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Hint: See Problem B.2.5.

4. Let X1,. .., X, be the indicators of n Bernoulli tnials with probability of success 4,
(a) Show that X is a method of moments estimate of 4.

(b) Exhibit method of moments estimates for Varg X = 6(1 — ) /n first using only the
first moment and then using only the second moment of the population. Show that these
estimates coincide.

(¢} Argue that in this case all frequency substitution estimates of ¢(f) must agree with
g{X).
5. Let X1,...,X, be a sample from a population with distribution function & and fre-

quency funcm}n or density p. The empirical distribution function F is defined by F (z) =
[No. of X; < z|/n. If g(€) can be writien in the form ¢(8) = s(F) for some function s of

F we define the empirical substitution principle estimate of ¢{8) to be s(F).

(a) Show that 1n the finite discrete case, empirical substitution estimates coincides with
frequency substitution estimaies. R
Hint: Express F 1n terms of p and £ in terins of

No.of X; ==z
- :

plz) =

(b) Show that in the continuous case X ~ F means that X = X; with probability 1/mn.

(c) Show that the empirical substitution estimate of the yth moment y; is the jth sample

moment ki, . '
Hinr: Write m; = [°__z7dF(z) orm; = Ep(X7) where X ~ F.

(d) Fort; < --- < t, find the joint frequency function of F(t1),..., F(tx).

Hint: Consider (Ny,..., Ngy1) where Ny = nf'(t)), N2 = n(F(fg) F(t)),. ..,
N =n(l = F(tg).
6. Let Xy < .-+ € X(p) be the order statistics of a sample X, ..., X,. (Sec Problem
B.2.8.) There is a one-to-one correspondence between the empirical distribution function

I and the order statistics in the sense that, given the order statistics we may construct &
and given F', we know the order statistics. Give the details of this correspondence.

7. The jth cumulant ¢; of the empirical distribution function is called the jth sample
curnulant and is a2 method of moments estimate of the cumulant ¢;. Give the first three
sample cumulants. See A.12.

8. Let (Z1,Y1),(Z9,Y2),...,(Zn, Yn) be a set of independent and identically distributed
random vectors with common distribution function . The natural estimate of F'(s, %) is

the bivariate empirical distribution function ﬁ{s, t), which we define by

Number of vectors (Z;, Y;) suchthat Z; < sand ¥; < ¢

F(s.t) =
(s,1) -
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(a) Show that F (-,-) is the distribution function of a probability P on R? assigning
mass 1/ to each point (Z;, Y;).

(b) Define the sample product moment of order (z, 7), the sample covariance, the sam-
ple correlation, and so on, as the comresponding characteristics of the distribution #. Show
that the sample product moment of order (4, 7) is given by

1 n

* ivrd

OIS
k=1

The sample covariance is given by
1 < 1 «—
- Ze— DY —Y)V==Y ZiY, - 2Y
n;( P Y% ) n; ki :

where Z,Y are the sample means of the Zy,...,Z, and Yi,...,Y,, respectively. The
sample correlation coefficient is given by

e 2B -Y)
V(@ = 2P Th, (Y — 72

All of these quantities are natural estimates of the corresponding population charactenstics
and are also called method of moments estimates. (See Problem 2.1.17.) Note that it

follows from (A.11.19) that —1 < 7 < 1.
9. Suppose X = (Xy,...,X,,) where the X; are independent N'(0, 02).

(a) Find an estimate of ¢# based on the second moment.
(b) Construct an estimate of ¢ using the estimate of part (a) and the equation ¢ = v ¢2.

(¢) Use the empirical substitution principle to construct an estimate of ¢ using the
relation E(| X1} = ov2x.

10. In Example 2.1.1, suppose that ¢(/3,z) is continuous in 3 and that |g(3, z)| tends to
oo as |G| tends to 0o. Show that the least squares estimate exists.
Hint: Set ¢ = p(X,0). There exists a compact set X such that for 3 in the complement

of K, p(X, 8) > c. Since p( X, 3) is continnous on K, the result follows.

11. In Example 2.1.2 with X ~ I'(e, A), find the method of moments estimate based on
11 and [i3.
Hint: See Problem B.2 4.

12. Let X1,...,Xn beiid. as X ~ Py, 6 € © C R4, with 6 identifiable. Suppose X
has possible values vy, .. ., v and that g(f) can be written as

q(8) = h(1n(8), ..., p-(6))

e

- mrm ol i Sl | A
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for some R¥-valued function /. Show that the method of moments estimate § = h(z,, .. .,
Zir) can be written as a frequency plug-in estimate.

