9. Let X_1, \ldots, X_n be a sample from a population with density

$$f_{\theta}(x) = a(\theta)h(x) \text{ if } \theta_1 \le x \le \theta_2$$

= 0 otherwise

where $h(x) \ge 0$, $\theta = (\theta_1, \theta_2)$ with $-\infty < \theta_1 \le \theta_2 < \infty$, and $a(\theta) = \left[\int_{\theta_1}^{\theta_2} h(x) dx\right]^{-1}$ is assumed to exist. Find a two-dimensional sufficient statistic for this problem and apply your result to the $\mathcal{U}[\theta_1, \theta_2]$ family of distributions.

10. Suppose X_1, \ldots, X_n are i.i.d. with density $f(x, \theta) = \frac{1}{2}e^{-|x-\theta|}$. Show that $(X_{(1)}, \ldots, X_{(n)})$, the order statistics, are minimal sufficient. *Hint:* $\frac{\partial}{\partial \theta} L_{\mathbf{X}}(\theta) = -\sum_{i=1}^{n} \operatorname{sgn}(X_i - \theta), \theta \notin \{X_1, \ldots, X_n\}$, which determines $X_{(1)}, \ldots, X_{(n)}$.

11. Let X_1, X_2, \ldots, X_n be a sample from the uniform, $\mathcal{U}(0, \theta)$, distribution. Show that $X_{(n)} = \max\{X_i; 1 \le i \le n\}$ is minimal sufficient for θ .

12. Dynkin, Lehmann, Scheffé's Theorem. Let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ where P_{θ} is discrete concentrated on $\mathcal{X} = \{x_1, x_2, \dots\}$. Let $p(x, \theta) \equiv P_{\theta}[X = x] \equiv L_x(\theta) > 0$ on \mathcal{X} . Show that $\frac{L_x(\cdot)}{L_x(\theta_0)}$ is minimial sufficient.

Hint: Apply the factorization theorem.

13. Suppose that $\mathbf{X} = (X_1, \ldots, X_n)$ is a sample from a population with continuous distribution function F(x). If F(x) is $N(\mu, \sigma^2)$, $T(\mathbf{X}) = (\bar{X}, \hat{\sigma}^2)$, where $\hat{\sigma}^2 = n^{-1} \sum (X_i - \bar{X})^2$, is sufficient, and $S(\mathbf{X}) = (X'_{(1)}, \ldots, X'_{(n)})$, where $X'_{(i)} = (X_{(i)} - \bar{X})/\hat{\sigma}$, is "irrelevant" (ancillary) for (μ, σ^2) . However, $S(\mathbf{X})$ is exactly what is needed to estimate the "shape" of F(x) when F(x) is unknown. The shape of F is represented by the equivalence class $\mathcal{F} = \{F((\cdot - a)/b) : b > 0, a \in R\}$. Thus a distribution G has the same shape as F iff $G \in \mathcal{F}$. For instance, one "estimator" of this shape is the scaled empirical distribution function

$$\begin{aligned} \widehat{F}_s(x) &= j/n, \, x'_{(j)} \leq x < x'_{(j+1)}, \, j = 1, \dots, n-1 \\ &= 0, \, x < x'_{(1)} \\ &= 1, \, x \geq x'_{(n)}. \end{aligned}$$

Show that for fixed x, $\widehat{F}_s((x - \overline{x})/\widehat{\sigma})$ converges in probability to F(x). Here we are using F to represent \mathcal{F} because every member of \mathcal{F} can be obtained from F.

14. Kolmogorov's Theorem. We are given a regular model with Θ finite.

(a) Suppose that a statistic $T(\mathbf{X})$ has the property that for any prior distribution on $\boldsymbol{\theta}$, the posterior distribution of $\boldsymbol{\theta}$ depends on \mathbf{x} only through $T(\mathbf{x})$. Show that $T(\mathbf{X})$ is sufficient.

(b) Conversely show that if $T(\mathbf{X})$ is sufficient, then, for any prior distribution, the posterior distribution depends on \mathbf{x} only through $T(\mathbf{x})$.

Hint: Apply the factorization theorem.

15. Let X_1, \ldots, X_n be a sample from $f(x - \theta), \theta \in R$. Show that the order statistics are minimal sufficient when f is the density Cauchy $f(t) = 1/\pi(1 + t^2)$.

16. Let $X_1, \ldots, X_m; Y_1, \ldots, Y_n$ be independently distributed according to $\mathcal{N}(\mu, \sigma^2)$ and $\mathcal{N}(\eta, \tau^2)$, respectively. Find minimal sufficient statistics for the following three cases:

(i)
$$\mu, \eta, \sigma, \tau$$
 are arbitrary: $-\infty < \mu, \eta < \infty, 0 < \sigma, \tau$.

(ii)
$$\sigma = \tau$$
 and μ, η, σ are arbitrary.

(iii)
$$\mu = \eta$$
 and μ, σ, τ are arbitrary.

