
Decoupling seminar notes

In the last two lectures, we discuss the proof of the l2-decoupling conjecture. I
thought it would be helpful to have some notes to look over between the two lectures.
There are some exercises folded into the notes.

Throughout these notes S ⊂ Rn denotes a compact positively curved C3 hyper-
surface, such as the sphere or the truncated paraboloid.

Theorem 1. (Bourgain-Demeter) Suppose that supp f̂ ⊂ N1/RS. Let N1/RS be the

disjoint union of blocks θ of dimensions R−1/2 × ... × R−1/2 × R−1. Let s = 2(n+1)
n−1

,
the critical exponent in the Strichartz inequality. Then for any ball BR of radius R
in Rn (in physical space), and any 2 ≤ p ≤ s,

‖f‖Lpavg(BR) . Rε

(∑
θ

‖fθ‖2
Lpavg(µBR )

)1/2

.

Throughout these notes, we ignore weights. In particular, we will treat the µBR
on the right-hand side as a BR. We use the white lies of orthogonality and locally
constant explained on the previous problem sets, and when one corrects these white
lies then weights appear.

1. Decoupling norms and the decoupling constants

Let us introduce a notation for the decoupling sum that appears on the right-hand
side of the main theorem.

If supp f̂ ⊂ NδS, and Ω ⊂ Rn is any domain, then define

‖f‖Lp,δavg(Ω) :=

 ∑
θ a δ1/2 cap⊂NδS

‖fθ‖2
Lpavg(Ω)

1/2

.

The Lp,δ are norms, and they share some of the properties of Lp norms. Here are
a few exercises to get used to them.

Exercise 1. Check that ‖f + g‖Lp,δavg(Ω) ≤ ‖f‖Lp,δavg(Ω) + ‖g‖Lp,δavg(Ω).

Exercise 2. By orthogonality, check that for any ρ ≥ δ−1/2, ‖f‖L2,δ
avg(Bρ) ∼ ‖f‖L2

avg(Bρ).

Exercise 3. (Holder-type inequality) If 1 ≤ q, q1, q2 ≤ ∞ and 1
q

= (1 − α) 1
q1

+ α 1
q2
,

then check that

(1) ‖f‖Lq,δavg(BR) ≤ ‖f‖
1−α
L
q1,δ
avg (BR)

‖f‖α
L
q2,δ
avg (BR)

.
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Suppose that Ω is a disjoint union of Ωj. How does the nrom ‖f‖Lp,δ(Ω) relate
to the norms ‖f‖Lp,δ(Ωj)? For regular Lp norms, we would have

∑
j ‖f‖

p
Lp(Ωj)

=

‖f‖pLp(Ω). For the decoupling norms, we have an inequality in one direction:

Lemma 2. If Ω is a disjoint union of Ωj, and if p ≥ 2, then for any δ and any f

with supp f̂ ⊂ NδS, we have∑
j

‖f‖p
Lp,δ(Ωj)

≤ ‖f‖p
Lp,δ(Ω)

.

Proof. The left-hand side is

∑
j

(∑
θ

‖fθ‖2
Lp(Ωj)

) p
2

=

∥∥∥∥∥∑
θ

‖fθ‖2
Lp(Ωj)

∥∥∥∥∥
p
2

l
p/2
j

.

Using the Minkowski inequality for the l
p/2
j norm, this expression is

≤

(∑
θ

∥∥∥‖fθ‖2
Lp(Ωj)

∥∥∥
l
p/2
j

) p
2

=

(∑
θ

‖fθ‖2
Lp(Ω)

) p
2

= ‖f‖p
Lp,δ(Ω)

.

�

As a corollary, we see that if we have a decoupling inequality on each Ωj, then we
get a decoupling inequality on their union. We state this precisely.

Proposition 3. (Parallel decoupling) Suppose that Ω is a disjoint union of Ωj, and

that p ≥ 2 and supp f̂ ⊂ NδS. Suppose that for each j, we have the inequality

‖f‖Lp(Ωj) ≤M‖f‖Lp,δ(Ωj).
Then we also have the inequality

‖f‖Lp(Ω) ≤M‖f‖Lp,δ(Ω).