13. General method of moment estimates'!?, Suppose X'y, ..., X, are i.id. as X ~ Pa,
with @ € © ¢ R® and 8 identifiable. Let g1, .. . , g, be given linearly independent functions

and wnte
i=1

Suppose that X has possible valvues vy, ..., v and that

q(8) = h(1a(6),. .., 1-(0))

for some R*-valued function k.

(a) Show that the method of moments estimate § = h(1, . .., i, ) is a frequency plug-
in estimate.

(b) Suppose {Pg : 8 € O} is the k:parameier exponential family given by (1.6.10),
Let g;(X) = Ty(X), 1 < j < k. In the following cases, find the method of moments

estimates

(i) Beta, 5(1,9)
(ii) Beta, 3(0,1)
(iii) Raleigh, p(z,8) = (z/8%)exp(—z*/26°),z > 0,8 >0
(iv) Gamma, I'(p, ), p fixed
(v) Inverse Gaussian, IG{u, A), & = {1, A). See Problem 1.6.36.

Hint: Use Corollary 1.6.1.

14. When the data are not i.i.d., it may still be possible to express parameters as functions
of moments and then use estimates based on replacing population moments with “sample”
moments. Consider the Gaussian AR(1) model of Example 1.1.5.

(a) Use E(X;) to give a method of moments estimate of .
(b) Suppose u = ug and 8 = b are fixed. Use E(U?), where

1/2

Ui_(Xi_M)/ ibﬁ ,

§=0

to give a method of moments estimate of ¢°.

(¢) If i and o2 are fixed, can you give a method of moments estimate of 37
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15. Hardy-Weinberg with six genotypes. In a large natural population of plants (Mimulus
guttatus) there are three possible alleles S, I, and F at one locus resulting in siX genotypes
labeled S8, 11, FF, 85I, 5F,and IF. Let 81, 85, and 65 denote the probabilities of §, 7,
and F, respectively, where Z_?:] #; = 1. The Hardy—Weinberg model specifies that the
six genotypes have probabilities

Genotype i 2 3 4 5 6
Genotype | SS | I1 | FF | 51 SF IF
Probality 9% 9% 9‘-‘3‘! 20102 | 26,63 | 20,203

Let N; be the number of plants of genotype j 1n a sample of n independent plants, 1 < 7 <
6 and let p; = N;/n. Show that

1 = D1+ %fﬂ:. + %ﬁﬁ
G = Do+ %54 + %ﬁﬁ
03 = P3+ 355+ 3P

are frequency plug-in estimates of ;, to, and @3.

16. Establish (2.1.6).
Hint: [Y; — 9(B, z:)] = [Yi — 9(Bo, z:)] + [9(Bo, 2:) — 9(B, 24)).

17. Multivariate method of moments. For a vector X = (X3, ..., X,), of observations, let
the moments be

Mikes = B(XIXE), 520, k>0, r,5=1,...,q.

For independent identically distributed X; = (X;1,...,X4g), 7 = 1,..., n, we define the
empirical or sample moment to be

[
o k \ )
mjkfﬂ:ﬁg :Xgrxi333201k305 T,Szlj...,q,
t—1

If8 =(6,,...,0,,) can be expressed as a function of the moments, the method of moments

estimate @ of @ is obtained by replacing m ks by Mijkrs- Let X = (Z,Y) and 8 =
(a1, b1), where (Z,Y) and (@, b;) are as in Theorem 1.4.3. Show that method of moments
estimators of the parameters b, and a; 10 the best linear predictor are

~ ntYZY,-Z2Y 5~ 5
— — a :Y"—b Z*

Problems for Section 2,2

1. An object of unit mass 1s placed in a force field of vnknown constant intensity &. Read-
ings Y1,...,Y, are taken at times ¢4, ..., {, on the position of the object. The reading Y;
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differs from the true position (8/2)tZ by a random error €;. We suppose the ¢; to have mean
0 and be uncorrelated with constant vanance. Find the LSE of 0.

