
and

where
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3.6 PROBLEMS AND COMPLEMENTS

Section 3.6 Problems and Complements

Problems for Section 3.2

1. Show that if Xl, ... 1 X n is a N(B, (72) sample and 71" is the improper prior 71"(0) = 1,
oE e = R. then the improper Bayes rule for squared error loss is 6"* (x) = X.

2. Let X I, ... ,Xn be the indicators of n Bernoulli trials with success probability O. Sup­
pose 1(0, 0) is the quadratic loss (0 - 0)' and that the prinf7r(O) is the beta. (3(r, s), density.

~ -
Find the Bayes estimate 0B of 0 and write it as a weighted average wOo + (1 ~ w)X of the

- ~

mean 00 of the prior and the sample mean X = Sin. Show that OB ~ (S + 1)/(n+2) for
the uniform prior.

3. In Problem 3.2.2 preceeding, give the MLE of the Bernoulli variance q(0) = 0(1 - 0)
~ ~

and give the Bayes estimate of q(O). Check whether q(OB) = E(q(IJ) Ix), where OB is the
Bayes estimate of O.

4. In the Bernoulli Problem 3.2.2 with unifonn prior on the probabilility of success O. we
found that (S + 1)/(n + 2) is the Bayes rule. In some studies (see Section 6.4.3), the
parameter A = 01(1 - 0), which is called the odds ratio (for success), is preferred to 0,
lf we put a (improper) uniform prior on A, under what condition on S does the Bayes rule
exist and what is the Bayes rule?

5. Suppose IJ ~ 71'(0), (X I0 = 0) ~ p(x I0).

(a) Show that the joint density of X and 0 is

fo(x,O) = p(x 1 0)[7f(0)lw(0)]/c

f(x,O) = p(x I 0)71'(0) = c(x)7f(0 , x)

where c(x) =.r 7f(0)p(x I O)dO.

(h) Let 1(0, 0) = (0 - o)'lw(O) for some weight function w(O) > 0,0 E e. Show that
the Bayes rule is

c = JJp(x I0)[7f(0)/w(0)]dOdx

is assumed to be finite. That is, if 71' and 1 are changed to 0(0)71'(0) and 1(0,0)/0(0),
a(O) > 0, respectively, the Bayes rule does not change.

Hint: See Problem 1.4.24.

(c) In Example 3.2.3, change the loss function to 1(0, 0) = (0 - a)' jBQ(1- O)P. Give
the conditions needed for the posterior Bayes risk to be finite and find the Bayes rule.

6. Find the Bayes risk r(7f, J) ofJ(x) = X in Example 3.2.1. Consider the relative risk
e(J, 71') = R(7f) /r( 71', J), where R(71') is the Bayes risk. Compute the limit of e(J, 71') as
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(a) T -+ 00, (b) n ---; 00, (e) a 2 -+ 00.

7. For the following problems, compute the posterior risks of the possible actions and give
the optimal Bayes decisions when x = O.

(a) Problem 1.3.I(d);

(b) Problem 1.3.2(d)(i) and (ii);

(c) Problem 1.3.19(c).

8. Suppose tbat N lo ...• N, given 0 = Bare multinomial M(n, B). B= (B" ... ,B,)T. and
that 0 has the Dirichlet distribution D(a). a = (a" ... , ar)T, defined in Problem 1.2.15.
Let q(0) = L:;=l CjUj , where CI, ... ,Cr are given constants.

(a) If I(B, a) = [q(B)-a]', find the Bayes decision mle o' and the minimum conditional
Bayes risk r(o'(x) Ix).

Hint: If 0 ~ D(a), then E(O)) = aj/ao, Var(Oj) = aj(ao - aj)/a5(ao + 1), and
Cov{8j ,9j ) = -aiO:'j/a5(aa + 1), where ao = L:J=l Qj. (Use these results, do not
derive them.)

