
~() No. of Xi = X
P X = .

n

~

(b) Show that in the continuous case X rv F means that X = Xi with probability lin.

(c) Show that the empirical substitution estimate of the jth moment J-Lj is the jth sample
~

moment J-Lj'

Hinr: Write mj ~ f== xjdF(x) ormj = Ep(Xj) where X-F.

5. Let Xl, ... ,Xn be a sample from a population with distribution function F and fre-
~ ~

quency function or density p. The empirical distribution function F is defined by F(x) =
[No. of Xi < xl/n. If q(8) can be written in the fonn q(8) ~ s(F) for sOme function s of

~

F we define the empirical substitution principle estimate of q(8) to be s(F).

(a) Show that in the finite discrete case, empirical substitution estimates coincides with
frequency substitution estimates. ~

Hint: Express F in terms of p and F in terms of

139

Hint: See Problem 8.2.5.
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4. Let X I, ... , X 1l be the indicators of n Bernoulli trials with probability of success 8,

(a) Show that X is a method of moments estimate of 8.

(b) Exhibit method of moments estimates for VaroX = 8(1 - 8)ln first using only the
first moment and then using only the second moment of the population. Show that these
estimates coincide.

(c) Argue that in this case all frequency substitution estimates of q(8) must agree with
q(X).

~ ~

(d) FortI < ... < tk,findthejointfrequencyfunctionofF(tl), ... ,F(tk).

Hint: Consi~r (NI , ... , Nk+I) where N I ~ nF(t l ), N 2 = n(F(t2J - F(t,)), ... ,
Nk+1 = n(l - F(tk)).

6. Let X(l) < .,. < X(n) be the order statistics of a sample Xl, ... , X n . (See Problem
B.2.8.) There is a One-to-one correspondence between the empirical distribution function
~ -
F and the order statistics in the sense that, given the order statistics we may construct F

~

and given P, we know the order statistics. Give the details of this correspondence.

7. The jth cumulant '0' of the empirical distribution function is called the jth sample
cumulanr and is a method of moments estimate of the cumulant Cj' Give the first three
sample cumulants. See A.12.

8. Let (ZI, YI ), (Z2, Y2), ... , (Zn, Yn) be a set of independent and identically distributed
random vectors with common distribution function F. The natural estimate of F(s, t) is

~

the bivariate empirical distribution function FCs, t), which we define by

F~( ) = Number of vectors (Zi, Yi) such that Zi < sand Yi < t
s,t .

n
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(a) Show that F(-,.) is the distribution function of a probability P on R2 assigning
mass lin to each point (Zi, Vi).

(b) Define the sample product moment of order (i, j), the sample covariance, the sam-
~

pIe correlation, and so on, as the corresponding characteristics of the distribution F. Show
that the sample product moment of order (i,j) is given by

The sample covariance is given by

n n
l L - - 1", --
- (Zk - Z)(Yk - Y) = - L."ZkYk - ZY,
n n

k=l k=l

where Z, Y are the sample means of the Z11 •.. , Zn and Y11 ..• ,Yn, respectively. The
sample correlation coefficient is given by

All of these quantities are natural estimates of the corresponding population characteristics
and are also called method of moments estimates. (See Problem 2.1.17.) Note that it
follows from (A.IU9) that -1 < T < L

9. Suppose X = (X"", ,Xn ) where the X, are independent N"(O, ,,2),

(a) Find an estimate of a 2 based on the second mOment.

(b) Construct an estimate of a using the estimate of part (a) and the equation a = #.
,

(c) Use the empirical substitution principle to COnstruct an estimate of cr using the
relation E(IX, I) = ".,j2;,

10. In Example 2, L I, suppose that g({3, z) is continuous in {3 and that Ig({3, z) I tends to
00 as \,81 tends to 00. Show that the least squares estimate exists.

Hint: Set c = p(X, 0). There exists a compact set K such that for f3 in the complement
of K. p(X, {3) > c, Since p(X, {3) is continuous on K, the result follows,

11. In Example 2,1.2 with X ~ f(a, >.), find the method of moments estimate based on
iiI and /is,

Hint: See Problem B.2.4.

12. Let X".", X n be LLd, as X ~ P(J, (J E e c Rd, with (J identifiable, Suppose X
has possible values VI, ... , Vk and that q(9) can be written as

q«(J) = h(!'I«(J)"" ,!'r«(J))

,,
•
i,
:

J

i

I,
,,,
I,



n

Suppose that X has possible values VI, ... , Vk and that
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U, ~ (X, - Po) /
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(i) Beta, 1'(1,0)

(ii) Beta, 1'(0,1)

(iii) Raleigh,p(x,O) ~ (x/O')exp(-x'/20'),x > 0.0 > 0

(iv) Gamma, rep, 0), p fixed

(v) Inverse Gaussian, IG(p, A), 0 ~ (p, A). See Problem 1.6.36.