2. Show that the formulae of Example 2.2.2 may be derived from Theorem 1.4.3, if we con-
sider the distribution assigning mass 1/n to each of the points

(z1,41), -+ (Zn, Yn)-

3. Suppose that observations Y, ..., Y5, have been taken at times z,, ..., 2, and that the
linear regression mode] holds. A new observation Y, 1s to be taken at time z,,,.1. Whai
is the least squares estimate based on Y7, ..., Y, of the best (MSPE) predictor of Yy, 1?7

4. Show that the two sampie regression lines coincide (when the axes are interchanged) if
and only if the points (z;,%;),1 = 1,...,n, n fact, all lie on a line.
Hint: ‘Write the lines in the form

(z-2) _ -9

o T

5. The regression line minimizes the sum of the squared vertical distances from the points
(21,41)s- - » (2n,Yn). Find the line that minimizes the sum of the squared perpendicular

distance to the same points.
Hint: The quantity to be minimized is

?:1(% -6 — 923’1‘)2
[+ 63 '

6. (a) Let Y7,...,Y, be independent random vanables with equal variances such that
E(Y;) = az; where the z; are known constants. Find the least squares estimate of «.

(b) Relate your answer to the formula for the best zero intercept linear predictor of
Section 1.4.

7. Show that the least squares estimate is always defined and satisfies the equations (2.1.5)
provided that g is differentiable with respectto 3;, 1 < i < d, the range {g(z,,3),-. .,
9(zn, B), B € R%} is closed, and B ranges over R¢.

8. Find the least squares estimates for the model Y; = @, + 622; + €; with ¢; as given by
(2.2.4)-(2.2.6) under the restrictions &; > 0, 62 < 0.

9.Suppose Y; =0, +¢;,i=1,...,n1and Y; =6 +¢;,i =n1 +1,...,n1 + ne, where
€1, -, €n,4+n, are independent N (0, 02) variables. Find the least squares estimates of 8,
and 62.

10. Let X4, ..., X,, denote a sample from a population with one of the following densities
or frequency functions. Find the MLE of 6.

(a) f(z,0) = fe %% x > 0; 6 > 0. (exponential density)

(b) f{z,8) = Oclx—(0+1) z > ¢ ¢ constant > 0; 6 > 0. (Pareto density)




- e —— L — e ———
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(e) flx.0) = c6x~(¢tD) & > @; c constant > 0; ¢ > 0. (Pareto density)

@) f(z.8) = VBz®~1,0 <2 < 1,8 > 0. (beta, A(V/B, 1), density)

(e) f(z,0) = (x/0°%) exp{—x2/26°}, £ > 0; 6 > 0. (Rayleigh density)

() f(z,0) = Bz exp{—02°}, z > 0; cconstant > 0; § > 0. (Weibull depsity)
11. Suppose that X,..., X,,, n > 2, is a sample from a N (y, ¢2) distribution.

|

If

(a) Show that if 4 and o? are unknown, i € R, 62 > 0, then the uniqgue MLEs are
=Xandd?=n"13 7 (X, - X)2

(b) Suppose 1 and ¢* are both known to be nonnegative but otherwise unspecified,
Find maximum likelihood estimates of » and o*.

12, Let X,,..., X,, n > 2, be independently and identically distributed with density

flz,0) = —EXP{ (z—p)/o}, 2 p,

where 8 = (pu, %), ~00 <y < 00, 7% > (.
(a) Find maximum likelihood estimates of 1 and 2.

(b} Find the maximum likelihood estimate of Py[X, > ¢] for ¢t > p.
Hint: You may use Problem 2.2.16(b).

13. Let X;,..., X, bea sample from a U{f — 4,0+ 1] distribution. Show that any 7" such
that X,y — 5 f:: T < X + > 1S @ maximuin llkﬂllhOGd estimate of 6. (We write U|a, b]
to make p(a) p(b) = (b — a) ! rather than 0.)

14. If n = 1 in Example 2.1.5 show that no maximum likelihood estimate of 8 = (y, 52)
exists.

15. Suppose that 7'(X) is sufficient for ¢ and that g(X) is an MLE of 8. Show that 8

depends on X through T'(X)) only provided that ¢ is vnique.
Hint: Use the factonzation theorem (Theorem 1.5.1).

16. (a) Let X ~ Py, # € © and let § denote the MLE of §. Suppose that h is a one-to-
one function from © onto k(). Define n = h(#) and let f(x,7) denote the density or
frequency function of X in terms of 7 (i.e., reparametrize the model vsing 7). Show that

the MLE of n is h(ﬂ) (1.e., MLEs are unaffected by reparameirization, they are equivariant
under one-to-one transfﬂnnatmns}

(b)LetP = {Pg :0 € 8},8 C RP,p > 1, be a family of models for X € X ¢ R¢.
Let q be a map from © onto §2, & € R*, 1 < k < p. Show that if & is a MLE of 6, then
q(B) is an MLE of w = q(8).