Proof. We write

‖f‖pLp(Ω) =
∑
j

‖f‖pLp(Ωj)
≤Mp

∑
j

‖f‖p
Lp,δ(Ωj)

.

By Lemma 2, this is bounded by Mp‖f‖p
Lp,δ(Ω)

. Taking pth roots finishes the

proof. �
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The decoupling problem is about comparing standard norms Lpavg and decoupled

norms Lp,δavg. We define the decoupling constant Dp(R) as the smallest constant so

that for all f with supp f̂ ⊂ N1/RS,

‖f‖Lpavg(BR) ≤ Dp(R)‖f‖
L
p,1/R
avg (BR)

.

(The constant Dp(R) also depends in a mild way on the surface S. We assume
that the second fundamental form of S is ≥ c > 0 and the third derivatives of
the functions locally defining S are ≤ C. Then the constant Dp(R) depends in a
polynomial way on c−1, C, but we ignore this small point in the notes...)

Theorem 1 says that Dp(R) . Rε for 2 ≤ p ≤ s = 2(n+1)
n−1

.
In the next couple sections, we review two of the fundamental ideas we’ve been

working with. The first idea is to look at a problem at multiple scales in Fourier
space. Using parabolic rescaling, we see that the problem of breaking a medium cap
τ into smaller blocks θ is basically equivalent to the original decoupling problem. The
second idea is to look at multilinear vs. linear versions of the decoupling problem.
We will see that for the decoupling problem, the multilinear version and the linear
version are essentially equivalent! This is a crucial point, which makes decoupling
more accessible than restriction or Kakeya.

2. Parabolic rescaling

We can consider the decoupling problem at many scales in Fourier space. Instead
of just breaking all of N1/RS into R−1/2 caps θ, what happens if we start with a
function supported on a cap τ ⊂ N1/RS and break τ into caps θ?

Proposition 4. If τ ⊂ N1/RS is a r−1/2 cap for some r ≤ R, and supp f̂ ⊂ τ , and

θ ⊂ N1/RS are R−1/2-caps as above, then

‖f‖Lpavg(BR) . Dp(R/r)

(∑
θ⊂τ

‖fθ‖2
Lpavg(BR)

)1/2

.

We remark that Dp(R/r) involves decoupling a cap of scale 1 into blocks at scale
(R/r)−1/2. The setup of the Proposition involves a decoupling a cap of scale r−1/2

into blocks at scale R−1/2 = (R/r)−1/2r−1/2. The Proposition is saying that these
are essentially the same problem in different coordinates.

The proof is by parabolic rescaling. We discussed it in lecture in connection with
the narrow sets.
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Proof. After rotating and translating, we can choose coordinates so that τ is con-
tained in a region of the form 0 < ωn < r−1, and |ωi| < r−1/2 for i ≤ n− 1. Now we
do a parabolic rescaling. We define new coordinates

ω̄n = rωn, ω̄i = r1/2ωi.

We let τ̄ denote the image of τ in the new coordinates. In the new coordinates, τ̄
has diameter 1. It is the (R/r)−1-neighborhood of a surface S̄ obeying all the good
properties of the original S. We let θ̄ be the image of θ in the new coordinates. Each
θ̄ is a (R/r)−1/2 × ...× (R/r)−1/2 × (R/r)−1 block.

There is a corresponding coordinate change in physical space. We have

x̄n = r−1xn, x̄i = r−1/2xi.

We define g(x̄) = f(x). Since supp f̂ ⊂ τ , supp ĝ ⊂ τ̄ . We also have fθ(x) = gθ̄(x̄).
In the new coordinates, the ball BR becomes an ellipsoid E, shaped roughly like

a pancake, with a short principal axis of length R/r and n − 1 long principal axes
of length R/r−1/2. The ellipsoid E can be divided into disjoint shapes that are
essentially balls of radius R/r. (The number of such balls is r(n−1)/2, but this number
won’t be important in our computations.)

On each ball BR/r, the function g obeys the estimate

‖g‖Lpavg(BR/r)
≤ Dp(R/r)

(∑
θ̄

‖gθ̄‖2
Lpavg(BR/r)

)1/2

.