(b) Suppose {PO: 0 E 8} is the k-parameter exponential family given by (1.6.10).
Let g,(X) ~ Tj(X), 1 < j < k. In the fOllowing cases, find the method of moments
estimates

Pi(O) = EO(gj(X)), Iii = n- l Lgj(Xi ), j = 1, ... , r.
i=l

for some Rk-valued function h.

(a) Show that the method of moments estimate if = h(fill ... ,ilr) is a frequency plug­
in estimate.

for some R k -valued function h. Show that the method of moments estimate q = h(j1!, ... ,
fir) can be written as a frequency plug-in estimate.

13. General method ofmoment estimates(!). Suppose X 1, ... , X n are i.i.d. as X rv P(J,
with (J E e c R d and (J identifiable. Let 911 ... ,9r be given linearly independent functions
and write

q(O) = h(PI(O), ... ,Pr(O))

to give a method of moments estimate of (72.

(c) If J.l and (72 are fixed, can you give a method of moments estimate of {3?

Hint: Use Corollary 1.6.1.

14. When the data are not i.i.d .• it may still be possible to express parameters as functions
of moments and then use estimates based on replacing population moments with "sample"
moments. Consider the Gaussian AR(I) model of Example 1.1.5.

(a) Use E(X;) to give a method of moments estimate of p.

(b) Suppose P ~ po and I' = b are fixed. Use E(U[), where
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15. Hardy-Weinberg with six genotypes. In a large natural population of plants (Mimulus
guttatus) there are three possible alleles S, I, and F at one locus resulting in six genotypes
labeled SS, II, FF, SI, SF, and IF. Let 8" 8" and 83 denote the probabilities of S, I,
and F, respectively, where L7=1 OJ = 1. The Hardy-Weinberg model specifies that the
six genotypes have probabilities

Genotype I 2 3 4 5 6
Genotype SS II FF SI SF IF
Probability 8t 8~ 8j 28,8, 28, 83 28,83

Let Nj be the number of plants of genotype j in a sample of n independent plants, 1 < j <
6 and let Pl ~ Nj / n. Show that

-- 1....... 1--
PI + '2P4 + 2PS
....... 1-- 1---
P2 + "2P4 + '2P6
....... 1 ....... I .......
P3 + "2PS + '2P6

are frequency plug-in estimates of OJ, ()2, and (J3.

16, Establish (2.1.6).
Hint: [y, - g(I3,z;)] = [Y; - g(l3o,z;)] + [g(l3o,z;) - g(I3,z.)].

17. Multivariate method a/moments. For a vector X = (Xl, .. ' l X q ). of observations, let
the moments be

mjkrs = E(XtX~), j > 0, k > 0; 1", S = 1, ... 1 q.

For independent identically distributed Xi = (XiI,"" X iq ), i = 1, ... , n, we define the
empirical or sample moment to be

n
~ - 1"X j Xk . Q k> Q. -1mjkrs - - L..J ir is' J >, _ ,1",S - , ... ,q.

n.
t=1

liB = (01 , .•• l Om) can be expressed as a function of the moments, the method of moments

estimate 8 of B is obtained by replacing mjkrs by mjkrs. Let X = (Z, Y) and B =
(ai, b, ), where (Z, Y) and (ai, bI) are as in Theorem 1.4.3. Show that method of moments
estimators of the parameters b1 and al in the best linear predictor are

!
i

-1 --
~ n L:Z;Y;-ZY ~ - ~-
b, = n 1 L:Z; _ (Z)' ' a, = Y - bIZ.

Problems for Sectinn 2.2

1. An Object of unit mass is placed in a force field of unknown constant intensity 8. Read­
ings Y1 , ..• l Yn are taken at times t1, ... , tn on the position of the object. The reading Yi

,

I
I

I •.!.-_--------------------



(z-.<) ~(y-j})
~ .. ~p ~ .
" 7

I:7-J (y, - BJ- B,z,)'
1 + B5

5. The regression line minimizes the sum of the squared vertical distances from the points
(Zl, Yl), ... , (zn, Yn). Find the line that minimizes the sum of the squared perpendicular
distance to the same points.

Hint: The quantity to be minimized is
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differs from the true position (8/2)tt by a mndom error f l - We suppose the ICi to have mean
oand be uncorrelated with constant variance. Find the LSE of 8.