Hint: Let 6(w) = {8 € B : q(6) = w}, then {B(w) : w € Q} is a partition of B, and

6 belongs to only one member of this partition, say ©(&). Because q is onto {2, for each
w € Q2 there is @ € O such that w = q(8). Thus, the MLE of w is by definition

Wy LE = arg sup sup{Lx(0): 0 € B(w)}.
Well
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a8
-,

Now show that warrp = W = q(8).

17. Censored Geometric Waiting Times. If nme 1s measured 1n discrete periods, a model
that is often used for the time X to failure of an item is

Bl X=kl=6""1-0), k=12,...

where 0 < 8 < 1. Suppose that we only record the time of falure, if failure occurs on or
before time r and otherwise just note that the item has lived at least {r + 1) periods. Thus,
we observe Y7, ..., Y, which are independent, identically distributed, and have commeon

frequency function,
flk0) =05 1-0), k=1,....,7
fr+1,0)=1-PX <rj=1-) 6 '1-9)=¢"
k=1

(We denote by “r + 17 survival for at least (r + 1) periods.) Let M = number of indices

such that Y; = r 4+ 1. Show that the maximum likelihood estimate of # basedon ¥;,....Y,,
1S
~ > Y. -n
(YY) = Z.,:‘l _
2z Yi— M

18. Dernive maximum likelihood estimates in the following models.

(a) The observations are indicators of Bernoulli trials with probability of success 8. We
want to estimate ¢ and Varp X, = 6{1 — 8).

(b) The observations are X; = the number of failures before the first success, X; =
the number of failures between the first and second successes, and so on, in a sequence of
binomial trials with probability of success #. We want to estimate 6.

19. Let X, ..., X, beindependently distributed with X; having a A/ (8;, 1) distribution,
1 << n,

(a) Find maximum likelihood estimates of the &; under the assumption that these quan-
tities vary freely.

(b) Solve the problem of part (a) for n = 2 when it is known that #; < #5. A general
solution of this and related problems may be found in the book by Barlow, Bartholomew,
Bremner, and Brunk (1972).

20. In the “life testing” problem 1.6.16(i}, find the MLE of 8.
21. (Kiefer—Wolfowitz) Suppose (X1, . . -, Xy, ) is a sample from a population with density

flx,8) = 1_09?*‘:’ (:ﬂ ; ”) + %w(i‘ — u)

where ¢ is the standard normal density and 8 = (1, 0%) € @ = {(g,0%) : -0 <
i< 00,0 < o2 < oo}. Show that maximum likelihood estimates do not exist, but



146 Methods of Estimation  Chapter 2

that sup,, p(x, §i,0°) = sup, , p(X,u,0°) if, and only if, & equais one of the numbers
Z1,-..,Tn. Assume that x; # z; fori # j and that n > 2.

22. Suppose X has a hypergeometric, H(b, N, n), distribution. Show that the maximum
likelihood estimate of b for N and n fixed is given by

Bx) = |2+ 1)

TL

e X : .
if 2-(N + 1) 1s not an integer, and

E(X)=£(N+1)nr§(N+1)—1

Tt

otherwise, where [t] is the largest integer that is < ¢.
Hint: Consider the ratio L{b+ 1, z)/L(b, x) as a function of b.

23. Let Xi,...,X,, and Y1,..., Y, be two independent samples from AN (11, 0?) and

N{ji2,0%) populations, respectively. Show that the MLE of § = (i1, uz,0?) is 6 =
(X,Y,5?%) where

7= | 2 (K= X+ 2 (%5 = ¥)? | /(m+n).

t=1

Q
I

24, Polynomial Regression. Suppose ¥; = 1{z;) + €;, where €; satisfy (2.2.4)—2.2.6). Set
zd = 2]' .. Z)? where j € J and Jisasubsetof {{(4;,...,Jp) : 0 <gx < J, 1 <k < p},
and assume that

u{z) = Z{&sz :je T}

In an experiment to study tool life (in minutes) of steel-cutting tools as a function of cut-
ting speed (in feet per minute} and feed rate (in thousands of an inch per revolution), the
following data were obtained (from S. Weisberg, 1985).