We can cover the ellipsoid E with essentially disjoint balls BR/r. By parallel
decouping, Proposition 3, a decoupling inequality on each BR/r gives us a decoupling
inequality on E. Therefore,

‖g‖Lpavg(E) . Dp(R/r)

(∑
θ̄

‖gθ̄‖2
Lpavg(E)

)1/2

.

Now we change coordinates back to the original coordinates. Since all the norms
are averaged, there are no Jacobian factors, and we just get

‖f‖Lpavg(BR) . Dp(R/r)

(∑
θ

‖fθ‖2
Lpavg(BR)

)1/2

= Dp(R/r)‖f‖Lp,1/Ravg (BR)
.

�

As a corollary, we get the following estimate:

Proposition 5. For any radii R1, R2 ≥ 1, we have Dp(R1R2) . Dp(R1)Dp(R2).
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Proof. We let R = R1R2. We let f be a function with supp f̂ ⊂ N1/RS. We let

τ ⊂ N1/RS be R
−1/2
1 caps. First, since R ≥ R1, we can cover BR with disjoint balls

of radius R1 to get the estimate:

‖f‖Lpavg(BR) ≤ Dp(R1)

(∑
τ

‖fτ‖2
Lpavg(BR)

)1/2

.

We let θ ⊂ N1/RS be R−1/2 blocks. Next, we use the last Proposition to bound

‖fτ‖Lpavg(BR) . Dp(R2)(
∑

θ⊂τ ‖fθ‖2
Lpavg(BR)

)1/2. Plugging this estimate into the last

equation, we get

‖f‖Lpavg(BR) . Dp(R1)Dp(R2)

(∑
θ

‖fθ‖2
Lpavg(BR)

)1/2

.

�

In particular, we see that there is a unique power γ = γ(n, p) so that for all R, ε,

Rγ−ε . Dp(R) . Rγ+ε.

We write Dp(R) ≈ Rγ. We want to prove that γ = 0 (for 2 ≤ p ≤ s = 2(n+1)
n−1

).

3. Multilinear vs. linear decoupling

A second main idea we consider is looking at the multilinear version of a problem.
We have seen that the multilinear versions of Kakeya and restriction are much more
approachable than the original problems and have useful applications. We formulate
a multilinear version of the decoupling problem.

We say that functions f1, ..., fn on Rn obey the multilinear decoupling setup (MDS)
if

• For i = 1, ..., n, supp f̂i ⊂ N1/RSi
• As usual, Si ⊂ Rn are compact positively curved C3 hypersurfaces. (More

precisely, the second fundamental form of Si is & 1 and the third derivatives
are . 1.)
• (Transversality) For any point ω ∈ Si, the normal vector ν(ω) obeys

Angle(ν(ω), ith coordinate axis) ≤ (10n)−1.

We define D̃n,p(R) to be the smallest constant so that whenever fi obey (MDS),∥∥∥∥∥
n∏
i=1

|fi|1/n
∥∥∥∥∥
Lpavg(BR)

≤ D̃n,p(R)
n∏
i=1

‖fi‖1/n

L
p,1/R
avg (BR)

.
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Bourgain and Demeter proved the following result connecting linear decoupling
and multilinear decoupling.

Theorem 6. (Bourgain-Demeter) Suppose that in dimesion n − 1, the decoupling
constant Dn−1,p(R) . Rε for any ε > 0. Then for any ε > 0,

Dn,p(R) . RεD̃n,p(R).

Proof sketch. We cover N1/RS by K−1 caps τ , where K is a parameter that we
can select below. Each |fτ | is morally constant on cubes QK (of side length K) in
BR. We cover BR with cubes QK , and we classify the cubes as broad or narrow
depending on which τ make a significant contribution to f |QK .

We control the contribution of the broad cubes using the multilinear decoupling
inequality.

‖fχBroad‖Lpavg(BR) . KcD̃n,p(R)‖f‖
L
p,1/R
avg (BR)

.

We control the contribution of each narrow cube using Dn−1,p(K). If QK is a
narrow cube, we get

‖f‖Lpavg(QK) . Dn−1,p(K)

 ∑
α a K−1/2 cap

‖fα‖2
Lpavg(QK)

1/2

.

