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Orthogonal Matching Pursuit for Sparse Signal
Recovery With Noise

T. Tony Cai and Lie Wang

Abstract—We consider the orthogonal matching pursuit (OMP)
algorithm for the recovery of a high-dimensional sparse signal
based on a small number of noisy linear measurements. OMP
is an iterative greedy algorithm that selects at each step the
column, which is most correlated with the current residuals. In
this paper, we present a fully data driven OMP algorithm with
explicit stopping rules. It is shown that under conditions on the
mutual incoherence and the minimum magnitude of the nonzero
components of the signal, the support of the signal can be re-
covered exactly by the OMP algorithm with high probability. In
addition, we also consider the problem of identifying significant
components in the case where some of the nonzero components are
possibly small. It is shown that in this case the OMP algorithm will
still select all the significant components before possibly selecting
incorrect ones. Moreover, with modified stopping rules, the OMP
algorithm can ensure that no zero components are selected.

Index Terms— � minimization, compressed sensing, mutual in-
coherence, orthogonal matching pursuit (OMP), signal reconstruc-
tion, support recovery.

I. INTRODUCTION

R ECOVERY of a high-dimensional sparse signal based on
a small number of linear measurements, possibly cor-

rupted by noise, is a fundamental problem in signal processing.
Specifically, one considers the following model:

(1)

where the observation , the matrix and the
measurement errors . Suppose
where denotes the column of . Throughout the paper
we shall assume that the columns of are normalized, i.e.,

for . The goal is to reconstruct the
unknown vector based on and . A setting that is of
significant interest and challenge is when the dimension of the
signal is much larger than the number of measurements . This
and other related problems have received much recent attention
in a number of fields including applied mathematics, electrical
engineering and statistics.
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For a vector , the support of is de-
fined to be the set and is said to be

-sparse if . A widely used framework for sparse
signal recovery is the Mutual Incoherence Property (MIP) in-
troduced in Donoho and Huo (2001). The mutual incoherence
is defined by

(2)

The MIP requires the mutual incoherence to be small. Other
conditions used in the compressed sensing literature include the
Restricted Isometry Property (RIP) and Exact Recovery Condi-
tion (ERC). See, for example, Candes and Tao (2005) and Tropp
(2004). In contrast to the MIP, these conditions are not compu-
tationally feasible to verify for a given matrix . On the other
hand, the MIP condition is stronger than both RIP and ERC:
The MIP implies RIP and ERC but the converse is not true.
However, it should be emphasized here that although we focus
our attention under the MIP because the condition is more intu-
itive, all the results given in this paper hold under the ERC. See
Section IV for further discussions.

In the present paper we consider the orthogonal matching
pursuit (OMP) algorithm for the recovery of the support of
the -sparse signal under the model (1). OMP is an iterative
greedy algorithm that selects at each step the column of
which is most correlated with the current residuals. This column
is then added into the set of selected columns. The algorithm
updates the residuals by projecting the observation onto
the linear subspace spanned by the columns that have already
been selected and the algorithm then iterates. Compared with
other alternative methods, a major advantage of the OMP is
its simplicity and fast implementation. This method has been
used for signal recovery and approximation, for example, in
Davis, Mallat, and Avellaneda (1997), Tropp (2004, 2006) and
Barron et al. (2008). In particular, support recovery has been
considered in the noiseless case by Tropp (2004), where it was
shown that is a sufficient condition for recovering a

-sparse exactly in the noiseless case. Results in Cai, Wang
and Xu (2010a) imply that this condition is in fact sharp.

In this paper we consider the OMP algorithm in the general
setting where noise is present. Note that the residuals after each
step in the OMP algorithm are orthogonal to all the selected
columns of , so no column is selected twice and the set of
selected columns grows at each step. One of the key compo-
nents of an iterative procedure like OMP is the stopping rule.
Specific stopping rules are given for the OMP algorithm in both
bounded noise and Gaussian noise cases. The algorithm is then
fully data-driven. Our results show that under the MIP condi-
tion and a condition on the minimum magnitude of
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the nonzero coordinates of , the support of can be recovered
exactly by the OMP algorithm in the bounded noise cases and
with high probability in the Gaussian case. In fact, it can be seen
from our discussion in Section III that a more general condition
than can guarantee the recovery of the support with
high probability. In particular, all the main results hold under
the Exact Recovery Condition (ERC).

