where $m = \max(x_1, \ldots, x_n), c(b, t) = [\sum_{j=t}^{\infty} j^{-b}]^{-1}, b > 1.$

(b) Suppose that $\max(x_1, \ldots, x_n) = x_1 = m$ for all n. Show that $\pi(m \mid x_1, \ldots, x_n) \to 1$ as $n \to \infty$ whatever be a. Interpret this result.

5. In Example 1.2.1 suppose n is large and $(1/n) \sum_{i=1}^{n} x_i = \bar{x}$ is not close to 0 or 1 and the prior distribution is beta, $\beta(r, s)$. Justify the following approximation to the posterior distribution

$$P[\theta \leq t \mid X_1 = x_1, \dots, X_n = x_n] \approx \Phi\left(\frac{t - \widetilde{\mu}}{\widetilde{\sigma}}\right)$$

where Φ is the standard normal distribution function and

$$\widetilde{\mu} = rac{n}{n+r+s}\overline{x} + rac{r}{n+r+s}, \ \widetilde{\sigma}^2 = rac{\widetilde{\mu}(1-\widetilde{\mu})}{n+r+s}.$$

Hint: Let $\beta(a, b)$ denote the posterior distribution. If a and b are integers, then $\beta(a, b)$ is the distribution of $(a\bar{V}/b\bar{W})[1 + (a\bar{V}/b\bar{W})]^{-1}$, where $V_1, \ldots, V_a, W_1, \ldots, W_b$ are independent standard exponential. Next use the central limit theorem and Slutsky's theorem.

6. Show that a conjugate family of distributions for the Poisson family is the gamma family.

7. Show rigorously using (1.2.8) that if in Example 1.1.1, $D = N\theta$ has a $\mathcal{B}(N, \pi_0)$ distribution, then the posterior distribution of D given X = k is that of $k + \mathbb{Z}$ where Z has a $\mathcal{B}(N - n, \pi_0)$ distribution.

8. Let (X_1, \ldots, X_{n+k}) be a sample from a population with density $f(x \mid \theta), \theta \in \Theta$. Let θ have prior density π . Show that the conditional distribution of $(\theta, X_{n+1}, \ldots, X_{n+k})$ given $X_1 = x_1, \ldots, X_n = x_n$ is that of $(Y, \mathbf{Z}_1, \ldots, \mathbf{Z}_k)$ where the marginal distribution of Y equals the posterior distribution of θ given $X_1 = x_1, \ldots, X_n = x_n$, and the conditional distribution of the \mathbf{Z}_i 's given Y = t is that of sample from the population with density $f(x \mid t)$.

9. Show in Example 1.2.1 that the conditional distribution of θ given $\sum_{i=1}^{n} X_i = k$ agrees with the posterior distribution of θ given $X_1 = x_1, \ldots, X_n = x_n$, where $\sum_{i=1}^{n} x_i = k$.

10. Suppose X_1, \ldots, X_n is a sample with $X_i \sim p(x \mid \theta)$, a regular model and integrable as a function of θ . Assume that $A = \{x : p(x \mid \theta) > 0\}$ does not involve θ .

(a) Show that the family of priors

$$\pi(\theta) = \prod_{i=1}^{N} p(\xi_i \mid \theta) \bigg/ \int_{\Theta} \prod_{i=1}^{N} p(\xi_i \mid \theta) d\theta$$

where $\xi_i \in A$ and $N \in \{1, 2, ...\}$ is a conjugate family of prior distributions for $p(\mathbf{x} \mid \theta)$ and that the posterior distribution of θ given $\mathbf{X} = \mathbf{x}$ is

$$\pi(\theta \mid \mathbf{x}) = \prod_{i=1}^{N'} p(\xi'_i \mid \theta) \bigg/ \int_{\Theta} \prod_{i=1}^{N'} p(\xi'_i \mid \theta) d\theta$$

where N' = N + n and $(\xi'_i, \dots, \xi'_{N'}) = (\xi_1, \dots, \xi_N, x_1, \dots, x_n)$.