TABLE 2.6.1. Tool life data

Feed Speed Life || Feed Speed Life
-1 —1 545 ) —v/2 0 20.1
~1 ~1 660 2 0 2.9

1 1 1181 0 0 3.8
1 -1 140 0 0 2.2
~1 1 5.2 0 0 3.2
—1 1 3.0 0 0 4.0
1 1 0.8 0 0 2.8
1 1 0.5 0 0 3.2
0 —v2 86.5 0 0 4.0
0 V2 0.4 0 0 3.5
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The researchers analyzed these data using
Y = logtool life, z; = (feed rate — 13)/6, z, = (cutting speed — 900)/300.

Two models are contemplated
(@)Y = 0o+ 0121 + fFa22 + ¢
(b)Y =g+ 121 + a2 + &33? 1 Emz% + 2129 + €.

Use a least squares computer package to compute estimates of the coefficients (5’s
and a’s) in the two models. Use these estithated coefficients to compute the values of
the contrast function (2.1.5) for (a) and (b). Both of these modeis are approximations to
the true mechanism generating the data. Being larger, the second mode] provides a better
approximation. However, this has 1o be balanced against greater variability in the estimated
coefficients. This will be discussed in Volume 11,

25. Consider the model (2.2.1), (2.2.4)—(2.2.6) with g(3,2) = z* 3. Show that the follow-
ing are equivalent.

(a) The parameterization 8 — Zp 3 is identifiable.
(b) Zp is of rank 4.
(c) ZLZp is of rank d.

26. Let (Z,Y) have joint probability P with joint density f(z,%), let v{(z,y¥) = O be a
weight funciton such that E(2{Z,Y)Z?%) and E{(v(Z,Y)Y?) are finite. The best linear
weighted mean squared prediction error predictor 3 (P) + $2(FP)Z of Y is defined as the
minimizer of

E{o(Z,Y)[Y — (b1 + boZ)P}.

(a) Let {Z*,Y*) have density v(z,y)f(z,v)/c where ¢ = | [v(z, y)f(z, y)dzdy.
Show that $2(FP) = Cov(Z*,Y ") /Var Z* and 51 (P) = E(Y™*) — 52(P)E(Z").

(b) Let P be the empirical probability defined in Problem 2.1.8 and let v(z,3) =

1/Var(Y | 2 = z). Show that 8,(P) and B2(F) coincide with 3; and 3, of Example
2.2.3. That 18, weighted least squares estimates are plug-in estimates.

27. Derive the weighted least squares normal equations (2.2.19).

28. Let Zp = [|2i;]|nx« be a design matrix and let W, ,, be 2 known symmetric invertible
matrix. Consider the model Y = Z ;83 + € where € has covariance matrix c°W, o2

unknown. Let W ™% be a square root matrix of W ™! (see (B.6.6)). Set Y = W_%Y,
ot 1 e 41
Zp =W iZpande=W 3

(a) Show that | Y = Zp[B+¢ satisfy the linear regression model (2.2.1), (2.2.4)-(2.2.6)
with g(3, z) = ZpB3.
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(b} Show that if Z 5 has rank d, then the B that mininuzes
(Y ~ ZpBY (Y - ZpB) = (Y — ZpBY WY — Zpp)

is given by (2.2.20).

29. Lete; = (e, +€i41)/2,i=1,...,n, where ¢, ...,
! variance o 2. The e; are called moving average errors.
Considerthe model V; =y +¢;,0=1,...,n

(a) Show that K(Y; .1 | Y7,...,Y;) =
MSPE predictor of the future Y;, ; given the past Y7, ..

€n+1 are L.1.d. with mean zero and

%(# + Ya‘) That is in this model the optimal
Y is 5(p + Vi),

(b) Show that Y is a multivariate method of moments estimate of .
2.1.17)

(c) Find a matrix A such that €nx1 = Anx(nt1)€m+1)x1-

(See Problem

(d) Find the covariance matrix W of e.
(e) Find the weighted least squares estimate of p. :

(f) The following data give the elapsed times Y7, ..., Y, spent above a fixed high level :
for a series of n = 66 consecutive wave records at a point on the seashore. Use a weighted ]
least squares computer routine to compute the weighted least squares estimate g of u. Is [
different from Y ?