17. In Example 1.5.4, express t_1 as a function of $L_x(0,1)$ and $L_x(1,1)$.

Problems to Section 1.6

1. Prove the assertions of Table 1.6.1.

2. Suppose X_1, \ldots, X_n is as in Problem 1.5.3. In each of the cases (a), (b) and (c), show that the distribution of X forms a one-parameter exponential family. Identify η, B, T , and h.

3. Let X be the number of failures before the first success in a sequence of Bernoulli trials with probability of success θ . Then $P_{\theta}[X = k] = (1 - \theta)^k \theta$, k = 0, 1, 2, ... This is called the *geometric distribution* ($\mathcal{G}(\theta)$).

(a) Show that the family of geometric distributions is a one-parameter exponential family with T(x) = x.

(b) Deduce from Theorem 1.6.1 that if X_1, \ldots, X_n is a sample from $\mathcal{G}(\theta)$, then the distributions of $\sum_{i=1}^n X_i$ form a one-parameter exponential family.

(c) Show that $\sum_{i=1}^{n} X_i$ in part (b) has a *negative binomial* distribution with parameters (n, θ) defined by $P_{\theta}[\sum_{i=1}^{n} X_i = k] = \binom{n+k-1}{k} (1-\theta)^k \theta^n$, k = 0, 1, 2, ... (The negative binomial distribution is that of the number of failures before the *n*th success in a sequence of Bernoulli trials with probability of success θ .)

Hint: By Theorem 1.6.1, $P_{\theta}[\sum_{i=1}^{n} X_i = k] = c_k(1-\theta)^k \theta^n$, $0 < \theta < 1$. If

$$\sum_{k=0}^{\infty} c_k \omega^k = \frac{1}{(1-\omega)^n}, \ 0 < \omega < 1, \ \text{then} \ c_k = \frac{1}{k!} \frac{d^k}{d\omega^k} (1-\omega)^{-n} \Big|_{\omega=0}.$$

4. Which of the following families of distributions are exponential families? (Prove or disprove.)

(a) The $\mathcal{U}(0,\theta)$ family

(b)
$$p(x,\theta) = \{\exp[-2\log\theta + \log(2x)]\}\mathbf{1}[x \in (0,\theta)]$$

(c)
$$p(x,\theta) = \frac{1}{9}, x \in \{0.1 + \theta, \dots, 0.9 + \theta\}$$

(d) The $\mathcal{N}(\theta, \theta^2)$ family, $\theta > 0$

(e)
$$p(x,\theta) = 2(x+\theta)/(1+2\theta), 0 < x < 1, \theta > 0$$

(f) $p(x,\theta)$ is the conditional frequency function of a binomial, $\mathcal{B}(n,\theta)$, variable X, given that X > 0.

5. Show that the following families of distributions are two-parameter exponential families and identify the functions η, B, T , and h.

(a) The beta family.

(**b**) The gamma family.

6. Let X have the Dirichlet distribution, $\mathcal{D}(\alpha)$, of Problem 1.2.15.

Show the distribution of X form an r-parameter exponential family and identify η, B, T , and h.

7. Let $\mathbf{X} = ((X_1, Y_1), \dots, (X_n, Y_n))$ be a sample from a bivariate normal population. Show that the distributions of X form a five-parameter exponential family and identify η, B, T , and h.

8. Show that the family of distributions of Example 1.5.3 is not a one parameter exponential family.

Т

Hint: If it were, there would be a set A such that $p(x, \theta) > 0$ on A for all θ .

9. Prove the analogue of Theorem 1.6.1 for discrete k-parameter exponential families.

10. Suppose that $f(x, \theta)$ is a positive density on the real line, which is continuous in x for each θ and such that if (X_1, X_2) is a sample of size 2 from $f(\cdot, \theta)$, then $X_1 + X_2$ is sufficient for θ . Show that $f(\cdot, \theta)$ corresponds to a one-arameter exponential family of distributions with T(x) = x.

Hint: There exist functions $g(t,\theta)$, $h(x_1,x_2)$ such that $\log f(x_1,\theta) + \log f(x_2,\theta) =$ $g(x_1 + x_2, \theta) + h(x_1, x_2)$. Fix θ_0 and let $r(x, \theta) = \log f(x, \theta) - \log f(x, \theta_0), q(x, \theta) = 0$ $g(x,\theta) - g(x,\theta_0)$. Then, $q(x_1 + x_2,\theta) = r(x_1,\theta) + r(x_2,\theta)$, and hence, $[r(x_1,\theta) - q(x_1,\theta)] = r(x_1,\theta) + r(x_2,\theta)$. $[r(0,\theta)] + [r(x_2,\theta) - r(0,\theta)] = r(x_1 + x_2,\theta) - r(0,\theta).$

11. Use Theorems 1.6.2 and 1.6.3 to obtain moment-generating functions for the sufficient statistics when sampling from the following distributions.

- (a) normal, $\boldsymbol{\theta} = (\mu, \sigma^2)$
- (b) gamma, $\Gamma(p, \lambda), \theta = \lambda, p$ fixed

(c) binomial

(d) Poisson

(e) negative binomial (see Problem 1.6.3)

(f) gamma, $\Gamma(p, \lambda)$, $\boldsymbol{\theta} = (p, \lambda)$.