Decoupling seminar – problem set 1

Here are a few problems to think about to help digest the material in the decoupling seminar.

We first recall the setup. We write $P \subset \mathbb{R}^n$ for the truncated paraboloid: $\{\omega \in \mathbb{R}^n | \omega_n = \sum_{i=1}^{n-1} \omega_i^2, \omega_n \leq 1\}$. We suppose that \hat{f} is supported in $N_{1/R}P$. We divide $N_{1/R}P$ into disjoint essentially rectangular slabs θ of dimensions $R^{-1/2} \times \ldots \times R^{-1/2} \times R^{-1}$. We define f_{θ} by $\hat{f}_{\theta} = \chi_{\theta} \hat{f}$. In particular, $f = \sum_{\theta} f_{\theta}$.

The decoupling theorem says that for any ball B of radius R in \mathbb{R}^n , and any $2 \le p \le \overline{p} := \frac{2(n+1)}{n-1}$, we have

$$\|f\|_{L^p(B)} \lesssim R^{\epsilon} \left(\sum_{\theta} \|f_{\theta}\|_{L^p(w_B)}^2\right)^{1/2}.$$
(*)

Here w_B is a measure that is comparable to the standard Lebesgue measure on B and decays at a fast polynomial rate away from B.

1. Compute all the relevant norms in the following example. We let B be the ball of radius R centered at 0. For each θ , let η_{θ} be a smooth bump supported in θ of height 1, and let f_{θ} be the inverse Fourier transform η_{θ}^{\vee} . Let $f = \sum_{\theta} f_{\theta}$. Compute the left-hand side and right-hand side of (*), and check that in this example (*) holds if and only if $2 \le p \le \bar{p} := \frac{2(n+1)}{n-1}$.

(If it's hard to make a completely rigorous proof, a heuristic argument for these norms is also very useful.)

2. The inequality (*) implies that we also have decoupling on larger balls. More generally, suppose that $f = \sum f_i$, and that a domain A is a disjoint union of subsets A_j . On each A_j , suppose we have the inequality

$$\|f\|_{L^{p}(A_{j})} \leq M\left(\sum_{i} \|f_{i}\|_{L^{p}(A_{j})}^{2}\right)^{1/2}.$$

Prove that the same inequality holds on all of A:

$$||f||_{L^p(A)} \le M\left(\sum_i ||f_i||_{L^p(A)}^2\right)^{1/2}$$

(Hint: Use the Minkowski inequality.)

3. There are some connections between periodic Strichartz and number theory – or more generally between decoupling and number theory. We outline an example based on eigenfunctions of the Laplacian.

Suppose that $\Lambda \subset \mathbb{R}^d$ is a lattice and that $T = \mathbb{R}^d / \Lambda$ is a flat torus. (The integer lattice is an interesting example, and other lattices are interesting too.) Suppose that g is an eigenfunction of the Laplacian on the torus T with eigenvalue λ . Then the solution of the Schrodinger equation $\partial_t u(x,t) = -i\Delta u(x,t)$ with initial data g is $u(x,t) = e^{i\lambda t}g(x)$. The initial data g has "frequency at most $\lambda^{1/2}$ ". By Bourgain-Demeter's Strichartz inequality, we get the following inequality, with $\bar{p} = \frac{2(d+2)}{d}$:

$$||u||_{L^{\bar{p}}(T\times[0,1])} \lesssim \lambda^{\epsilon} ||u(\cdot,0)||_{L^{2}(T)}.$$

Because of the particular form of u, we get the following corollary about the eigenvalue g:

$$\|g\|_{L^{\bar{p}}(T)} \lesssim \lambda^{\epsilon} \|g\|_{L^{2}(T)}.$$
 (1)

Recall that any function f on T can be expanded in a Fourier series $f(x) = \sum_{\omega \in 2\pi\Lambda^*} \hat{f}(\omega) e^{i\omega x}$. Now the eigenfunctions of the Laplacian on T with eigenvalue Λ are spanned by the complex exponentials $e^{i\omega x}$ with $\omega \in 2\pi\Lambda^*$ and with $|\omega|^2 = \lambda$. Let E_{λ} be the eigenspace with eigenvalue λ for the Laplacian on T. The bound (1) leads to an estimate on the dimension of E_{λ} .

If D_{λ} is the dimension of E_{λ} , first prove that we can find an eigenfunction $g \in E_{\lambda}$ with $\|g\|_{L^{2}(T)} = 1$ and with $|g(x_{0})| \gtrsim D_{\lambda}^{1/2}$ for some point x_{0} .

Then using elliptic theory, prove that the average value of |g| on $B(x_0, \lambda^{-1/2})$ is $\gtrsim D_{\lambda}^{1/2}$.

This last estimate gives a lower bound on $||g||_{L^{\bar{p}}(T)}$, and combining with equation (1) then gives an upper bound on D_{λ} .

As we mentioned above, the dimension D_{λ} is the number of lattice points of $2\pi\Lambda^*$ that lie on the sphere of radius $\lambda^{1/2}$. So this analysis leads to a non-trivial (but non-sharp) estimate for the number of lattice points on a sphere. For instance, it shows that the number of integer points on a sphere of radius r in \mathbb{R}^3 is $O(r^{1.8+\epsilon})$. A simple geometric argument shows an upper bound of $O(r^2)$, and I believe that the truth is $O(r^{1+\epsilon})$.