In many applications, the focus is often on identifying signif-
icant components, i.e., coordinates of with large magnitude,
instead of the often too ambitious goal of recovering the whole
support of exactly. In this paper, we also consider the problem
of identifying large coordinates of in the case where some of
the nonzero coordinates are possibly small. It is shown that in
this case the OMP algorithm will still select all the most im-
portant components before possibly selecting incorrect ones. In
addition, with modified stopping rules, the OMP algorithm can
ensure that no zero components are selected.

Besides OMP, several other methods for sparse signal re-
covery have been proposed and extensively studied in the liter-
ature. In particular, it is now well understood that minimiza-
tion methods provide effective ways for reconstructing a sparse
signal. For example, the penalized least squares (Lasso) esti-
mator has been studied in Tibshirani (1996), Chen, Donoho, and
Saunders (1998) and Efron et al. (2004). Zhao and Yu (2006)
considered support recovery using the Lasso. In addition, two
specific constrained minimization methods have been well
studied. Donoho, Elad and Temlyakov (2006) considered con-
strained minimization under an constraint. Candes and Tao
(2007) introduced the Dantzig Selector, which is a constrained

minimization method under an constraint. A particularly
simple and elementary analysis of constrained minimization
methods is given in Cai, Wang, and Xu (2010b). Bickel, Ritov,
and Tsybakov (2009) gives a unified treatment of the Lasso and
Dantzig Selector.

Compared with the known results on the model selection con-
sistency of the Lasso in the Gaussian noise case given in Zhao
and Yu (2006), the condition on the minimum magnitude of the
nonzero coordinates of is much weaker for OMP than that for
the Lasso. More detailed discussion can be found in Section III.
This together with the computational simplicity make OMP a
very appealing method for support recovery.

The rest of the paper is organized as follows. We will begin
in Section II with a detailed description of the OMP algorithm.
The stopping rules and the properties of the algorithm are con-
sidered in Section III for both bounded noise cases and Gaussian
noise case. The theoretical results are first formulated under the
MIP. Section IV discusses the corresponding results under the
ERC and compares our results with some of the existing ones in
the literature. Section V provides some technical analysis of the
OMP algorithm which sheds light on how and when the OMP
algorithm works properly. The proofs of the main results are
contained in Section VI.

II. THE OMP ALGORITHM

In this section we give a detailed description of the orthogonal
matching pursuit (OMP) algorithm. We assume that the columns
of are normalized so that for . For
any subset , denote by a submatrix of

consisting of the columns with . In this paper we
shall also call columns of variables by following the conven-
tion in statistics. Thus we use to denote the both column
of and the variable of the model. Following the same con-
vention, we shall call a correct variable if the corresponding

and call an incorrect variable otherwise. With slight
abuse of notation, we shall use to denote both the subset
of columns of with indices in and the corresponding sub-
matrix of .

The OMP algorithm can be stated as follows.
• Step 1: Initialize the residual and initialize the set

of selected variables . Let the iteration counter
.

• Step 2: Find the variable that solves the maximization
problem

and add the variable to the set of selected variables.
Update

• Step 3: Let denote the
projection onto the linear space spanned by the elements of

. Update .
• Step 4: If the stopping condition is achieved, stop the algo-

rithm. Otherwise, set and return to Step 2.
The OMP is a stepwise forward selection algorithm and is easy
to implement. A key component of OMP is the stopping rule
which depends on the noise structure. In the noiseless case the
natural stopping rule is . That is, the algorithm stops
whenever is achieved. In this paper, we shall consider
several different noise structures. To be more specific, two types
of bounded noise are considered. One is bounded noise, i.e.,

for some constant . Another is bounded
noise where for some constant . In
addition, we shall also consider the important case of Gaussian
noise where . The stopping rule for each case
and the properties of the resulting procedure will be discussed
in Section III.

III. THE OMP ALGORITHM: STOPPING RULES AND PROPERTIES

In this section we discuss the stopping rules and investigate
the properties of the OMP algorithm for the bounded noise cases
as well as the Gaussian noise case. Results for the noiseless case
can be found in Tropp (2004).

We begin with the basic notation and definitions. The mutual
incoherence of , defined in (2), is the maximum magnitude of
the pairwise correlation between the columns of . Let

be the support of and let be the set of
columns of corresponding to the support . Define

(3)

The condition

is called the Exact Recovery Condition (ERC) in Tropp (2004).
It was shown in Tropp (2004) that the ERC is a sufficient con-
dition for the exact recovery of the support of the signal in
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the noiseless case. It is easy to see that the value of is not
computable as it depends on the unknown support . However,
it can be easily bounded in terms of the mutual incoherence .