TABLE 2.5.1. Elapsed times spent above a certain lugh level for a senes |

E ) of 66 wave records taken at San Francisco Bay. The data (courtesy :
S. J. Chou) should be read row by row. *
2968 2097 1611 3.038 7921 5476 9858 1397 0.155 1.301

0054 1958 4.058 3918 2019 3.689 3.081 4229 4669 2274

1971 10379 3.391 2093 6053 4.196 2.788 4511 7300 5.856

1 0.860 2.093 0703 1182 4.114 2075 2834 3968 6480 2.360

I 5249 5100 4131 0020 1071 4455 3.676 2666 5457 1.046

b 1908 3.064 5392 8393 0916 9.665 5564 3.599 2723 2870

i’ 1.582 5453 4091 3716 6156 2.039

‘;E

Il_ 30. In the multmﬂrrual Example 2.2.8, suppose some of the n; are zero. Show that the
i MLE of 8, 159w1th€ =n;/nj=1...,k.
: Hint: Supp{}SE wnhnut Joss of generality that ny = ng = --- = n, = O,ngy1 >

0,...,ng > 0. Then
n
- 11 &

j=g+l1

p(x,0) =

which vanishes if 8; =Ufﬂran}'j=q+ L,...,k.

il 31. Suppose Y7, . are independent with Y; uniformly distributed on [u; — o, u; + o},

c > 0, WhEI’Ept =

le 2;3; for given covariate values {2;;}. Show that the MLE of
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(/31, oo ?ﬁpi a )T is obtained by finding y-e ., Ep that minimizes the maximum absolute
value contrast function maxy Iyi - ;J,.il and then Sﬂtting o — max, |y? —_ ﬁflﬁ where Ei —

i1 %05
32. Suppose Y1, ..., Y, are independent with Y; having the Laplace density

1
—exp{—|¥: — wl/oj, 6 >0
5 eXPl—[yi — pil/o]

where f; = ,;.- _1 %4;/3; for given covariate values {z;; }.

(a) Show that the MLE of (3,,. .., 8,,0) is obtained by finding i, . . ., B, that min-
imizes the least absolute deviation camrast function Zt ) |g,a=1 ;| and then setting & =

!SSP |y; — B, where fi; = zUﬁj These 61,.. _;3 and iy, . .., Hy, are called
least absolute deviation estimates ( MDES)

(b) If 7 is odd, the sample median ¥ is defined as y) where kK = 3(n + 1) and
Y1y, - -1 Y(n) denotes y1, . .., yn ordered from smallest to largest. If 72 is even, the sample

median {7 is defined as %[y(r} + Y(r+1y] Where 7 = %n (See (2.1.17).) Suppose pu; = p for
each ¢. Show that the sample median ¥ is the minimizer of >, [y; — u].

Hint: Use Problem 1.4.7 with Y having the empirical distribution £

33. The Hodges—Lehmann (location) estimate Ty, is defined to be the median of the
In(n + 1) pairwise averages 1(z; + z;), 1 < j. Ap asymptntically equivalent procedure
Ty I8 tO take the median of the distribution placing mass —g at each point —"i"—“—’i L1 < g
and mass —g‘ at each x;.

(a) Show that the Hodges—Lehmann estimate is the minimizer of the contrast function
t<j
Hint: See Problem 2.2.32(b).

(b) Define 85 to be the minimizer of
/ lz — 28|d{F % F)(x)

where F' x F' denotes convolution. Show that z g7 1s a plug-in estimate of #4; .

3, Let X; beiid. as (Z,Y)T where Y = Z + VAW, A > 0, Z and W are independent
N(0, 1). Find the MLE of X and give its mean and variance.
Hint: See Example 1.6.3.

35. Let g(z) = 1/n(1 +2%), z € R, be the Cauchy density, let X and X be Li.d. with
density g(z — 6), 8 € R. Let 21 and x be the observations and set A = 5(z1 — x,). Let
§ = arg max L () be “the” MLE.

(a) Show that if |A| < 1, then the MLE exists and is unique. Give the MLE when
|A] < 1.
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(b) Show that if |[A] > 1, then the MLE is not unique. Find the values of ¢ that
maximize the likelihood L (6) when |A] > 1.
Hint: Factor out (z — @) in the likelihood equation.

36. Problem 35 can be generalized as foliows (Dharmadhikar and Joag—Dev, 1985). Let g
be a probability density on R satisfying the following three conditions:

l. g 1s continuous, symmetric about §, and positive everywhere.

2. g is twice continuously differentiable everywhere except perhaps at 6.