(b) Use the result (a) to give $\pi(\theta)$ and $\pi(\theta \mid \mathbf{x})$ when

$$p(x \mid \theta) = \theta \exp\{-\theta x\}, x > 0, \theta > 0$$

= 0 otherwise.

11. Let $p(x \mid \theta) = \exp\{-(x - \theta)\}, 0 < \theta < x$ and let $\pi(\theta) = 2\exp\{-2\theta\}, \theta > 0$. Find the posterior density $\pi(\theta \mid x)$.

12. Suppose $p(\mathbf{x} \mid \theta)$ is the density of i.i.d. X_1, \ldots, X_n , where $X_i \sim \mathcal{N}(\mu_0, \frac{1}{\theta})$, μ_0 is known, and $\theta = \sigma^{-2}$ is (called) the *precision* of the distribution of X_i .

(a) Show that $p(\mathbf{x} \mid \theta) \propto \theta^{\frac{1}{2}n} \exp\left(-\frac{1}{2}t\theta\right)$ where $t = \sum_{i=1}^{n} (X_i - \mu_0)^2$ and \propto denotes "proportional to" as a function of θ .

(b) Let $\pi(\theta) \propto \theta^{\frac{1}{2}(\lambda-2)} \exp\left\{-\frac{1}{2}\nu\theta\right\}, \nu > 0, \lambda > 0; \theta > 0$. Find the posterior distribution $\pi(\theta \mid \mathbf{x})$ and show that if λ is an integer, given $\mathbf{x}, \theta(t + \nu)$ has a $\chi^2_{\lambda+n}$ distribution. Note that, unconditionally, $\nu\theta$ has a χ^2_{λ} distribution.

(c) Find the posterior distribution of σ .

13. Show that if X_1, \ldots, X_n are i.i.d. $\mathcal{N}(\mu, \sigma^2)$ and we formally put $\pi(\mu, \sigma) = \frac{1}{\sigma}$, then the posterior density $\pi(\mu \mid \bar{x}, s^2)$ of μ given (\bar{x}, s^2) is such that $\sqrt{n} \frac{(\mu - \bar{X})}{s} \sim t_{n-1}$. Here $s^2 = \frac{1}{n-1} \sum (X_i - X)^2.$

Hint: Given μ and σ , \bar{X} and s^2 are independent with $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$ and (n - 1) $1)s^2/\sigma^2 \sim \chi^2_{n-1}$. This leads to $p(\tilde{x}, s^2 \mid \mu, \sigma^2)$. Next use Bayes rule.

14. In a Bayesian model where $X_1, \ldots, X_n, X_{n+1}$ are i.i.d. $f(x \mid \theta), \theta \sim \pi$, the predictive distribution is the marginal distribution of X_{n+1} . The posterior predictive distribution is the conditional distribution of X_{n+1} given X_1, \ldots, X_n .

(a) If f and π are the $\mathcal{N}(\theta, \sigma_0^2)$ and $\mathcal{N}(\theta_0, \tau_0^2)$ densities, compute the predictive and posterior predictive distribution.

(b) Discuss the behavior of the two predictive distributions as $n \to \infty$.

15. The Dirichlet distribution is a conjugate prior for the multinomial. The Dirichlet distribution, $\mathcal{D}(\alpha)$, $\alpha = (\alpha_1, \ldots, \alpha_r)^T$, $\alpha_j > 0$, $1 \le j \le r$, has density

$$f_{\boldsymbol{\alpha}}(\mathbf{u}) = \frac{\Gamma\left(\sum_{j=1}^{r} \alpha_{j}\right)}{\prod_{j=1}^{r} \Gamma(\alpha_{j})} \prod_{j=1}^{r} u_{j}^{\alpha_{j}-1}, \ 0 < u_{j} < 1, \ \sum_{j=1}^{r} u_{j} = 1.$$