Lemma 1: If , then .
This lemma is a special case of Theorem 3.5 in Tropp (2004).

The extreme eigenvalues of are also useful. Denote
the minimum and maximum eigenvalues of by

and respectively. The minimum eigenvalue is
a key quantity to the sparse signal recovery problem. It has been
used in, for example, Zhao and Yu (2006) and Cai, Wang, and
Xu (2010b). Note that is usually assumed to be bounded
away from zero. In particular, the ERC requires

. The following lemma shows that and can also be
bounded in terms of . A similar, but slightly weaker, result was
given in Needell and Tropp (2008).

Lemma 2: Suppose , then
, where denotes the cardinality of .

It is easy to see that, in order for any variable selection pro-
cedure to work properly, both the degree of collinearity among
the columns of and the signal-to-noise ratio need to be prop-
erly controlled. Generally speaking, to recover accurately the
support of the unknown signal, the degree of linear dependency
among the ’s needs to be small, otherwise the effects of
the variables cannot be well separated. On the other hand, the
signal-to-noise ratio needs to be sufficiently high in order for
the significant variables to be selected. In the case of OMP,
the performance of the algorithm depends on the probability
of selecting a correct variable at each step. This probability is
affected by the degree of collinearity among the variables and
the noise structure.

We shall begin with the bounded noise cases and then con-
sider the Gaussian case. As mentioned in Section II, two types
of bound noise are considered: and .
Once the bounded noise cases are understood, the Gaussian case
follows easily. In what follows, our analysis of the OMP al-
gorithm will be carried out in terms of the mutual incoherence

. However, all the main results also hold under the ERC with
essentially the same proofs. We shall focus on the MIP in the
next section and discuss the results under the ERC in
Section IV.

A. Bounded Noise

We first consider the case where the error vector is bounded
in norm with . In this case we set the stopping
rule as . It is intuitively easy to see that this rule is
reasonable because in the special case of the stopping rule
will guarantee that OMP does not select any incorrect variables.
We have the following result for OMP with this stopping rule.

Theorem 1: Suppose and . Then the
OMP algorithm with the stopping rule recovers ex-
actly the true subset of correct variables if all the nonzero
coefficients satisfy .

Theorem 1 and other main results given in this paper can also
be stated under the ERC . We formally restate Theorem 1

under the ERC below and only make brief remarks for the other
results later. See Section IV for more discussions.

Proposition 1: Suppose and . Then the
OMP algorithm with the stopping rule recovers ex-
actly the true subset of correct variables if all the nonzero
coefficients satisfy .

This follows from essentially the same argument as the proof
of Theorem 1 given in Section VI.

It is worth noting that after the OMP algorithm returns the true
subset , the signal can be easily estimated, for example,
by using the ordinary least squares regression on the subset of
variables .

Theorem 1 has two conditions, and
, which together ensure the OMP algorithm to re-

cover exactly the true support of the signal. The condition
was shown to be sharp in the noisy case in Cai, Wang

and Xu (2010a). The other condition for all
nonzero coefficient is to ensure that all significant variables
are selected.

In many applications, the focus is often on identifying co-
ordinates of with large magnitude or equivalently variables
with significant effects, instead of the often too ambitious goal
of recovering the whole support of exactly. So a practically in-
teresting question is: Can OMP identify coordinates with large
magnitude when some of the nonzero coordinates are small?
The following result shows that the OMP algorithm with the
same stopping rule will still select all the most important vari-
ables before it possibly also selects incorrect ones.

Theorem 2: Suppose and . Let

Then the OMP algorithm with the stopping rule
selects a correct variable at each step until all the variables in
are selected.

Remark 1: Similar to Theorem 1, Theorem 2 can also be
stated under the ERC with the condition replaced
by and the condition on the minimum magnitude of
in the set replaced by . See Section IV for
more discussions.

In many applications, it is often desirable to select a subset
of the support of the signal without incorrectly selecting any
coordinates outside of the support. The OMP algorithm with the
stopping rule does not rule out the possibility of in-
correctly selecting a zero coordinate after all the significant ones
are selected. The OMP with a modified stopping rule can ensure
that no zero coordinates are selected. We have the following re-
sult.