By assumption, for any ε̄ > 0, we get

‖f‖Lpavg(QK) . K ε̄

 ∑
α a K−1/2 cap

‖fα‖2
Lpavg(QK)

1/2

.

Using parallel decoupling, Proposition 3, we can combine the estimate from each
narrow cube to give a decoupling estimate on their union. We get

‖fχNarrow‖Lpavg(BR) . K ε̄

 ∑
α a K−1/2 cap

‖fα‖2
Lpavg(BR)

1/2

.

Now we apply the parabolic rescaling proposition, Proposition 4, to each cap α.
We then get

‖fχNarrow‖Lpavg(BR) . Cε̄K
ε̄Dn,p(R/K)‖f‖

L
p,1/R
avg (BR)

.

Combining the broad and narrow pieces, we see that
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Dn,p(R) .ε̄ K
cD̃n,p(R) +K ε̄Dn,p(R/K).

We can now choose K and iterate this inequality. Choosing either K = Rε or K a
large constant or K = logR all work fine. The result is that Dn,p(R) . RεD̃n,p(R).
This finishes our sketch of the proof of Theorem 6.

We also remark that the multilinear decoupling constant is bounded by the linear
one. We make this an exercise.

Exercise 4. Prove that D̃n,p(R) ≤ Dn,p(R) for any n, p,R.

We will prove the decoupling theorem by induction on the dimension n. If the

decoupling theorem holds in dimension n − 1, and if 2 ≤ p ≤ s = 2(n+1)
n−1

, then
Theorem 6 and Exercise 4 show that

(2) D̃n,p(R) ≈ Dn,p(R) ≈ Rγ.

In summary, we see that the decoupling problem is essentially equivalent to the
multilinear decoupling problem. This situation is quite different from the Kakeya
problem and the restriction problem. The original Kakeya problem is still open.
The multilinear Kakeya inequality may be a useful tool, but it currently seems very
hard to prove Kakeya using multilinear Kakeya. The same holds for the restriction
problem. But in the decoupling problem, the linear version can be reduced to the
multilinear version!

We will study multilinear decoupling using our multilinear toolbox. We will apply
multilinear Kakeya (and/or restriction), and we will also adapt ideas from the proof
of multilinear restriction.

4. Multilinear restriction revisited

We revisit the proof of multilinear restriction, presenting it in a slightly differ-
ent way to parallel the proof of the decoupling theorem. In this organization, the
multilinear restriction theorem follows from a main lemma which we use at many
scales.

Main Lemma 1. If supp fi ⊂ N1/RSi, and Si are smooth compact transverse hy-
persurfaces, and if 2 ≤ p ≤ 2n

n−1
, then

AvgB
R1/2⊂BR

n∏
i=1

‖fi‖
p
n

L2
avg(B

R1/2 ) . Rε

n∏
i=1

‖fi‖
p
n

L2
avg(BR).

Exercise 5. Fill in the proof using orthogonality, the locally constant property, and
multilinear Kakeya.
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Multilinear restriction can be proven by using Main Lemma 1 at many scales. We
consider a radius r � R, and we use main lemma 1 at scale r2, r4, r8, ..., r2A = R.
We define ra := r2a .

Suppose that fi are as in Main Lemma 1. By Bernstein’s inequality, if supp ĝ ⊂
B10, then there is a constant Cn so that ‖g‖L∞(Br) . rCn‖g‖L2

avg(Br). Applying this
crude inequality to each fi on each Br ⊂ BR, we get:∮

BR

n∏
i=1

|fi|
p
n . rC AvgBr⊂BR

n∏
i=1

‖fi‖
p
n

L2
avg(Br)

.

This first step is not sharp. We have lost a factor of rC = R
C

2M . We will choose
M →∞, and so this loss is acceptable. Now we can bring Main Lemma 1 into play.
Using Main Lemma 1 at each step, we see that

AvgBr⊂BR

n∏
i=1

‖fi‖
p
n

L2
avg(Br)

. Rε AvgBr1⊂BR

n∏
i=1

‖fi‖
p
n

L2
avg(Br1 ) .

. Rε AvgBr2⊂BR

n∏
i=1

‖fi‖
p
n

L2
avg(Br2 ) . ...(M times) .