Let $\mathbf{N} = (N_1, \dots, N_r)$ be multinomial

$$\mathcal{M}(n,\theta), \ \theta = (\theta_1,\ldots,\theta_r)^T, \ 0 < \theta_j < 1, \ \sum_{j=1}^r \theta_j = 1.$$

Show that if the prior $\pi(\theta)$ for θ is $\mathcal{D}(\alpha)$, then the posterior $\pi(\theta \mid \mathbf{N} = \mathbf{n})$ is $\mathcal{D}(\alpha + \mathbf{n})$, where $\mathbf{n} = (n_1, \dots, n_r)$.

Problems for Section 1.3

1. Suppose the possible states of nature are θ_1, θ_2 , the possible actions are a_1, a_2, a_3 , and the loss function $l(\theta, a)$ is given by

$\theta \backslash a$	a_1	a_2	a_3
$\overline{ heta_1}$	0	1	2
θ_2	2	0	1

Let X be a random variable with frequency function $p(x, \theta)$ given by

$$egin{array}{c|c|c|c|c|c|c|} \hline \theta \setminus x & 0 & 1 \ \hline \theta_1 & p & (1-p) \ \hline \theta_2 & q & (1-q) \end{array}$$

and let $\delta_1, \ldots, \delta_9$ be the decision rules of Table 1.3.3. Compute and plot the risk points when

- (a) p = q = .1,
- **(b)** p = 1 q = .1.

(c) Find the minimax rule among $\delta_1, \ldots, \delta_9$ for the preceding case (a).

(d) Suppose that θ has prior $\pi(\theta_1) = 0.5$, $\pi(\theta_2) = 0.5$. Find the Bayes rule for case (a).

2. Suppose that in Example 1.3.5, a new buyer makes a bid and the loss function is changed to

$\theta \setminus a$	a_1	a_2	a_3
θ_1	0	7	4
θ_2	12	1	6

(a) Compute and plot the risk points in this case for each rule $\delta_1, \ldots, \delta_9$ of Table 1.3.3.

(b) Find the minimax rule among $\{\delta_1, \ldots, \delta_9\}$.

(c) Find the minimax rule among the randomized rules.

(d) Suppose θ has prior $\pi(\theta_1) = \gamma$, $\pi(\theta_2) = 1 - \gamma$. Find the Bayes rule when (i) $\gamma = 0.5$ and (ii) $\gamma = 0.1$.

3. The problem of selecting the better of two treatments or of deciding whether the effect of one treatment is beneficial or not often reduces to the problem of deciding whether $\theta < 0$, $\theta = 0$ or $\theta > 0$ for some parameter θ . See Example 1.1.3. Let the actions corresponding to deciding whether $\theta < 0$, $\theta = 0$ or $\theta > 0$ be denoted by -1, 0, 1, respectively and suppose the loss function is given by (from Lehmann, 1957)

θa	-1	0	1
< 0	0	c	b + c
= 0	b	0	\overline{b}
> 0	b+c	C	0

where b and c are positive. Suppose X is a $\mathcal{N}(\theta, 1)$ sample and consider the decision rule $\delta_{r,s}(\mathbf{X}) = -1$ if $\bar{X} < r$

$$\begin{array}{ll} 0 & \text{if } r \leq \bar{X} \leq s \\ 1 & \text{if } \bar{X} > s. \end{array}$$

(a) Show that the risk function is given by

$$\begin{aligned} R(\theta, \delta_{r,s}) &= c \tilde{\Phi}(\sqrt{n}(r-\theta)) + b \tilde{\Phi}(\sqrt{n}(s-\theta)), \quad \theta < 0 \\ &= b \bar{\Phi}(\sqrt{n}s) + b \Phi(\sqrt{n}r), \qquad \theta = 0 \\ &= c \Phi(\sqrt{n}(s-\theta)) + b \Phi(\sqrt{n}(r-\theta)), \quad \theta > 0 \end{aligned}$$

where $\overline{\Phi} = 1 - \Phi$, and Φ is the $\mathcal{N}(0, 1)$ distribution function.