Theorem 3: Suppose and . Let us see
the first equation at the bottom of the next page. Then OMP
with the stopping rule selects

a subset such that .
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Hence, all the significant variables in are selected by the
algorithm and all the selected coordinates are in the support of

.

B. Bounded Noise

We now turn to the case where the noise is assumed to satisfy
. The stopping rule in this case is

. Similar to the previous case this is a natural stopping rule
which ensures that no incorrect variables are selected in the spe-
cial case of . We have the following result for OMP with
this stopping rule.

Theorem 4: Suppose and . More-
over, assume all the nonzero coefficients satisfy

Then OMP with the stopping rule will return
the true subset .

Remark 2: Note that implies . So a
special case of the previous theorem is that when

the OMP algorithm selects the true subset of significant vari-
ables .

As in the bounded noise case, when some of the nonzero
coordinates are small, OMP can also identify all the large com-
ponents in this case. To be more precise, we have the following
result.

Theorem 5: Suppose and . Let us
see the second equation at the bottom of the page. Then the

OMP algorithm selects a correct variable at each step until all
the variables in are selected.

In addition, with a modified stopping rule, OMP can also en-
sure that no incorrect variables are selected in this case.

Theorem 6: Suppose and . Let us
see the third equation at the bottom of the page. Then OMP
with the stopping rule

selects a subset such that , where
.

Remark 3: It will be shown that in fact a stronger result holds.
Theorem 6 is true with the set enlarged to (see the fourth equa-
tion at the bottom of the page), where .

C. Gaussian Noise

The Gaussian noise case is of particular interest in statistics.
The results on the bounded noise cases given earlier are directly
applicable to the case where noise is Gaussian. This is due to
the fact that Gaussian noise is “essentially bounded.”

Suppose now the noise vector follows a Gaussian distribu-
tion, . Define two bounded sets

and

where . The following result, which follows from stan-
dard probability calculations, shows that the Gaussian noise



4684 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 7, JULY 2011

is essentially bounded. The readers are referred to Cai, Xu, and
Zhang (2009) for a proof.

Lemma 3: The Gaussian error satisfies

and

(4)

The following result is a direct consequence of the results for
the bounded noise case.

Theorem 7: Suppose , and all the
nonzero coefficients satisfy

(5)

Then OMP with the stopping rule
selects the true subset with probability at least .

One can also directly apply the results for the bounded
noise case to the Gaussian case. In fact, a stronger result holds.

Theorem 8: Suppose , and all the
nonzero coefficients satisfy

(6)

for some . Then OMP with the stopping rule
selects exactly the correct subset with

probability at least .

Remark 4: The conditions in the previous Theorem can also
be reformulated under the ERC and . Suppose
and , then the OMP algorithm can recover the true sup-
port of with high probability when each nonzero coefficient

satisfies

(7)

Remark 5: After the OMP algorithm returns the estimated
subset, one can use the ordinary least squares to further estimate
the values of the nonzero coordinates of . Then with high prob-
ability, the mean squared error of the resulting estimator will be
the same as the case when the true support of were known.

It is interesting to compare the results given above with
some of the known results in the literature based on other
methods. As mentioned in the introduction, minimization
methods are widely used for reconstructing a sparse signal
as well as for support recovery. In particular, Zhao and Yu
(2006) considered the model selection consistency of the Lasso
and introduced the Irrepresentable Condition. First, it is worth

noting that if the Irrepresentable Condition holds for every
-sparse signal , then it is equivalent to the ERC. This

can be explained as follows. The Irrepresentable Condition
requires ,
where and denotes the dimensional
subvector that only keeps the nonzero coordinates of . If the
Irrepresentable Condition holds for every , then
the sum of the absolute values of the entries in each column of
the matrix must be less than 1,
which is equivalent to the ERC. Also, for the Lasso estimator to
be sign consistent, the minimum eigenvalue must be pos-
itive as we remarked earlier. In Zhao and Yu (2006), the order
of magnitude of all the nonzero coefficients are required to
be at least for some . This condition is much
stronger than Condition (6) that is required in Theorem 8 or
Condition (7) under the ERC. It is also stronger than Condition
(5) used in Theorem 7.

If not all nonzero coordinates of are large, then the OMP al-
gorithm can still select all the significant coordinates of with
high probability. More specifically, we have the following re-
sult.

Theorem 9: Suppose , and let

Then the OMP algorithm selects a correct variable at each step
with probability at least until all the variables
in are selected.