≤ C(M, ε)Rε

n∏
i=1

‖fi‖
p
n

L2
avg(BR).

This proves multilinear restriction.
Multilinear restriction quickly implies multilinear decoupling for 2 ≤ p ≤ 2n

n−1
.

Suppose that fi obey the multilinear decoupling setup (MDS) - or just suppose that
fi obey the weaker assumptions in Main Lemma 1.∥∥∥∥∥

n∏
i=1

|fi|1/n
∥∥∥∥∥
Lpavg(BR)

. Rε

n∏
i=1

‖fi‖
1
n

L2
avg(BR) ∼

Taking θ ⊂ N1/RS to be R−1/2 caps,

∼
n∏
i=1

(∑
θ

‖fi,θ‖2
L2
avg(BR)

) 1
2
· 1
n

≤
n∏
i=1

(∑
θ

‖fi,θ‖2
Lpavg(BR)

) 1
2
· 1
n

=
n∏
i=1

‖fi‖
1
n

L
p,1/R
avg (BR)

.

Putting together all the arguments so far, we get a decoupling estimateDp(R) . Rε

for 2 ≤ p ≤ 2n
n−1

. This material is essentially what appears in Bourgain’s first
decoupling paper around 2011.
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Notice that when we use multilinear restriction to prove multilinear decoupling,
in the last step we use the inequality ‖fi,θ‖L2

avg(BR) ≤ ‖fi,θ‖Lpavg(BR). Potentially, one
can lose a lot in this inequality, and yet the argument still works. In other words,
multilinear restriction is much stronger than multilinear decoupling for p = 2n

n−1
. In

hindsight, this may have been a clue that it is possible to push the argument further
and get decoupling for some exponent greater than 2n

n−1
.

5. The second main lemma

Now we turn to the new ideas in the more recent Bourgain-Demeter paper. The

goal is to prove Theorem 1, getting decoupling in the sharp range 2 ≤ p ≤ s = 2(n+1)
n−1

.
We will focus on the critical exponent s, which is the most interesting. The proof
uses a variation of the main lemma, called Main Lemma 2, and applies Main Lemma
2 at many scales following the outline of the proof of multilinear restrition.

Recall that Main Lemma 1 says that for p = 2n
n−1

, we have

AvgB
R1/2⊂BR

n∏
i=1

‖fi‖
p
n

L2
avg(B

R1/2 ) . Rε

n∏
i=1

‖fi‖
p
n

L2
avg(BR).

Since we want to prove decoupling with the exponent s instead of p = 2n
n−1

, it’s

natural to try to estimate AvgB
R1/2⊂BR

∏n
i=1 ‖fi‖

s
n

L2
avg(B

R1/2 ). We first give an estimate

with a naive argument, and then we explain how Bourgain and Demeter improved
it.

We prove our first upper bound by interpolating Main Lemma 1 with a trivial L∞

estimate. To see this we rewrite Main Lemma 1 in the form

(3)

∥∥∥∥∥
n∏
i=1

‖fi‖
1
n

L2
avg(B

R1/2 ))

∥∥∥∥∥
lpavg

. Rε

n∏
i=1

‖fi‖
1
n

L2
avg(BR).

In this inequality, the lpavg norm on the left-hand side is over the copies of BR1/2 ⊂
BR. On the other hand we have an easy L∞ bound:

(4)

∥∥∥∥∥
n∏
i=1

‖fi‖
1
n

L2
avg(B

R1/2 ))

∥∥∥∥∥
l∞avg

≤
n∏
i=1

‖fi‖
1
n

L∞avg(BR).

Interpolating between these last two inequalities, we get∥∥∥∥∥
n∏
i=1

‖fi‖
1
n

L2
avg(B

R1/2 ))

∥∥∥∥∥
lsavg

. Rε

n∏
i=1

‖fi‖
1
n

L
2(n+1)
n

avg (BR)

.
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The norms L
2(n+1)
n haven’t appeared in our story before, but we can use Holder to

bound ‖fi‖
L

2(n+1)
n

avg (BR)
≤ ‖fi‖1/2

L2
avg(BR)‖fi‖

1/2
Lsavg(BR). (It’s a nice algebraic feature of the

exponent s that we get 1/2 and 1/2 in the last expression.) Plugging in, we get all
together

(5) AvgB
R1/2⊂BR

n∏
i=1

‖fi‖
s
n

L2
avg(B

R1/2 ) . Rε

n∏
i=1

‖fi‖
1
2
· s
n

L2
avg(BR)

n∏
i=1

‖fi‖
1
2
· s
n

Lsavg(BR).