3. If we write i = log g, then h”(y) > 0 for some nonzero y.

Let (X1, X2) be a random sample from the distribution with density f(z,8) = g(z —8),
where z € K and 8 € R. Let z; and z- be the observed values of X; and X9 and write
T ={z1 +%2)/2and A = (z; — x2)/2. The likelihood function is given by

Le(®) = gz, —0)g(x2 - 6)
= g{Z+A-0)g(z—-A—-8).

Let§ = arg max Lx(6) be “the” MLE,
Show that

(a) The likehhood is symmetric about Z.
(b) Either 8 = % or @ is not unique.

(c) There is an interval {a, b), a < b, such that for every y € {(a, b) there existsa § > 0
such that h(y + 8) — h(y) > h(y) — h{y - 3).

(d) Use (c) to show that if A € (a,b), then g is not unique.

37. Suppose X1, ..., X, are i.i.d. N (8, 0?) and let p(x, ) denote their joint density. Show
that the entropy of p(x, 8) is $n and that the Kullback-Liebler divergence between p(x, §)
and p(x, Bp) is in(8 — 65)% /o2.

38. Let X ~ F,, 0 € G, Suppose & 1s a I-1 function from © onto 2 = A(©). Define
n = h(9) and let p*(x,n) = p(x, h™1(n)) denote the density or frequency function of
X for the 5 parametrization. Let K(f,0,) (K*(7n9,m)) denote the Kullback—Leibler
divergence between p(x, fy) and p(z, 61) (p* (x, 7o) and p*(x,n1)). Show that

K*(no,m) = K(h™*(m0), A~ (m)).

39. Let X; denote the number of hits at a certain Websiteonday 3,2 = 1,...,n. Assume !
that § = > ._, X; has a Poisson, P(n)), distribution. On day n + 1 the Web Master
decides to keep track of two types of hits (money making and not money making). Let V; ]
and W; denote the numberof hitsof type 1 and2onday j, § = n+1,...,n+m. Assume !

that $; = 3277, Vyand Sy = Y 70" | W; have P(mA;) and P(m);) distributions,

where A; + Ay = A. Also assume that S, 57, and 55 are independent. Find the MLEs of
}q and /\2 based on S, 51, and Sz.

-
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40. Let X4, ..., X, be a sample from the generalized Laplace distribution with density
1

f(l'ﬁl,ﬂz) = 3 _{32 GKP{—iﬂ/ﬁl}, x > 0,
— /@
gy + 6, “PLE/02), 2 <O

where 8, > 0,7 = 1,2.
(@) Show that T} = Y X;1[X; > 0] and T5 = > —X;1[X; <« 0] are sufficient
statistics,

(b) Find the maximum likelihood estimates of &; and &2 in terms of 1} and T,. Care-
fully check the “7Ty = 0 or Ty = ("’ case,

41. The mean relative growth of an organism of size y at time ¢ is sometimes modeled by
the equation (Richards, 1959; Seber and Wild, 1989)

H

1dy Y\ 5
- Z=311-(= : 0 .
;& ;3[ (ﬂ)],Fy::»U,a},ﬁ}U,é}ﬂ

(a) Show that a solution to this equation is of the form y = g(¢;8), where 8 =
(&r ﬁ:;—‘r’wé)a 3 = R, and

CY

g(t,0) = {1+ exp[—0(t —n)/d8]}°

(b) Suppose we have observations (¢1,41),-..,{({n,¥n), n > 4, on a population of a
large number of organisms. Variation in the population 1s modeled on the log scale by using

the model

logV; = logor — dlog{l + exp{—B(t: — 1) /O]} + €
where €1, ..., €, are uncorrelated with mean 0 and variance ¢2. Give the least squares
estimating equations (2.1.7) for estimating ¢, 3, 8, and p.

(¢) Let Y; denote the response of the ith organism in a sample and let z;; denote the
level of the jth covariate (stimulus) for the ith organism, ¢ = 1,...,n; 7 = 1,...,p. An
example of a neural net model 1s

where A = (o, 8, 1), h(z; A) = g(2; ¢, B, 1, 1), and €1, . . ., €, are uncorrelated with mean
zero and variance o2, For the case p = 1, give the least square estimating equations (2.1.7)
for o, £, and p.