As mentioned earlier, it is sometimes desirable to select a
subset of the significant variables without selecting any incor-
rect variables. By modifying the stopping rule in the Gaussian
noise case, it is possible to ensure that with high probability
OMP only selects the significant variables and does not select in-
correct variables. More specifically, we have the following the-
orem.

Theorem 10: Suppose , and let us
see equation at the bottom of the page. Then the OMP algorithm
returns a subset such that with probability at least

.

IV. DISCUSSIONS

The analysis of the OMP algorithm given in Section III is
given under the MIP condition . As mentioned earlier,
the main results can all be reformulated under the ERC .
The reason we use the MIP condition is that the mutual incoher-
ence is a computable quantity, while is not as it depends
on the unknown support . A precise restatement of Theorem 1
under the ERC was given in Proposition 1 and a brief comment
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was given for Theorem 2. We now discuss other results under
the ERC.

Theorem 3 holds under the ERC and the result can be restated
as follows. Suppose and . Let

Then the OMP algorithm with the stopping rule
selects a subset such that . Sim-

ilar to Theorem 1, Theorem 4 is also true if the MIP condition
is replaced by and the lower bound on the

magnitude of the nonzero is changed to .
Other main results can also be restated in terms of the ERC in a
similar way.

It is useful to compare our results with some of the known
results in the literature. Donoho, Elad, and Temlyakov (2006)
considered the OMP algorithm for the noiseless and bounded
noise cases. It was shown that OMP can recover the support of
the signal when , where

, whereas only is required in all of our
results. As shown in Cai, Wang and Xu (2010a) the condition

is sharp in the sense that there exists a design matrix
with the mutual incoherence such that certain

-sparse signals are not identifiable based on and in the
noiseless case. Moreover, we also considered the case where
no lower bound is assumed on the magnitude of the nonzero
coordinates of . It is shown in this setting that OMP is still able
to identify the significant components before possibly selecting
the incorrect ones.

Zhang (2009) considered model selection consistency of the
OMP algorithm and showed that under suitable stopping con-
ditions, OMP will return a subset of the true support and the
number of unselected nonzero components can be bounded. In
the present paper we show that under a different stopping rule,
OMP not only returns a subset of the true support, but also guar-
antees that all the significant components are selected. The ad-
vantage is that with our stopping rule, the algorithm will not
ignore any components with large values. This is an impor-
tant property for many applications. Moreover, with the same
probability of identifying the true support, the lower bound on
the magnitude of the nonzero coordinates for our method is
smaller than what is required in Zhang (2009). For example,
when the probability of identifying the true support is set to
be , then the lower bound of nonzero is

(see Theorem 8), while the lower bound given

in Zhang (2009) is .
Finally, we note that Lounici (2008) considered the properties

of the LASSO and Dantzig selector under the MIP conditions.
It was showed that when the mutual incoherence is sufficiently
small both the LASSO and Dantzig selector have desirable vari-
able selection properties. The MIP condition used in Lounici
(2008) is for the Dantzig selector and for the
LASSO. In comparison, our condition, , is clearly
weaker than both of them and as we mentioned earlier this con-
dition is sharp. In addition, the analysis given in the present
paper on variable selection is much more detailed.

V. UNDERSTANDING THE OMP ALGORITHM

We will prove all the main results in Section VI. To gain in-
sight on the OMP algorithm and to illustrate the main ideas be-
hind the proofs, it is instructive to provide some technical anal-
ysis of the algorithm. The analysis sheds light on how and when
the OMP algorithm works properly.

Note that the support and the set of sig-
nificant or “correct” variables is . At
each step of the OMP algorithm, the residual vector is projected
onto the space spanned by the selected variables (columns of

). Suppose the algorithm selects the correct variables at the
first steps and the set of all selected variables at the current step
is . Then contains variables and .
Recall that is the projec-
tion operator onto the linear space spanned by the elements of

. Then the residual after steps can be written as

where is the signal part of the residual and
is the noise part of the residual. Let

(8)

and

It is clear that in order for OMP to select a correct vari-
able at this step, it is necessary to have

. A sufficient condition is
. This is because implies

We first focus on the value of . The following result
is due to Tropp (2004).

Lemma 4: Let be defined as in (3) and let and
be defined as in (8). Then for all .