(b) Plot the risk function when b = c = 1, n = 1 and

(i)
$$r = -s = -1$$
, (ii) $r = -\frac{1}{2}s = -1$.

For what values of θ does the procedure with r = -s = -1 have smaller risk than the procedure with $r = -\frac{1}{2}s = -1$?

÷

Т

4. Stratified sampling. We want to estimate the mean $\mu = E(X)$ of a population that has been divided (stratified) into s mutually exclusive parts (strata) (e.g., geographic locations or age groups). Within the *j*th stratum we have a sample of i.i.d. random variables $X_{1j}, \ldots, X_{n_j j}$; $j = 1, \ldots, s$, and a stratum sample mean \bar{X}_j ; $j = 1, \ldots, s$. We assume that the s samples from different strata are independent. Suppose that the *j*th stratum has $100p_j\%$ of the population and that the *j*th stratum population mean and variances are μ_j and σ_j^2 . Let $N = \sum_{j=1}^s n_j$ and consider the two estimators

$$\widehat{\mu}_1 = N^{-1} \sum_{j=1}^s \sum_{i=1}^{n_j} X_{ij}, \ \widehat{\mu}_2 = \sum_{j=1}^s p_j \overline{X}_j$$

where we assume that p_j , $1 \le j \le s$, are known.

(a) Compute the biases, variances, and MSEs of $\hat{\mu}_1$ and $\hat{\mu}_2$. How should n_j , $0 \le j \le s$, be chosen to make $\hat{\mu}_1$ unbiased?

(b) Neyman allocation. Assume that $0 < \sigma_j^2 < \infty$, $1 \le j \le s$, are known (estimates will be used in a later chapter). Show that the strata sample sizes that minimize $MSE(\hat{\mu}_2)$ are given by

$$n_{k} = N \frac{p_{k} \sigma_{k}}{\sum_{j=1}^{s} p_{j} \sigma_{j}}, \ k = 1, \dots, s.$$
(1.7.3)

Hint: You may use a Lagrange multiplier.

(c) Show that $MSE(\hat{\mu}_1)$ with $n_k = p_k N$ minus $MSE(\hat{\mu}_2)$ with n_k given by (1.7.3) is $N^{-1} \sum_{j=1}^{s} p_j (\sigma_j - \bar{\sigma})^2$, where $\bar{\sigma} = \sum_{j=1}^{s} p_j \sigma_j$.

5. Let \bar{X}_b and \hat{X}_b denote the sample mean and the sample median of the sample $X_1 - b, \ldots, X_n - b$. If the parameters of interest are the population mean and median of $X_i - b$, respectively, show that $MSE(\bar{X}_b)$ and $MSE(\hat{X}_b)$ are the same for all values of b (the MSEs of the sample mean and sample median are *invariant* with respect to shift).

6. Suppose that X_1, \ldots, X_n are i.i.d. as $X \sim F$, that \widehat{X} is the median of the sample, and that n is odd. We want to estimate "the" median ν of F, where ν is defined as a value satisfying $P(X \leq \nu) \geq \frac{1}{2}$ and $P(X \geq \nu) \geq \frac{1}{2}$.

(a) Find the MSE of \widehat{X} when

(i) F is discrete with P(X = a) = P(X = c) = p, P(X = b) = 1 - 2p, 0 , <math>a < b < c.

Hint: Use Problem 1.3.5. The answer is $MSE(\widehat{X}) = [(a-b)^2 + (c-b)^2]P(S \ge k)$ where k = .5(n+1) and $S \sim \mathcal{B}(n,p)$.

(ii) F is uniform, $\mathcal{U}(0, 1)$.

Hint: See Problem B.2.9.

(iii) F is normal, $\mathcal{N}(0, 1), n = 1, 5, 25, 75$.