(b) When the loss function is I(B, a) = (q(B) - a)' / nj~, Bj , find necessary and
sufficient conditions under which the Bayes risk is finite and under these conditions find
the Bayes rule.

(c) We want to estimate the vector (B" ... ,B,) with loss function I(B, a) = Lj~, (Bj ­

aj)2. Find the Bayes decision rule.

9. Bioequivalence trials are used to test whether a generic drug is, to a close approximation,
equivalent to a name-brand drug. Let 0 = ftc - ft B be the difference in mean effect of the
generic and name-brand drugs. Suppose we have a sample Xl, . . " X n of differences in the
effect of generic and name-brand effects fora certain drug, where E(X) = O. A regulatory
agency specifies a number f > asuch that if f) E (-E, E), then the generic and brand-name
drugs are, by definition, bioequivalent. On the basis of X = (XI, ... ,Xn ) we want to
decide whether or not 0 E (-e,E). Assume that given f), Xl, ... ,Xu are Li.d. N{O,O'5),
where 0'5 is known, and that 9 is random with aN(rlO, 76) distribution.

There are two possible actions:

a a{::} Bioequivalent

a 1 {::} Not Bioequivalent

with losses I(B, 0) and I(B, 1). Set

.\(B) = I(B,O) - I(B, I)

= difference in loss of acceptance and rejection of bioequivalence. Note that ),(0) should
be negative when 0 E (-E, E) and positive when f) 1. (-E, E). One such function (Lindley,
1998) is

.\(B) = r - exp { - 2~' B' } , c
2 > 0

I

I
j

•



where

and show that (3.6.1) is equivalent to

, ,
"Accept bioequivalence if[E(O I x»)' < (T6(n) + c'){log(rg(~)+,,) + ~}"

199

(3.6.1)

(a) Show that the Bayes rule is equivalent to

"Accept biocquivalence if E(>'(O) IX = x) < 0"

Section 3.6 Problems and Complements

where 0 < r < 1. Note that ,.\(±€.-) = 0 implies that r satisfies

1 2logr = --(
2c'

This is an example with two possible actions 0 and 1 where l((), 0) and l((), 1) are not
constant. Any two functions with difference "\(8) are possible loss functions at a = 0 and
I.

Problems for Section 3.3

1. In Example 3.3.2 show that L(x, 0, v) > ?r/(l -?r) is equivalent to T > t.

2. Suppose 9 , S x T ~ R. A point (xo, yo) is a saddle point of9 if

g(xo, Yo) = sup g(x, Yo) = inf g(xo, y).
S T

Suppose S and T are subsets of Rm, RP, respectively, (Xv, Yo) is in the interior of S x T,
and 9 is twice differentiable.

(a) Show that a necessary condition for (xo, Yo) to be a saddle point is that, representing
x = (Xl, ... ,Xm),y = (YI,- .. ,Yp),

{}g {}g
-{} (Xo,Yo) = -{} (Xo,Yo) = 0,

Xi Yj

Hint: See Example 3.2.1.

(b) It is proposed that the preceding prior is "uninformative" if it has 170 = 0 and it
large ("76 ---+ 00"). Discuss the preceding decision rule for this "prior."

(c) Discuss the behavior of the preceding decision rule for large n ("n ---+ 00"). Con­
sider the general case (a) and the specific case (b).

10. For the model defined by (3.2.16) and (3.2.17). find

(a) the linear Bayes estimate of ~l.

(b) the linear Bayes estimate of fl..

(c) Is the assumption that the ~ 's are nonnal needed in (a) and (b)?
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8'g (x ) < 0 8'g(xo,Yo) > 0
8 8 0, Yo -, 8 8 -

X a Xb Yc Yd

,,

•
;

f"I•
L
I•

:
I',
(-
f,

,

!',•"

foraHI < i,a,b < m, 1 <j,c,d< p.