2. Show that the fonnulae of Example 2.2.2 may be derived from Theorem 1.4.3, if we con­
sider the distribution assigning mass l/n to each of the points
(zJ,y,), ... ,(zn,Yn).

3. Suppose that observations YI , ... , Yn have been taken at times Zl, ... , Zn and that the
linear regression model holds. A new observation Yn-l- I is to be taken at time Zn+l. What
is the least squares estimate based on YI , ... , Y;t of the best (MSPE) predictor of Yn+ I ?

4. Show that the two sample regression lines coincide (when the axes are interchanged) if
and only if the points (Zi,Yi), i = 1, ... ,n, in fact, all lie on aline.

Hint: Write the lines in the fonn

6. (a) Let Y I , .. . , Yn be independent random variables with equal variances such that
E(Yi) = O:Zj where the Zj are known constants. Find the least squares estimate of 0:.

(b) Relate your answer to the fonnula for the best zero intercept linear predictor of
Section 1.4.

7. Show that the least squares estimate is always defined and satisfies the equations (2.1.5)
provided that 9 is differentiable with respect to (3" 1 < i < d, the range {g(zr, 13), ... ,
g(zn, 13),13 E Rd

} is closed, and 13 ranges over Rd

8. Find the least squares estimates for the model Yi = 81 + 82 z i + €i with ICi a~ given by
(2.2.4)-(2.2.6) under the restrictions BJ > 0, B, < O.

9. Suppose Yi = 81 + ICi, i = 1, ... , nl and Yi = 82 + ICi. i = nl + 1, .. _, nl + n2. where
ICl"." €nl-l-n2 are independent N(O, (J2) variables. Find the least squares estimates of ()l

and B2 .

10. Let X I, ... , X n denote a sample from a population with one of the following densities
Or frequency functions. Find the MLE of 8.

(a) f(x, B) = Be-'x, x > 0; B> O. (exponential density)

(b) f(x, B) = Bc'x-('+JJ, x > c; c cOnstant> 0; B > O. (Pareto density)
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(c) f(", 0) = cO".r-(c+<),:r > 0; c constant> 0; 0 > O. (Pareto density)

(d) fix, 0) = VBXv'O-', 0 <x < I, 0> O. (beta, iJ( VB, I), density)

(e) fix, 0) = (x/02) exp{ _x2/202}, x> 0; 0 > O. (Rayleigh density)

(f) f(x, 0) = Ocxc -- l exp{ -OXC
}, x > 0; c constant> 0; 0 > O. (Weibull density)

11. Suppose that Xl, ... , X n• n > 2, is a sample from a N(/l' ( 2 ) distribution.

(a) Show that if J1 and 0-
2 are unknown, J1 E R, (72 > 0, then the unique MLEs are

Ii = X and 8 2 ~ n- l L:~ 1(Xi - X)"
(b) Suppose J.t and a 2 are both known to be nonnegative but otherwise unspecified.

Pi od maximum likelihood estimates of J1 and a 2 .

12. Let X I, ... , X n , n > 2, be independently and identically distributed with density

I
f(x,O) = - exp{ -(x - I")/O") , x > 1",

0"

where 0 ~ (1",0"2), -00 < I" < 00,0"2 > O.

(a) Find maximum likelihood estimates of J.t and a 2 .

(b) Find the maximum likelihood estimate of PelXl > tl for t > 1".
Hint: You may use Problem 2.2.16(b).

13, Let X" ... , X n be a sample from a U[0 - !' 0+ !Idistribution. Show that any T such
that X(n) - ! < T < X(1) + ! is a maximum likelihood estimate of O. (We write U[a, bl
to make pia) ~ p(b) = (b - a)-l rather than 0.)

14, If n ~ I in Example 2.1.5 show that no maximum likelihood estimate of e= (1",0"2)
exists.

- -15, Suppose that T(X) is sufficient for 0 and ~at O(X) is an MLE of O. Show that e
depends on X through T(X) only provided that 0 is unique.

Hint: Use the factorization theorem (Theorem 1.5.1).
-16. (a) Let X - Pe, 0 E e and let 0 denote the MLE of O. Suppose that h is a one-to-

one function from e onto h(e). Define ry = h(8) and let f(x, ry) denote the density or
frequency function of X in terms of T} (Le., reparametrize the model using 1]). Show that-the MLE of ry is h(O) (i.e., MLEs are unaffected by reparametrization, they are equivariant
under one-to-one transformations).