Hint: See Problem B.2.13. Use a numerical integration package.

(b) Compute the relative risk $RR = MSE(\hat{X})/MSE(\bar{X})$ in question (i) when b = 0, $a = -\Delta$, $b = \Delta$, p = .20, .40, and n = 1, 5, 15.

(c) Same as (b) except when n = 15, plot RR for p = .1, .2, .3, .4, .45.

(d) Find $E|\hat{X} - b|$ for the situation in (i). Also find $E|\bar{X} - b|$ when n = 1, and 2 and compare it to $E|\hat{X} - b|$.

(e) Compute the relative risks $MSE(\hat{X})/MSE(\bar{X})$ in questions (ii) and (iii).

7. Let X_1, \ldots, X_n be a sample from a population with values

$$\theta - 2\Delta, \theta - \Delta, \theta, \theta + \Delta, \theta + 2\Delta; \Delta > 0.$$

Each value has probability .2. Let \overline{X} and \widehat{X} denote the sample mean and median. Suppose that n is odd.

(a) Find $MSE(\hat{X})$ and the relative risk $RR = MSE(\hat{X})/MSE(\bar{X})$.

(b) Evaluate RR when n = 1, 3, 5.

Hint: By Problem 1.3.5, set $\theta = 0$ without loss of generality. Next note that the distribution of \hat{X} involves Bernoulli and multinomial trials.

8. Let X_1, \ldots, X_n be a sample from a population with variance σ^2 , $0 < \sigma^2 < \infty$.

(a) Show that $s^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is an unbiased estimator of σ^2 .

Hint: Write $(X_i - \bar{X})^2 = ([X_i - \mu] - [\bar{X} - \mu])^2$, then expand $(X_i - \bar{X})^2$ keeping the square brackets intact.

(b) Suppose $X_i \sim \mathcal{N}(\mu, \sigma^2)$.

- (i) Show that $MSE(s^2) = 2(n-1)^{-1}\sigma^4$.
- (ii) Let $\hat{\sigma}_0^2 = c \sum_{i=1}^n (X_i \bar{X})^2$. Show that the value of c that minimizes $MSE(\hat{\sigma}_c^2)$ is $c = (n+1)^{-1}$.

Hint for question (b): Recall (Theorem B.3.3) that $\sigma^{-2} \sum_{i=1}^{n} (X_i - \bar{X})^2$ has a χ_{n-1}^2 distribution. You may use the fact that $E(X_i - \mu)^4 = 3\sigma^2$.

9. Let θ denote the proportion of people working in a company who have a certain characteristic (e.g., being left-handed). It is known that in the state where the company is located, 10% have the characteristic. A person in charge of ordering equipment needs to estimate θ and uses

$$\widehat{\theta} = (.2)(.10) + (.8)\widehat{p}$$

where $\hat{p} = X/n$ is the proportion with the characteristic in a sample of size *n* from the company. Find $MSE(\hat{\theta})$ and $MSE(\hat{p})$. If the true θ is θ_0 , for what θ_0 is

 $MSE(\hat{\theta})/MSE(\hat{p}) < 1?$

Give the answer for n = 25 and n = 100.

10. In Problem 1.3.3(a) with b = c = 1 and n = 1, suppose θ is discrete with frequency function $\pi(0) = \pi(-\frac{1}{2}) = \pi(\frac{1}{2}) = \frac{1}{3}$. Compute the Bayes risk of $\delta_{r,s}$ when (a) r = -s = -1

(b)
$$r = -\frac{1}{2}s = -1.$$

Which one of the rules is the better one from the Bayes point of view?

11. A decision rule δ is said to be *unbiased* if

 $E_{\theta}(l(\theta, \delta(\mathbf{X}))) \leq E_{\theta}(l(\theta', \delta(\mathbf{X})))$

for all $\theta, \theta' \in \Theta$.