(b) Suppose Sm = (x: Xi > 0,1 < i < m, L:;" 1 Xi ~ l},thesimplex,andg(x,y) ~
L~l12.:;=1 CijXiYj with XE 8 m , y ESp. Show that the von Neumann minimax theorem
is equivalent to the existence of a saddle point for any twice differentiable g.

3. Suppose e = {Bo,Bd. A = {O, I}, and that the mndel is regnlar. Suppose

I(Bi,i) =0, I(Bi,j)=Wij>O, i,j=O,l, iij.

Let Lx (Bo, B1 ) ~ p(X, B1) Ip(X, Bo) and suppose that Lx (Bo,BIl has a continuous distri­
bution under both POo and PBI • Show that

(a) For every 0 < 7f < 1, the test rule 1511" given by

o.(X) = 1 if Lx (Bo, B1 ) > (l-.)w",
- 1rWlO

= 0 otherwise

is Bayes against a prior such that PIB = B1] = ,,= 1 - PIB = Bo], and

(b) There exists 0 < 11"* < 1 such that the prior 1r* is least favorable against 61f~' that
is, the conclusion of von Neumann's theorem holds.

Hint: Show that there exists (a unique) 1r* so that

R(Bo,o•• ) =R(B1 ,0•• ).

4. Let S ~ 8(n,0).1(0, a) ~ (0 - a)', o(S) = X = Sin, and

1
o'(S) = (S + 2 .;n)/(n + .;n).

(a) Show that 0' has constant risk and is Bayes for the beta, fJ( .;n12, .;n12), prior.
Thus. &* is minimax.

Hint: See Problem 3.2.2.

(b) Show that limn_ooIR(O, o')IR(O, 0») > 1 for 0 i ~; and show that this limit
equals 1 when B= ~.

5. Let X" ... ,X n be i.i.d. N(I',<7') and 1(<7', d) = (!- _I)'.
(a) Show that if I' is known to be 0

J'(X1, ... ,Xn ) = n: 2 I>l
is minimax.

I
i
j



i=l

Show that the minimax rule is to take

instance,
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(b) If I' ~ 0, show that 0' is unifonnly best among all rules of the form oc(X) =
C L Xl· Conclude that the MLE is inadmissible.

(e) Show that if I' is unknown, o(X) ~ n~l L(Xi - X)' is best among all rules

of the form oc(X) = c L(Xi - X)' and, hence, that both the MLE and the estimate
8' = (n - 1)-1 L(Xi - X)' are inadmissible.

Hint: (a) Consider a gamma prior on 0 = 1/<7'. See Problem 1.2.12. (c) Use (B.3.29).

6. Let Xl, ... , X k be independent with means f.tj, ... , Jlk, respectively, where

(Ill, ... , f-tk) = (Il?l'"'' J1.?,), jl~ < ... < /12
is a known set of values, and iI, ... , ik is an arbitrary unknown permutation of 1, ... ,k.
LetA = {(iI, ... ,j.) , Permutations of I, ... ,k}

I«i), ... , ik), (jl, ... ,j.» = L I(i, < im,j, > jm).
l,tn

o(X1, ... , X k) = (Rl , ... , Rk)

where Rj is the rank of Xi, that is, Rj = L~ I I(XI < Xi)'
Hint: Consider the uniform prior on permutations and compute the Bayes rule by show­

ing that the posterior risk of a pennutation (i l , ... , ik) is smaller than that of (i'l"'" i~),

h ·, . . -" b b" .., . d R Rwere t j = tj, J / a, ,a < , ttl = 'lb.1.b = ttl, an a < b.

7. Show that X has a Poisson (.\) distribution and 1(.\, a) = (.\ - a?1.\. Then X is
nurnmax.

Hint: Consider the gamma, f(k- l , 1), prior. Let k --. 00.

8. Let Xi beindependentN(I'i,I), 1 <i< k, I' = (I'I'''',I'kf. Write X ­
(X"", , Xk)T, d = (d), .. . , dk)T. Show that if

•
1(1', d) = L(d, -"i)'

then o(X) = X is minimax.