(b) LetP = {PO: 0 E e}, e c W.P > I, be a family of models for X E X C Rd.-Let q be a map from e onto n, ncR', I < k < p. Show that if 0 is a MLE of 0, then
q(9) is an MLE of w = q(O).

Hint: Let e(w) = {O E e : q(O) = w}, then {e(w) : wEn} is a partition of e, and
~

o belongs to only one member of this partition, say e(w). Because q is onto n, for each
wEn there is 0 E El such that w ~ q(0). Thus, the MLE of w is by definition

WMLE = arg sup sup{Lx(O) : 0 E e(w)}.
WEn

,
I

I
I

i



f(k,B) =Bk - 1 (I_B), k=I, ... ,r

P,[X ~ k] ~ Bk - 1(1 - B), k ~ 1,2, ...

_ ,," Y: - n
B(Y) = L..,~-1 ' .

Li~1 Y, - M
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where cp is the standard normal density and B = (1',0") E e = {(I',O") : -00 <
f-l. < 00, 0 < a 2 < oo}. Show that maximum likelihood estimates do not exist, but

18. Derive maximum likelihood estimates in the following models.

(a) The observations are indicators of Bernoulli trials with probability of success 8. We
want to estimate Band Var,X I = B(I- B).

(b) The observations are Xl = the number of failures before the first success, X 2 =
the number of failures between the first and second successes, and so on, in a sequence of
binomial trials with probability of success fJ. We want to estimate O.

19. Let Xl, ... ,Xn be independently distributed with Xi having a N(Oi, 1) distribution,
1 <i < n.

(a) Find maximum likelihood estimates of the fJi under the assumption that these quan­
tities vary freely.

(b) Solve the problem of part (a) for n = 2 when it is known that B1 < B,. A general
solution of this and related problems may be found in the book by Barlow, Bartholomew,
Bremner, and Brunk (1972).

20. In the "life testing" problem 1.6. 16(i), find the MLE of B.

21. (Kiefer-Wolfowitz) Suppose (Xl, ... , X n ) is a sample from a population with density

9 (x -I') 1f(x, B) = 100' cp 0' + 10cp(x -1')

(We denote by "r + 1" survival for at least (r + 1) periods.) Let M = number of indices i
such that Yi = r +1. Show that the maximum likelihood estimate of 0 based on Y1 , •• , , Yn
IS

where 0 < 0 < 1. Suppose that we only record the time of failure, if failure occurs on or
before time r and otherwise just note that the item has lived at least (r + 1) periods. Thus,
we observe YI , ... , Yn which are independent, identically distributed, and have commOn
frequency function,

Now show that WMLE ~ W ~ q(O).

17. Censored Geometric Waiting Times. If time is measured in discrete periods, a model
that is often used for the time X to failure of an item is

f(r + I,B) = 1- P,[X < r] ~ 1-L Bk - 1(1_ B) = B'.
k=l
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that snp.,-p(x,ji,a2) = Sllp~,up(X,J.t,0"2) if, and only if, Ii equals one of the numbers
Xl, ... ,xn. Assume that Xi =I=- Xj for i -=F j and that n > 2.

22. Suppose X has a hypergeometric, 1i(b, N, n), distribution. Show that the maximum
likelihood estimate of b for Nand n fixed is given by

if ~ (N + 1) is not an integer, and

~ X X
b(X) = -(N + 1) or -(N + 1)-1

n n

othetwise, where [t] is the largest integer that is < t.
Hint: Coosider the mtio L(b + 1, x)/L(b, x) as a function of b.

23. Let Xl, ... ,Xm and YI , .. " Yn be two independent samples from N(J.tl,a 2 ) and

NU-", (1') populations, respectively. Show that the MLE of e = (fl.I' fl.', (1') is If =

(X, Y, (1') where

n

ii' = L(Xi - X)' + L(Y; - Y)' /(rn + n).
i=1 j=1

24. Polynomial Regression. Suppose Y; = fl.(Zi) + 'i, where'i satisfy (2.2.4)-(2.2.6). Set

zl ~ zt'·· .z!,' wherej E J andJisasubsetof {UI , ... ,jp): 0 <j.< J, 1 <k< p},
and assume that

In an experiment to study tool life (in minutes) of steel-cutting tools as a function of cut­
ting speed (in feet per minute) and feed rate (in thousands of an inch per revolution), the
following data were obtained (from S. Weisberg, 1985).

