
18.466 Midterm 1. 
 
Let us consider the Normal Location problem. Suppose we observe sample X from n-dimensional 

multivariate normal distribution, i.e. ),(~ nINX µ , where nR∈µ  is the unknown mean 

vector and nI  is the identity matrix. Our goal is to estimate µ  under quadratic loss 
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1. Compute the risk function )ˆ,( 1µµR  of the ordinary estimator XX =)(ˆ1µ . 

 

2. Suppose πµ̂  is the Bayes estimator under some prior distribution π . Let 

)ˆ,()ˆ( πππ µµµ REr =  be the Bayes risk. Show that if there is another estimator µ̂  such that 

{ } )ˆ()ˆ,(:max πµµµµ rRRn =∈ , then µ̂  is a minimax estimator. 

 

3. Moreover, suppose there is a sequence of prior L,2,1, =iiπ  and the corresponding Bayes 

estimator 
iπ

µ̂ . Show that if there is another estimator µ̂  such that 
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=∈ , then µ̂  is a minimax estimator. 

 

4. Show that the ordinary estimator XX =)(ˆ1µ  is minimax. 

 

5. Suppose RRg n →:  is a differentiable function. Show that  
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So long as the expectations exist. 
 

6. Suppose nn
n RR →= :),,,( 21 λλλλ L  such that each coordinate function of λ  is 

differentiable. Show that 
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7. Suppose n>2. For any ))2(2,0( −∈ nC , define estimator X
X
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−=µ . Sow that 

JSµ̂  is minimax and moreover, )ˆ,()ˆ,( 1µµµµ RR JS <  for all µ . ( X=1µ̂ .) 

 

8*. Suppose n>3, for any ))3(2,0( −∈ nC , define estimator 
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where X  is the sample average and n
n R∈1  is the vector whose coordinates are all 1. Show 

that )ˆ,()ˆ,( 1µµµµ RR g <  for all µ . 

 

9* Suppose n>2. For any ))2(2,0( −∈ nC , define estimator positive part J-S estimator 
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µ . Sow that JSµ̂  is minimax and moreover, )ˆ,()ˆ,( JSJS RR µµµµ <+  for 

all µ . ( Here 2
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−=− +  when it is positive and zero otherwise.) 

 