Remark: Stein (1956) has shown that if k > 3, X is no longer unique minimax. For

o'(X) = (1- ~~n X
is also minimax and R(I', 0') < R(I',o) for alII'. See Volume II.

9. Show that if (N), ... , N k ) has a multinomial, M (n, PI, ... ,P.), distribution, 0 < Pi <
1, 1 < j < k, then r: is minimax for the loss function

l(p,d) = t (di - Pi)'
j=l Pjqj

where qj ~ 1 - Pi, 1 <j < k.
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Hint: Consider Dirichlet priors on (PI, ... ,Pk- d with density defined in Problem
1.2.15. See also Problem 3.2.8.

10. Let Xi(i = 1, ... , n) be i.i.d. with unknown distribution F. For a given x we want to
estimate the proportion F(x) of the population to the left of x. Show that

o~ No. of Xi < X • 1 + 1

v'n 1+ v'n 2(1+ v'n)
is minimax for estimating F(x) = P(Xi < x) with squared error loss.

Hint: Consider the risk function of o. See Problem 3.3.4.

11. Let X" ... , X n be independent N(I', 1). Define

- d - d
X+-ifX <--

v'n v'n
- d

OiflXI < v'n
- d - d

X - -ifX> -.
v'n v'n

I:
•,

,

~

I
I,,
!

(a) Show that the risk (for squared error loss) E(v'n(o(X) - 1'»2 of these estimates is
bounded for all nand 1'.

(b) How does the risk of these estimates compare to that of X?

12. Suppose that given 6 ~ B, X has a binomial, B(n, B), distribution. Show that the
Bayes estimate of 0 for the Kullback-Leibler loss function lp(B, a) is the posterior mean
E(6 IX).

13. Suppose that given 6 = B = (B
"

... ,BO)T, X = (X"", ,Xo)T has a multinomial,
M(n,B), distribution. Let the loss function be the Kullback-Leibler divergence lp(B,a)
and let the prior be the uniform prior

0-1

1r(B" ... ,BO- l ) ~ (k - I)!, Bj > 0, L Bj = 1.
;=1

Show that the Bayes estimate is (Xi + l)j(n + k).

14. Let K(po, q) denote the K LD (Kullback-Leiblerdivergence) between the densities Po
and q and define the Bayes KLD between P = {Po : BEe} and q as

k(q,1r) = JK(po,q)1r(B)dB.

Show that the marginal density of X.

p(x) = Jpo(x)1r(B)dB,
1,

I:
I
ir'z-----------------_.....



That is, Fisher infonnation is not equivariant under increasing transformations of the pa­
rameter.
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- f [ { PB(X)}]I(J,x = . E, log p(X) K(O)d(J.

minimizes k( q. 7f) and that the minimum is
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Problems for Section 3,4

1. Let X I, ... , X n be the indicators of n Bernoulli trials with success probability B. Show
that X is an UMVU estimate of O.

2. Let A = R. We shall say a loss function is convex, if I(O,aao + (1 - alai) <
al(O, ao) + (1 - a )I(0, a,), for any ao, a" (J, a < a < 1. Suppose that there is an unbiased
estimate J of q((J) and that T(X) is sufficient. Show that if 1(0, a) is convex and J'(X) =
E(J(X) I I(X», then R(O, J') < R((J, J).

Hint: Use Jensen's inequality: If 9 is a convex function and X is a random variable,
then E(g(X) > g(E(X».

3. Equivariance. Let X ,......, p(x, 0) with 0 E e c R, suppose that assumptions I and
II hold and that h is a monotone increasing differentiable function from e onto h(8).
Reparametrize the model by setting ry = h(O) and let q(x, ry) = p(x, h-1(ry)) denote the
model in the new parametrization.

(a) Show that if Ip(O) and Iq(fJ) denote the Fisher information in the two parametriza­
tions, then

IO,X is called the mutual information between 0 and X.