TABLE 2.6.1. Tool life data

,
i:

I

,
I'
I

Peed
-1
-1
1
1

-1
-1
1
1
o
o

Speed
-1
-1
-1
-1
1
1
1
1

-J2
J2

Life
54.5
66.0
11.8
14.0

5.2
3.0
0.8
0.5

86.5
0.4

Peed
- 2
J2
o
o
o
o
o
o
o
o

Speed
o
o
o
o
o
o
o
o
o
o

Life
20.1
2.9
3.8
2.2
3.2
4.0
2.8
3.2
4.0
3.5

I,
I

I,
7



E{v(Z, Y)[Y - (b l + b,Z)]').

(a) Let (Z',Y') have density v(z,y)!(z,y)/c where c = I Iv(z,y)!(z,y)dzdy.
Show that p,(P) = Cov(Z', Y')/Var Z' and pI(P) = E(Y*) -11,(P)E(Z·).

-(b) Let P be the empirical probability defined in Problem 2.1.8 and let v(z,y)
-...-... ~-..

l/Var(Y I Z = z). Show that (3,(P) and p,(P) coincide with PI and 13, of Example
2.2.3. That is, weighted least squares estimates are plug-in estimates.

27. Derive the weighted least squares nonnal equations (2.2.19).

28. Let Z D = I!zijllnxd be a design matrix and let W nXn be a known symmetric invertible
matrix. Consider the model Y = Z Df3 + € where € has covariance matrix (12 W, (12

unknown. Let W- l be a square root matrix of W- 1 (see (B.6.6)). Set Y = W-ly,-, ,
ZD = W-z ZD and € = W-Z€.

(a) Show tha!.,Y = ZD{3+€ satisfy the linear regression mooel (2.2.1), (2.2.4)-(2.2.6)
with g({3, z) ~ Z D{3.

147

The researchers analyzed these data using

Y = log tool life, ZI ~ (feed rate - 13)/6, z, = (cutting speed - 900)/300.

Section 2.5 Problems and Complements

Two models are contemplated

(a) Y ~ 130 + pIZI + p,z, + E

(b) Y = eto + O:IZl + 0:2Z2 + Q3Zi +- 0:4Z? + O:SZlZ2 + f-

Use a least squares computer package to compute estimates of the coefficients (f3's
and o:'s) in the two models. Use these estimated coefficients to compute the values of
the contrast function (2.1.5) for (a) and (b). Both of these models are approximations to
the true mechanism generating the data. Being larger, the second model provides a better
approximation. However, this has to be balanced against greater variability in the estimated
coefficients. This will be discussed in Volume II.

25. Consider the model (2.2.1), (2.2.4)-(2.2.6) with g({3, z) = zT{3. Show that the follow­
ing are equivalent.

(a) The parameterization f3 --t ZDf3 is identifiable.

(b) ZD is of rank d.

(c) Zj;ZD is of rank d.

26. Let (Z, Y) have joint probability P with joint density ! (z, y), let v(z, y) > 0 be a
weight funciton such that E(v(Z, Y)Z') and E(v(Z, Y)Y') are finite. The best linear
weighted mean squared prediction error predictor PI (P) + p,(P)Z of Y is defined as the
minimizer of
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(b) Show that if Z D has rank d, then the f3 that minimizes

- - - - T 1(Y - ZD,6)T(y - ZD,6) = (Y - ZD,6) W- (Y - ZD,6)

is given by (2.2.20).

29. Let ei = (€i + {HI )/2, i = 1, ... , n, where El" .. ,€n+l are i.i.d. with mean zero and
variance a 2

• The ei are called moving average errors.
Consider the model Yi = 11 + ei, i = 1,. _', n.

(a) Show that E(1';+l I Y
"

... , 1';) ~ ~ (I' + 1';). That is, in this model the optimal
MSPE predictor of the future Yi+ 1 given the past YI , ... I Yi is 4(/1 + Vi).

(b) Show that Y is a multivariate method of moments estimate of p. (See Problem
2.1.17.)

(c) Find a matrix A such that enxl = Anx(n+l)ECn+l)xl'

(d) Find the covariance matrix W of e.

(e) Find the weighted least squares estimate of p.

(f) The following data give the elapsed times YI , ... , Yn spent above a fixed high level
for a series of n = 66 consecutive wave records at a point on the seashore. Use a weighted
least squares c~mputer routine to compute the weighted least squares estimate Ii of /1. Is ji,
different from Y?

TABLE 2.5.1. Elapsed times spent above a certain high level for a series
of 66 wave records taken at San Francisco Bay. The data (courtesy
S. J. Chon) shonld be read row by row.

