, Pg(B) = 1 for some § if and only if Pyp(B) = 1 forall §.

- L I
minii il e e S T T
f

~

7. In Example 3.4.4, compute Var(#) using each of the three methods indicated.

|
i
j
B
j

8. Establish the claims of Example 3.4.8.

. et =
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9. Show that S% = (Y — ZDE)T(Y — 7 BE) /{n — p) is an unbiased estimate of ¢ in the
linear regression model of Section 2.2,

" mek i N e e e
o - e = s ey
Lok e ITIT L SCT S|

10. Suppose § is UMVU for estimating 6. Let a and b be constants. Show that A = a + b6
is UMVU for estimating A = a + b0.

11. Suppose Y1, . .., Y, are independent Poisson random variables with E(Y;) = u; where
p; = exp{a + fz;} depends on the levels z; of a covariate; «, 3 € R. For instance, z;
could be the level of a drug given to the ith patient with an infectious disease and Y; couid
denote the number of infectious agents it a given unit of blood from the ith patient 24 hours

after the drug was administered.,

s L PR r— i
L T
o T repli

I
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(a) Write the model for Y7, ...,Y, in two-parameter canonical exponential form and
give the sufficient statistic,

(b) Let @ = (o, 8)%. Compute I{8) for the model in (a) and then find the lower bound
on the variances of unbiased estimators & and 3 of « and §.

(¢) Suppose that z; = log[i/(n+ 1)}, =1,...,n. Find limn~"1(8) as n — oo, and
give the limit of n times the lower bound on the variances of & and 3.
Hint: Use the integral approximation to sums.

12. Let X, ..., X, be a sample from the beta, B(#, 1), distribution.
(a) Find the MLE of 1/6. Is it unbiased? Does it achieve the information Inequality
lower bound?

(b) Show that X is an unbiased estimate of ¢ /(@ -+ 1). Does X achieve the information
inequality lower bound?

13. Let F denote the class of densities with mean #~! and variance #2(@ > 0) that satisfy
the conditions of the information inequality. Show that a density that minimizes the Fisher

information over F is f(x,8) = e~ %1(z > 0).
Hint: Consider 7'(X ) = X in Theorem 3.4.1.

14, Show that if (X,..., X) is a sample drawn without replacement from an unknown
finite population {z),...,zn}, then

(a) X is an unbiased estimate of T = ﬁ Zfil i
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