This inequality is not good enough to prove decoupling. Bourgain and Demeter
observed that we can improve it by replacing the Ls-norm on the right-hand side by
a decoupled norm Ls,1/R. Here is the statement of their main lemma.

Main Lemma 2. If supp fi ⊂ N1/RSi, and Si are compact positively curved trans-

verse hypersurfaces, and if s = 2(n+1)
n−1

, and δ = R−1, then

AvgB
R1/2⊂BR

n∏
i=1

‖fi‖
s
n

L2
avg(B

R1/2 ) . Rε

n∏
i=1

‖fi‖
1
2
· s
n

L2
avg(BR)

n∏
i=1

‖fi‖
1
2
· s
n

Ls,δavg(BR)
.

The output is a geometric average of a product of L2 norms and a product of
decoupled norms. The L2 norms look similar to the output of Main Lemma 1, so they
are very good. The decoupled norms represent some progress towards decoupling, so
they are also good.

To see how the decoupling may come in, let us observe that there is a decoupled
version of the trivial L∞ estimate in Equation 4. If we let θ ⊂ N1/RS be disjoint

R−1/2 caps as usual, then

∥∥∥∥∥
n∏
i=1

‖fi‖
1
n

L2
avg(B

R1/2 ))

∥∥∥∥∥
l∞avg

∼

∥∥∥∥∥∥
n∏
i=1

(∮
B
R1/2

∑
θ

|fi,θ|2
) 1

2
· 1
n

∥∥∥∥∥∥
l∞avg

≤
n∏
i=1

∥∥∥∥∥∑
θ

|fi,θ|2
∥∥∥∥∥

1
2
· 1
n

L∞(BR)

.

But ‖
∑

θ |fi,θ|2‖
1
2

L∞(BR) = ‖fi‖L∞,1/Ravg (BR)
and so we get

(6)

∥∥∥∥∥
n∏
i=1

‖fi‖
1
n

L2
avg(B

R1/2 ))

∥∥∥∥∥
l∞avg

.
n∏
i=1

‖fi‖
1
n

L
∞,1/R
avg (BR)

.

If we could do interpolation with the Lp,δ norms, then Main Lemma 2 would follow
from interpolating between Main Lemma 1 and the L∞,1/R bound in Equation 6. I
don’t know how generally it is possible to do such interpolation, but Bourgain and
Demeter prove it in this particular case. Now we turn to their proof.
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Proof. Let θ ⊂ N1/RS be R−1/2 caps as usual.

AvgB
R1/2⊂BR

n∏
i=1

‖fi‖
s
n

L2
avg(B

R1/2 ) ∼ AvgB
R1/2⊂BR

n∏
i=1

(∮
BR

1/2

∑
θ

|fi,θ|2
) 1

2
· s
n

.

Let p = 2n
n−1

, and bound the last expression by

AvgB
R1/2⊂BR

n∏
i=1

(∮
BR

1/2

∑
θ

|fi,θ|2
) 1

2
· p
n

·
n∏
i=1

(∑
θ

‖fi,θ‖2
L∞(BR)

) 1
2
· s−p
n

.

The first factor is exactly what appears in Main Lemma 1. Applying Main Lemma
1 to the first factor we see that the whole expression is

. Rε

n∏
i=1

‖fi‖
p
n

L2
avg(BR) ·

(∑
θ

‖fi,θ‖2
L∞

) 1
2
· s−p
n

.

If we rewrite this expression in terms of the decoupling norms, we get

Rε

n∏
i=1

‖fi‖
p
n

L2,δ
avg(BR)

· ‖fi‖
s−p
n

L∞,δavg (BR)
.