Hint: k(q, K) - k(p, K) = J [Eo {log ~i~i}] K((J)d(J > a by Jensen's inequality.

15. Jeffrey's "Prior." A density proportional to VJp(O) is called Jeffrey's prior, It is
often improper. Show that in theN(O, ,,~), N(I"o, 0) and B(n, 0) cases, Jeffrey's priors are
proportional to 1, 0- 1 , and O-~ (1 - O)-!, respectively. Give the Bayes rules for squared
error in these three cases.

(b) Equivariance of the Fisher Information Bound. Let Bp(O) and Bq(ry) denote the
information inequality lower bound ('Ij;'? /1 as in (3.4.12) for the two parametrizations
p(x, 0) and q(x, ry). Show that Bq(ry) = Bp(h-, (ry»); that is, the Fisher information lower
bound is equivariant.

4. Prove Proposition 3.4.4.

S. Suppose X I, ... , X n are Ll.d. N(I", ,,2) with I' - 1"0 known. Show that

(a) cr5 = n- 1 E: 1(Xi - J-.tO)2 is a UMVU estimate of a2 •

(b) &'8 is inadmissible.



6. Show that assumption I implies that if A - {x : p(x, 0) > OJ docsn't depend on 0, then
for any set E, Pe(E) = 1 for some 0 if and only if Pe(E) = 1 forallO.

Hint: See Problem 3.3.5(b).

(c) if 110 is not known and the true distribution of X t is N(Ji, ( 2), P. =f- P,o, find the bias
f
~2

o ao'

~

7. In Example 3.4.4, compute Var(O) using each ofthe three methods indicated.

8. Establish the claims of Example 3.4.8.
~ ~

9. Show that 8 2 = (Y - ZDf3)T(y - ZDf3)/(n - p) is an unbiased estimate of (72 in the
linear regression model of Section 2.2.

I

,,,
•

,,,

i

I
I,

I
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(b) Show that X is an unbiased estimate of0/(0 + 1), Does X achieve the infonnation
inequality lower bound?

13. Let F denote the class ofdensities with mean 0-1 and variance 0-2 (0 > 0) that satisfy
the conditions of the information inequality. Show that a density that minimizes the Fisher
infonnation over F is f(x, 0) = Oc"I(x > 0).

Hint: Consider T(X) = X in Theorem 3.4.1.

14. Show that if (Xl,' .. , X n ) is a sample drawn without replacement from an unknown
finite population {Xl, ... ,XN }, then

(a) X is an unbiased estimate of x = ~ L~ 1 Xi·

~ ~ ~

10. Suppose (J is UMVU for estimating fJ. Let a and b be constants. Show that ,\ = a + bB
is UMVU for estimating ,\ = a + bOo

11. Suppose Yl , .,. ,Yn are independent Poisson random variables with E(Y'i) = !Ji where
Jli = exp{Ct + (3Zi} depends on the levels Zi of a covariate; Ct,13 E R. For instance, Zi

could be the level of a drug given to the ith patient with an infectious disease and Vi could
denote the number of infectious agents in a given unit of blood from the ith patient 24 hours
after the drug was administered.

(a) Write the model for Yl , ... , Yn in two-parameter canonical exponential form and
give the sufficient statistic.

(b) Let 0 = (a, {3) T Compute I( 9) for the model in (a) and then find the lower bound
~

on the variances of unbiased estimators aand {J of a and (J.

(c) Suppose that Zi = log[i/(n + 1)1, i = 1, ... ,n. Find lim n-11(9) as n ~ 00, and
~

give the limit of n times the lower bound on the variances of aand (J.
Hint: Use the integral approximation to sums.

12. Let X" ... , X n be a sample from the beta, B(O, 1), distribution.

(a) Find the MLE of 1/0. Is it unbiased? Does it achieve the infonnation inequality
lower bound?

Ii,