2.968 2.097 1.611 3.038 7.921 5.476 9.858 1.397 0.155 1.301
9.054 1.958 4.058 3.918 2.019 3.689 3.081 4.229 4.669 2.274
1.971 10.379 3.391 2.093 6.053 4.196 2.788 4.511 7.300 5.856
0.860 2.093 0.703 1.182 4.114 2.075 2.834 3.968 6.480 2.360
5.249 5.100 4.131 0.020 1.071 4.455 3.676 2.666 5.457 1.046
1.908 3.064 5.392 8.393 0.916 9.665 5.564 3.599 2.723 2.870
1.582 5.453 4.091 3.716 6.156 2.039

30. In the multinomial Example 2.2.8, suppose some of the nj are zero. ~Show that the
~ ~

MLE of OJ is 0 with OJ = nj In, j = 1, ... , k.
Hint: Suppose without loss of generality that ni = n2 = ... = nq = 0, nq+1 >

0, ... ,nk > 0. Then
k

p(x, 0) = II 0;',
j=q+l

which vanishes if 8j = 0 for any j = q + 1, ... , k.

31. Suppose YI , ... , Yn are independent with Yi unifonnly distributed on [/1i - a, /1i + a}.
<J > 0, where 1'; = L;~=l Z;jf3j for given covariate values {z;j}. Show that the MLE of

I
I



where tLi = :Ej=l Ztj{3j for given covariate values {Zij}.

... "-

p(x,O) = L Ix; + Xj - 201·
i<j
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where F * F denotes convolution. Show that XHL is a plug-in estimate of BHL.

34. Let X; be i.i.d. as (Z, y)T where Y = Z + v"XW, A > 0, Z and W are independent
N(O, 1). Find the MLE of Aand give its mean and variance.

Hint: See Example 1.6.3.

35. Let g(x) ~ 1/".(1 + x'j, x E R, be the Cauchy density, let Xl and X, be i.i.d. with
density g(x - 8), 8 E R. Let x, and x, be the observations and set II = ~ (Xl - x,). Let-B= arg max Lx (8) be "the" MLE.

(a) Show Ihat if Illi < 1, then the MLE exists and is unique. Give the MLE when
Ill[ < 1.

J[x - 28Id(F. F)(x)

Hint: See Problem 2.2.32(b).

(b) Define BH L to be the minimizer of

(f3I' ... ,{3p, a)T is obtained by finding 131, ... ,/3p that minimizes the maximum absolute
value conrrast function maxi IYi - tLil and then setting a = maxt IYi - {:i,d, where Iii =

~

L:j:=1 ZtjPj·

32. Suppose YI , ... , Yn are independent with Vi having the Laplace density

1
2"exp{-[Y;-I';I/a}, ,,>0

~ ~

(a) Show that the MLE of ((31, ... , (3p, a) is obtained by finding (31, ... ,(3p that min-
imizes the least absolute deviation contrast function L~ I IYi - Ili Iand then setting (j =

~ ~ ~

n~I L~ I IYi - Jitl, where Jii = L:J=l Zij{3j. These f3I, ... ,/Jr and iii, ... ,fin are called
least absolute deviation estimates (LADEs).

(b) If n is odd, the sample median fj is defined as Y(k) where k ~ ~(n + 1) and
Y(l), ... , Y(n) denotes YI , ... , Yn ordered from smallest to largest. If n is even, the sample

median yis defined as ~ [Y(,) +Y(r+l)] where r = ~n. (See (2.1.17).) Suppose 1'; = I' for
each i. Show that the sample median ii is the minimizer of L~ 1 IYi - J.l1.

~

Hint: Use Problem 1.4.7 with Y having the empirical distribution F.

33. The Hodges-Lehmann (location) estimate XHL is defined to be the median of the
~n(n+ 1) pairwise averages ~(Xi + Xj), i < j. An asymptotically equivalent procedure

XHL is to take the median of the distribution placing mass i& at each point x';:Cj
• i < j

and mass ,& at each Xi.

(a) Show that the Hodges-Lehmann estimate is the minimizer of the contrast function
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,
Ii

Ii

'I,
I,

,,..,,
,j', ..
i
'I
:1,

(b) Show that if 1t>1 > 1, then the MLE is not unique. Find the values of B that
maximize the likelihood Lx(B) when 1t>1 > L

Hint: Factor out (x - f)) in the likelihood equation.

36. Problem 35 can be generalized as follows (Dhannadhikari and Joag-Dev, 1985). Let 9
be a probability density on R satisfying the following three conditions:

I. 9 is continuous, symmetric about 0, and positive everywhere.
2. 9 is twice continuously differentiable everywhere except perhaps at O.
3. If we write h = logg, then h"(y) > 0 for some nonzero y.
Let (XI, X,) be a random samplefrom the distribution with density f(x, B) = g(x-B).

where x E Rand (} E R. Let Xl and X2 be the observed values of Xl and X z and write
j; ~ (XI + x,)/2 and t> = (XI - x2)/2, The likelihood function is given by

Lx(B) g(xI - B)g(x, - B)
g(x + t> - B)g(i - t> - B).