At this point, we would like combine some of the L2,δ
avg and the L∞,δavg norms to

create some Ls,δavg norm. This has a similar feel to a reverse Holder inequality. In
Exercise 3, we proved a version of the Holder inequality for these decoupling norms,
which we now recall.

If 1 ≤ q, q1, q2 ≤ ∞ and 1
q

= (1− α) 1
q1

+ α 1
q2

, then

(7) ‖f‖Lq,δavg(BR) ≤ ‖f‖
1−α
L
q1,δ
avg (BR)

‖f‖α
L
q2,δ
avg (BR)

.

We would like to use the opposite inequality, so we pose the question, when do we
have the inequality

(8) ‖f‖1−α
L
q1,δ
avg (BR)

‖f‖α
L
q2,δ
avg (BR)

. ‖f‖Lq,δavg(BR)?

The reverse Holder inequality, Equation 8, does not hold for an arbitrary function
fi. But Bourgain and Demeter observed that an arbitrary function can be broken
into a small number of ‘balanced’ pieces so that the reverse Holder inequality holds
on each piece. We state this as a lemma.

Lemma 7. Suppose that supp f̂i ⊂ N1/RSi. We can write fi =
∑

k fi,k + ei, where
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• the number of terms in the sum is at most Rε,
• for each k, supp f̂i,k ⊂ N1/RSi,
• ‖ei‖L∞(BR) ≤ R−100n‖fi‖L∞(BR),
• for each k, and any exponent p, ‖fi,k‖Lp,δavg(BR) ≤ ‖fi‖Lp,δavg(BR), and

• each fi,k obeys a reverse Holder inequality. If 1 ≤ q, q1, q2 ≤ ∞ and if

1

q
= (1− α)

1

q1

+ α
1

q2

,

then

(9) ‖fi,k‖1−α
L
q1,δ
avg (BR)

‖fi,k‖αLq2,δavg (BR)
∼ ‖fi,k‖Lq,δavg(BR).

Now we return to the start of the argument and break up our estimate into contri-
butions from the different fi,k. Since ei is really tiny compared to fi, we can neglect
it. Since the number of k is . Rε, we get

AvgB
R1/2⊂BR

n∏
i=1

‖fi‖
s
n

L2
avg(B

R1/2 ) . Rε max
k1,...,kn

AvgB
R1/2⊂BR

n∏
i=1

‖fi,ki‖
s
n

L2
avg(B

R1/2 ).

The functions fi,k obey all the hypotheses of the fi, and so by our previous analysis,
the last expression is bounded by

. Rε

n∏
i=1

‖fi,ki‖
p
n

L2,δ
avg(BR)

· ‖fi,ki‖
1
2
· s−p
n

L∞,δavg (BR)
.

Now Lemma 7 tells us that we can apply the reverse Holder inequality, giving

∼ Rε

n∏
i=1

‖fi,ki‖
1
2
· s
n

L2
avg(BR)

n∏
i=1

‖fi,ki‖
1
2
· s
n

Ls,δavg(BR)
.

. Rε

n∏
i=1

‖fi‖
1
2
· s
n

L2
avg(BR)

n∏
i=1

‖fi‖
1
2
· s
n

Ls,δavg(BR)
.

This finishes the proof of Main Lemma 2, except for the proof of the reverse Holder
inequality, Lemma 7. �

Before we prove Lemma 7 for the fancy norms Lp,δavg(BR), let us begin with a similar
inequality for the regular Lp norms.

Lemma 8. Suppose that supp f̂ ⊂ B(1). Then we can write f =
∑

k fk + e, where

• the sum has . Rε terms,
• ‖e‖Lp(BR) ≤ R−10n‖f‖Lp(BR) for any 1 ≤ p ≤ ∞, and
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• each fk obeys a reverse Holder inequality. If 1 ≤ q, q1, q2 ≤ ∞ and if

1

q
= (1− α)

1

q1

+ α
1

q2

,

then

(10) ‖fk‖1−α
L
q1
avg(BR)

‖fk‖αLq2avg(BR)
∼ ‖fk‖Lqavg(BR).

Proof. First suppose that a function g has the form h · χA for some A ⊂ BR. Then
‖g‖Lq = h|A|1/q. Therefore, if 1

q
= (1− α) 1

q1
+ α 1

q2
, then

‖g‖Lq(BR) = ‖g‖1−α
Lq1 (BR)‖g‖

α
Lq2 (BR).