42. Suppose X, ..., X,, satisfy the autoregressive model of Exainplﬂ 1.1.5.
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(a) If ¢ is known, show that the MLE of 3 is
— E?ZQ(Ii-l - “)(mt B i“’) _
Yoy (@i — p)?
(b) If 8 is known, find the covariance matrix W of the vector € = (€,...,€,)7

of autoregression errors. (One way to do this is to find a matrix A such that e,,x; =
A, xn€nx1.) Then find the weighted least square estimate of 1. Is this also the MLE of 1?

o
—ur—r
—

Problems for Section 2.3

1. Suppose Y;,...,Y, are independent

PlY;=1]=p®ye,8)=1-PlY; =0}, 1<i<n, n>2,

log {(r,o,0) =+ Pz, 1 < - < Ip.

1-p

Show that the MLE of o, g exists iff (Y7,...,Y},) is not a sequence of 1's followed by all
(’s or the reverse.
Hint:

T n i Ti
€1 Z Yi +c2 Zﬂ?iyi = Z(CI + €27 )y < Z(Cl + eoxi)l{caxs + €1 > 0).
=] =1 1=1

=1

If e > 0, the bound is sharp and is attained only if ¢; = 0 for z; < —2, y; = 1 for

: —£1
T; > vt

2. Let X,,..., X, beiid. gamma, I'( )\, p).

(a) Show that the density of X = (X1,..., X )7 can be written as the rank 2 canonical
exponential family generated by T = (Zlog X;,XX;) and h(z) = z~! with 55 = p,
M = —A and

A(m,m) = nllogT'(m) — m log(~n2)],

where I' denotes the gamma function.
(b) Show that the likelihood equations are equivalent to (2.3.4) and (2.3.5).

3. Consider the Hardy—Welnberg model with the six genotypes given in Problem 2.1.135.
Let 8 = {(91,92) : 0 > [},92 >0,01+68, < 1} and let 93 =1— (31 +92) IﬂﬂSﬂIﬂplE
of r independent plants, write x; = j if the ith plant has genotype 7, 1 < 7 < 6. Under
what conditions on (xy, ..., z,) does the MLE exist? What is the MLE? Is it unique?

4. Give details of the proof or Corollary 2.3.1.

5. Prove Lemma 2.3.1.
Hint: Let ¢ = [{0). There exists a compact set K C O such that {{#)} < ¢ for all € not
in K. This set K will have a point where the max is attained.
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6. In the heterogenous regression Example 1.6.10 withn > 3,0 < z; <+ - < z,, show
that the MLE exists and 1s unique,

7. Let Y1, ..., Y, denote the duration times of n independent visits to a Web site. Suppose
Y has an exponential, £(,;), distribution where

pi = E(Y)) = A" =expla+ Bz}, 21 < - <z

and z; is the income of the person whose duration time is ¥;, 0 < 27 < -+ < 25,0 2 2,
Show that the MLE of {«, 8)7 exists and is unique. See also Problem 1.6.40.

8. Let X,,..., X, € RF be11.d. with density,
fg(x) =clajexpi—ix —8|%}, 6 € HP, o > 1
where ¢~ Ha) = pr exp{—|x|*}dx and | - | is the Euclidean norm.

(a) Show that if & > 1, the MLE 8 exists and is unique.

(b) Show that if & = 1, the MLE 6 exists but is not unique if 7 1s even.

9. Show that the boundary 9C of a convex C set in R* has volume 0.
Hint: If OC has positive volume, then it must contain a sphere and the center of the
sphere is an interior point by (B.9.1).

10. Use Corollary 2.3.1 to show that in the multinomial Example 2.3.3, MLEs of 7; exist
iffall7; > 0,1<53<k-1.

Hint: The k points (0,...,0), (0,n,0,...,0),...,(0,0,...,n) are the vertices of the
convex set {(¢q,...,tp—1): ;20,1 <3<k -1, Zf;ll t; < n}.
11. Prove Theorem 2.3.3.

Hint: If it didn’t there would exist i7; = ¢(f;) such that ﬂ?tﬂ—A(ﬂj) — max{nTto—
A(n) : m € ¢(©)} > —oo. Then {n;} has a subsequence that converges to a point n®eéf.
But ¢(8) is closed so that n° = C(GG] and 6° must satisfy the likelihood equations.

x 12, Let Xy,..., X, beiid. Jlfu (I—;E) o >0, u € R, and assume for w = — log f;; that
f. w” > 050 that w is strictly convex, w{Zoo) = oo.

(a) Show that, if n > 2, the likelihood equations

Tt X{"H B
>ow (FH) =

it{“""z S (F5) 1=

_{ Eave a unique solution (i, &).

-4.-' (b) Give an algorithm such that starting at z2° = 0,7° = 1, z1¥ — 7,6 — 7.