Note that is the Exact Recovery Condition. From
this lemma, we know that . The
previous discussion shows that is a sufficient
condition under which OMP will make a correct decision. Then
from Lemma 1 the condition

(9)

guarantees that the OMP algorithm selects a correct variable
at the current step. Let denote the
set of significant variables that are yet to be selected and let

denote the corresponding linear coefficients, then
. Note that

The following lemma, which is proved in Section VI, can be
used to further bound .
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Lemma 5: The minimum eigenvalue of
is less than or equal to the minimum eigenvalue of

. The maximum eigenvalue of
is greater than or equal to the maximum eigen-

value of .
It then follows immediately that

. Lemma 2 now
yields

This and equation (9) show that a sufficient condition for se-
lecting a correct variable at the current step is

(10)

Or more generally,

(11)

This means that if any of the remaining coefficients is large
enough, then OMP will select a correct variable at this step. For
example, if there exists an unselected variable with

, then a correct variable would be selected. Also, if
all the remaining coefficients are relatively large, i.e.,

for all , then (10) is satisfied and OMP will
select a correct variable at this step. The value of depends on
the noise structure and different bounds will be used for different
cases in Section VI.

VI. PROOFS

In this section we shall prove the main results in the order of
Theorems 1, 3, 4, 6, and 8. The proofs of the other theorems are
similar and are thus omitted. Some of the technical lemmas are
proved at the end.

A. Proof of Theorem 1

It follows from the assumption that

Let be any column of . Then

This means . It follows from (10) that for any
, implies that a correct variable will

be selected at this step. So for all nonzero
coefficients ensures that all the correct variables will be
selected in the first steps.

Let us now turn to the stopping rule. Let denote the pro-
jection onto the linear space spanned by . Then

. So when all the correct variables are
selected, the norm of the residual will be less than and

hence the algorithm stops. It remains to be shown that the OMP
algorithm does not stop early.

Suppose the algorithm has run steps for some . We will
verify that and so OMP does not stop at the current
step. Again, let denote the set of unselected but correct
variable and be the corresponding coefficients. Note that

It follows from Lemma 5 that

So

and the theorem is proved.

B. Proof of Theorem 3

From the proof of Theorem 1, we know that

On the other hand,

So

Since the stopping rule is to check whether

, we know that when the stopping
rule is not satisfied

From the previous discussion, this means OMP will select a
correct variable at this step. When the stopping rule is satisfied

and so all the variables in the set

have been selected.
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C. Proof of Theorem 4

Since and , for any

Let be any column of . Then

which implies

Now since

we have , which ensures that OMP se-
lects a correct variable at this step.

We now turn to the stopping rule. It suffices to prove that for
any , and so the algorithm does not stop
early. It can be seen that

and the theorem then follows.

D. Proof of Theorem 6

The proof of this theorem is similar to that of Theorem 3.
Note that

where . This ensures that if the stopping

rule is not satisfied, i.e.,

then and so OMP will select a cor-
rect variable at this step. On the other hand, when the stopping
rule is satisfied, all the variables in the equation at the bottom of
the page are selected.

E. Proof of Theorem 8

First, we will prove that with high probability
at any step . It can be seen that

Since for any , , it follows that

This means if

with probability at least ,

and hence a correct variable is selected at the current step. This
is true when

for some . Therefore under the conditions of the theorem,
we can select all the correct variables at the first steps with
probability at least .

We now consider the stopping rule. Suppose
for , which means the

algorithm makes correct decisions at the first steps. Now
using the same argument as in the proof of Theorem 4, it can
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be shown that for any , when ,
the algorithm will not stop early. And when since

and all the correct variables have been
selected, the stopping rule is satisfied and hence the algorithm
stops. So the probability of selecting exactly the correct subset
is at least

for

F. Proofs of the Technical Lemmas

Proof of Lemma 2: To prove the lower bound on ,
it suffices to show that when , the matrix

is nonsingular for any .
This is equivalent to showing that for any nonzero vector

, . Without
loss of generality, suppose and

. Then the first coordinate of
the vector satisfies

This means and hence
is proved. By the same argument, it can be shown that

.
Proof of Lemma 5: Without loss of generality, we can

write , then we can partition matrix
into blocks

Suppose we partition matrix into blocks the
same way as . Then by the standard result on the
inverse of a block matrix, the up left block of
is . Therefore the maximum eigen-
value of is less than or equal to the
maximum eigenvalue of . Also the minimum
eigenvalue of is greater than or equal
to the minimum eigenvalue of . The lemma
then follows.
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