
Decoupling seminar – problem set 1

Here are a few problems to think about to help digest the material in the decoupling
seminar.

We first recall the setup. We write P ⊂ Rn for the truncated paraboloid: {ω ∈
Rn|ωn =

∑n−1
i=1 ω

2
i , ωn ≤ 1}. We suppose that f̂ is supported in N1/RP . We divide

N1/RP into disjoint essentially rectangular slabs θ of dimensions R−1/2× ...×R−1/2×
R−1. We define fθ by f̂θ = χθf̂ . In particular, f =

∑
θ fθ.

The decoupling theorem says that for any ball B of radius R in Rn, and any

2 ≤ p ≤ p̄ := 2(n+1)
n−1

, we have

‖f‖Lp(B) . Rε

(∑
θ

‖fθ‖2
Lp(wB)

)1/2

. (∗)

Here wB is a measure that is comparable to the standard Lebesgue measure on B
and decays at a fast polynomial rate away from B.

1. Compute all the relevant norms in the following example. We let B be the ball
of radius R centered at 0. For each θ, let ηθ be a smooth bump supported in θ of
height 1, and let fθ be the inverse Fourier transform η∨θ . Let f =

∑
θ fθ. Compute

the left-hand side and right-hand side of (∗), and check that in this example (∗) holds

if and only if 2 ≤ p ≤ p̄ := 2(n+1)
n−1

.
(If it’s hard to make a completely rigorous proof, a heuristic argument for these

norms is also very useful.)

2. The inequality (∗) implies that we also have decoupling on larger balls. More
generally, suppose that f =

∑
fi, and that a domain A is a disjoint union of subsets

Aj. On each Aj, suppose we have the inequality

‖f‖Lp(Aj) ≤M

(∑
i

‖fi‖2
Lp(Aj)

)1/2

.

Prove that the same inequality holds on all of A:

‖f‖Lp(A) ≤M

(∑
i

‖fi‖2
Lp(A)

)1/2

.

(Hint: Use the Minkowski inequality.)
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3. There are some connections between periodic Strichartz and number theory –
or more generally between decoupling and number theory. We outline an example
based on eigenfunctions of the Laplacian.

Suppose that Λ ⊂ Rd is a lattice and that T = Rd/Λ is a flat torus. (The integer
lattice is an interesting example, and other lattices are interesting too.) Suppose
that g is an eigenfunction of the Laplacian on the torus T with eigenvalue λ. Then
the solution of the Schrodinger equation ∂tu(x, t) = −i4u(x, t) with initial data g
is u(x, t) = eiλtg(x). The initial data g has “frequency at most λ1/2”. By Bourgain-

Demeter’s Strichartz inequality, we get the following inequality, with p̄ = 2(d+2)
d

:

‖u‖Lp̄(T×[0,1]) . λε‖u(·, 0)‖L2(T ).

Because of the particular form of u, we get the following corollary about the
eigenvalue g:

‖g‖Lp̄(T ) . λε‖g‖L2(T ). (1)

Recall that any function f on T can be expanded in a Fourier series f(x) =∑
ω∈2πΛ∗ f̂(ω)eiωx. Now the eigenfunctions of the Laplacian on T with eigenvalue Λ

are spanned by the complex exponentials eiωx with ω ∈ 2πΛ∗ and with |ω|2 = λ. Let
Eλ be the eigenspace with eigenvalue λ for the Laplacian on T . The bound (1) leads
to an estimate on the dimension of Eλ.

If Dλ is the dimension of Eλ, first prove that we can find an eigenfunction g ∈ Eλ
with ‖g‖L2(T ) = 1 and with |g(x0)| & D

1/2
λ for some point x0.

Then using elliptic theory, prove that the average value of |g| on B(x0, λ
−1/2) is

& D
1/2
λ .

This last estimate gives a lower bound on ‖g‖Lp̄(T ), and combining with equation
(1) then gives an upper bound on Dλ.

As we mentioned above, the dimension Dλ is the number of lattice points of 2πΛ∗

that lie on the sphere of radius λ1/2. So this analysis leads to a non-trivial (but
non-sharp) estimate for the number of lattice points on a sphere. For instance, it
shows that the number of integer points on a sphere of radius r in R3 is O(r1.8+ε). A
simple geometric argument shows an upper bound of O(r2), and I believe that the
truth is O(r1+ε).