~

Let B~ arg max Lx (B) be "the" MLE.
Show that

(a) The likelihood is symmetric about x.
~ ~

(b) Either () = x or () is not unique.

(c) There is an interval (a, b), a < b, such that for every y E (a, b) there exists a 0 > 0
such that h(y + 0) - h(y) > h(y) - h(y - 0).

~

(d) Use (c) to show that if t> E (a,b), then B is not unique.

37. Suppose X I, ... ,Xn are i.i.d. N(B, (7') and let p(x, B) denote their joint density. Show
that the entropy of p(x, B) is !n and that the Kullback-Liebler divergence between p(x, B)
and pix, Bo) is tn(B- Bo)'/(7'.

38. Let X ~ P" B E 8. Suppose h is a I-I function from 8 Onto n = h(8). Define
ry = h(B) and let p' (x, ry) = p(x, h-I (ry») denote the density or frequency function of
X for the ry parametrization. Let K(Bo,BI) (K'(ryo,ryt» denote the Kullback-Leibler
divergence between p(x, Bo) and p(X, BI) (p' (x, ryo) and p' (x, ryl ». Show that

39. Let Xi denote the number of hits at a certain Web site on day i, i = 1, ... , n. Assume
that 5 = L:~ I Xi has a Poisson, P(nA). distribution. On day n + 1 the Web Master
decides to keep track of two types of hits (money making and not money making), Let Vj
and Wj denote the number of hits of type 1 and 2 on day j. j = n + I, ... 1 n + m. Assume

that 8 1 = E;+~l Vi and 8 2 = E;+~l Wj have P(rnAl) and P(mA2) distributions,
where Al +..\2 = A. Also assume that S. Sl. and 8 2 are independent. Find the MLEs of
Al and A2 hased on 5. 51. and 5,.

I
!

I!:

Ii
--



40. Let Xl, ... , X n be a sample from the generalized Laplace distribution with density

logY; = log a - olog{1 + exp[-[3(t, - J1.)/o)} + C,
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get; 0), where 0

a
g(t,O) ~ {l+exp[-[3(t-J1.)/o]}"

Section 2.5 Problems and Complements

(a) Show that a solution to this equation is of the form y
(a, [3,1',0), I' E R, and

(b) Suppose we have observations (t I , yd 1 ••• , (tn, Yn), n > 4, on a population of a
large number of organisms. Variation in the population is modeled on the log scale by using
the model

where El" •. 1 En are uncorrelated with mean 0 and variance (72. Give the least squares
estimating equations (2.1.7) for estimating a, /3, 6, and /1.

(e) Let Yi denote the response of the ith organism in a sample and let Zij denote the
level of the jth covariate (stimulus) for the ith organism, i = 1, ... , n; j = 1, ... ,p. An
example of a neural net model is

Idy [ (Y)!]Y dt ~ [3 1 - a ' y > 0; a > 0, [3 > 0, 0 > O.

p

Vi = L h(Zij; Aj) + Ei, i = 1, ... ,n
j=l

(b) Find the maximum likelihood estimates of 81 and 82 in tenns of T 1 and T2 • Care­
fully check the "T1 = 0 or T2 = 0" case.

41. The mean relative growth of an organism of size y at time t is sometimes modeled by
the equation (Richards, 1959; Seber and Wild, 1989)

where OJ > O,j ~ 1,2.

(,) Show that T, = LX,I[X, > OJ and T, = L -X,I[X, < 0] are sufficient
statistics.

1

O 0
cxp{ -x/Oj}, x > 0,

j + ,
1o 0 exp{x/O,}, x < 0

1 + ,

where A = (a, [3, 1'), h(z; A) = g(z; a, [3, 1', 1); and fj, ... ,cn are uncorrelated with mean
zero and variance (72. For the ca.~e p = 1, give the lea.~t square estimating equations (2,1.7)
for a, [3, and 1'.

42. Suppose Xl, ... 1 X n satisfy the autoregressive model of Example 1.1.5.
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(aJ If /' is known, show that the MLE of fi is
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I,
I,,

jj = - 2.::,-, (X,-l - ft)(Xi -/,)

L:1
II(Z'i -/1-)2

(b) If j3 is known, find the covariance matrix W of the vector € = (€1,.'" £n)T

of autoregression errors. (One way to do this is to find a matrix A such that enxl =
Anxn€nx 1.) Then find the weighted least square estimate of f.J.,. Is this also the MLE of /1?