(a) Show that if θ is real and $l(\theta, a) = (\theta - a)^2$, then this definition coincides with the definition of an unbiased estimate of θ .

(b) Show that if we use the 0-1 loss function in testing, then a test function is unbiased in this sense if, and only if, the *power function*, defined by $\beta(\theta, \delta) = E_{\theta}(\delta(\mathbf{X}))$, satisfies

$$\beta(\theta',\delta) \ge \sup\{\beta(\theta,\delta): \theta \in \Theta_0\},\$$

for all $\theta' \in \Theta_1$.

12. In Problem 1.3.3, show that if $c \le b, z > 0$, and

$$r = -s = -z \left(\frac{b}{b+c}\right) / \sqrt{n},$$

then $\delta_{\tau,s}$ is unbiased

13. A (behavioral) randomized test of a hypothesis H is defined as any statistic $\varphi(\mathbf{X})$ such that $0 \leq \varphi(\mathbf{X}) \leq 1$. The interpretation of φ is the following. If $\mathbf{X} = \mathbf{x}$ and $\varphi(\mathbf{x}) = 0$ we decide Θ_0 , if $\varphi(\mathbf{x}) = 1$, we decide Θ_1 ; but if $0 < \varphi(\mathbf{x}) < 1$, we perform a Bernoulli trial with probability $\varphi(\mathbf{x})$ of success and decide Θ_1 if we obtain a success and decide Θ_0 otherwise.

Define the nonrandomized test δ_u , 0 < u < 1, by

$$egin{array}{rcl} \delta_u(\mathbf{X})&=&1 & ext{if} \, arphi(\mathbf{X})\geq u \ &=&0 & ext{if} \, arphi(\mathbf{X}) < u \end{array}$$

Suppose that $U \sim \mathcal{U}(0,1)$ and is independent of X. Consider the following randomized test δ : Observe U. If U = u, use the test δ_u . Show that δ agrees with φ in the sense that,

 $P_{\theta}[\delta(\mathbf{X}) = 1] = 1 - P_{\theta}[\delta(\mathbf{X}) = 0] = E_{\theta}(\varphi(\mathbf{X})).$

14. Convexity of the risk set. Suppose that the set of decision procedures is finite. Show that if δ_1 and δ_2 are two randomized procedures, then, given $0 < \alpha < 1$, there is a randomized procedure δ_3 such that $R(\theta, \delta_3) = \alpha R(\theta, \delta_1) + (1 - \alpha) R(\theta, \delta_2)$ for all θ .

15. Suppose that $P_{\theta_0}(B) = 0$ for some event B implies that $P_{\theta}(B) = 0$ for all $\theta \in \Theta$. Further suppose that $l(\theta_0, a_0) = 0$. Show that the procedure $\delta(X) \equiv a_0$ is admissible.

16. In Example 1.3.4, find the set of μ where $MSE(\hat{\mu}) \leq MSE(\bar{X})$. Your answer should depend on n, σ^2 and $\delta = |\mu - \mu_0|$.

17. In Example 1.3.4, consider the estimator

$$\widehat{\mu}_w = w\mu_0 + (1-w)\overline{X}.$$

If n, σ^2 and $\delta = |\mu - \mu_0|$ are known,

(a) find the value of w_0 that minimizes $MSE(\hat{\mu}_w)$,

(b) find the minimum relative risk of $\hat{\mu}_{w_0}$ to X.

18. For Example 1.1.1, consider the loss function (1.3.1) and let δ_k be the decision rule "reject the shipment iff $X \ge k$."

(a) Show that the risk is given by (1.3.7).

(b) If N = 10, s = r = 1, $\theta_0 = .1$, and k = 3, plot $R(\theta, \delta_k)$ as a function of θ .

(c) Same as (b) except k = 2. Compare δ_2 and δ_3 .

19. Consider a decision problem with the possible states of nature θ_1 and θ_2 , and possible actions a_1 and a_2 . Suppose the loss function $\ell(\theta, a)$ is