Problems for Section 2.3

1. Suppose YI , ... , Yn are independent

PlY; = 1] = p(x"a,fi) = 1- pry; = OJ, 1 <i< n, n > 2,

p
log (x, a, fi) = a + fix, Xl < ... < Xn·

I-p

Show that the MLE of a. fi exists iff (Yl , ... , Yn) is not a sequence of 1's followed by all
O's or the reverse.

Hint:

n n n n

Cl LYi + C, L x,y, = L(CI + C,Xi)Y' < L(C1 + c,x,)I(c,x, + C1 > 0).
i=l i=l i=1 i=l

If C2 > 0, the bound is sharp and is attained only if Yi = 0 for Xi <
x. > _£l..

1 _ C2'

_£I. y'
C2' 1

1 for

,,
.,;

t·;
•

I
~; ,
I

2. Let Xl, ... , Xn be i.i.d. gamma. r(A,p).

(a) Show that the density of X = (Xl, ... , Xn)T can be written as the rank 2 canonical
exponential family generated by T = (ElogX"EXi ) and hex) = X-I with ryl = p,
'12 = -A and

where r denotes the gamma function.

(b) Show that the likelihood equations are equivalent to (2.3.4) and (2.3.5).

3. Consider the Hardy-Weinberg model with the six genotypes given in Problem 2.1.15.
Let e = {(01,02): 01 > 0,0, > 0,0, + 0, < I} and let 03 = 1- (8, + 8,). In a sample
of n independent plants, write Xi = j if the ith plant has genotype j. I < j < 6. Under
what conditions on (Xl 1 ." l Xn) does the Mill exist? What is the MLE? Is it unique?

4. Give details of the proof or Corollary 2.3.l.

S. Prove Lenama 2.3.l.
Hint: Let C = 1(0). There exists a compact set K c e such that 1(8) < c for all () not

in K. This set K will have a point where the max is attained.
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6. In the heterogenous regression Example 1.6.10 with n > 3,0 < ZI < ... < Zn, show
that the MLE exists and is unique.

7. Let YI , ... , Yn denote the duration times of n independent visits to a Web site. Suppose
Y has an exponential, [(Ai), distribution where

Iti = E(Y,) ~ Ail = exp{a + ilz;}, Zj < ... < Zn

and Zi is the income of the person whose duration time is ti, 0 < Zl < ... < Zn, n > 2.
Show that the MLE of (a,ill T exists and is unique. See also Problem 1.6.40.

8. Let XI,' .. ,Xn E RP be i.Ld. with density,

fe(x) ~ c(a) exp{ -Ix - en, e E RP, u > 1

wherec- 1 (a) ~ fR exp{-Ixlfr}dxand 1·1 is the Euclidean norm.
"

~

(a) Show that if Cl: > 1, the MLE 8 exists and is unique.

(b) Show that if a = 1, the MLE 8 exists but is not unique if n is even.

9. Show that the boundary ac of a convex C set in Rk has volume 0.
Hint: If BC has positive volume, then it must contain a sphere and the center of the

sphere is an interior point by (B.9.1).

10. Use Corollary 2.3.1 to show that in the multinomial Example 2.3.3, MLEs of ryj exist
iffallTj > 0, 1 <j< k-1.

Hint: The kpoints (0, .. _,0), (O,n,O, ... ,0), ... , (0,0, ... ,n) are the vertices of the

convex set {(Ij, ... ,lk-Il :Ij >0,1 <j < k-1,z=7 :Ij <n}.

11. Prove Theorem 2.3.3.
Hint: If it didn't there would exist ryj = c(9j ) such that ryJ10 - A(ryj) ~ max{ 'ITto­

A('I) : 'I E c(8)} > -00. Then {'Ij} has a subsequence that converges to a point '10 E f.
But c(e) is closed so that '10 = c(eO) and eO must satisfy the likelihood equations.

12. Let Xl, ... , X n be Ll.d. ~fo (X u I.t), C! > 0, J.l E R, and assume forw -logfo that
wll > 0 so that w is strictly convex, w(±oo) = 00.

(3) Show that, if n > 2, the likelihood equations

t w' (XiOJ- It) = 0
t=I

~ { (Xi;- It) w' ( Xi OJ- It) -1} = 0
-'~ve a unique solution (,fl,8) .

•

(b) Give an algorithm such that starting at iP = 0, 0:0 = 1, ji(i) --+ ji, a(i) --+ a.