More generally, g obeys a reverse Holder inequality if |g| is essentially constant
on supp g. An arbitrary function f can now be broken into dyadic pieces f =∑

k χ{|f |∼2k}f =
∑

k fk, and each of these pieces obeys a reverse Holder inequality.

Suppose that 2k̄ ∼ supBR |f |. We write f as
∑k̄

k=k̄−100n log2R
fk+e. We immediately

get that ‖e‖L∞(BR) ≤ R−100n‖f‖L∞(BR). Because of Bernstein’s theorem, ‖f‖Lp(BR) &
‖f‖L∞(BR) for any 1 ≤ p ≤ ∞, and then it follows that ‖e‖Lp(BR) . R−10n‖f‖Lp(BR)

for any 1 ≤ p ≤ ∞. �

Now we turn to the proof of Lemma 7.

Proof. Consider a function f with supp f̂ ⊂ N1/RS. First we recall the wave packet
decomposition of f . We have f =

∑
θ fθ. Each fθ can be written as a sum of wave

packets:

fθ ∼
∑

T∈T (θ)

aTφT .

Here T is a translate of θ∗, a tube of length R and radius R1/2. The coefficient aT
is a complex number. And φT is a “wave packet”, a function essentially supported
on T , with φ̂T ⊂ θ. We also normalize φT so that |φT | ∼ 1 on T .

First we decompose f by the amplitude of the wave packets: f =
∑
fk, where

fk =
∑
θ

∑
T,|aT |∼2k

aTφT .

Now we subdivide fk further. Fix k. For each θ, let Tk(θ) = {T so that |aT | ∼ 2k}.
We decompose fk by the order of magnitude of |Tk(θ)|. We have fk =

∑
l fk,l where

fk,l =
∑

θ,|Tk(θ)|∼2l

∑
T∈Tk(θ)

aTφT .
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For each θ ∈ Tk(θ), we have

‖fk,l,θ‖Lqavg ∼ 2k
(

2l|T |
|BR|

)1/q

.

Using this formula for each θ, it follows that fk,l obeys the reverse Holder inequality
in Equation 9.

We also note that for any q, ‖fk,l‖Lq,δavg(BR) . ‖f‖Lq,δavg(BR).

For each T ∈ T (θ), supp φ̂T ⊂ θ. Therefore, supp f̂k,l ⊂ supp f̂ .
If we use Rε terms fk,l the remaining low amplitude terms lead to an error term e

with ‖e‖L∞(BR) ≤ R−1000n‖f‖L∞(BR).
�

To help digest the upcoming argument, it might help to consider the following
question. What would happen in Main Lemma 2 if we tried to use an exponent

q > 2(n+1)
n−1

in place of s = 2(n+1)
n−1

?
For any q, the proof of Main Lemma 2 can be modified to yield an inequality of

the following form:

AvgB
R1/2⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(B

R1/2 ) . Rε

n∏
i=1

‖fi‖
α(q)· q

n

L2
avg(BR)

n∏
i=1

‖fi‖
(1−α(q))· q

n

Lq,δavg(BR)
.

If q = 2n
n−1

, then α(q) = 1. If q = 2(n+1)
n−1

, then α(q) = 1/2. If q > 2(n+1)
n−1

, then
α(q) < 1/2. The iteration argument below proves decoupling with an Rε loss if and
only if α(q) ≥ 1/2.

To see why 1/2 might be a natural barrier here, consider the following. The left-
hand side involves a mix of L2 norms (at scale up to R1/2) and lq norms (at scales
from R1/2 to R). In some sense it is a half and half mix of L2 and Lq. (Note that the
functions fi are essentially constant at scale 1.) The right-hand side involves a mix
of L2 and Lq,δ, where the L2 part is weighted by α and the Lq,δ part is weighted by
(1−α). If α = 1/2, then Main Lemma 2 essentially decouples the Lq part and turns
the L2 part into a different L2 part. If α < 1/2, then the inequality above turns a
little bit of L2 plus some Lq into decoupled Lq. Since L2 is smaller than Lq, this is
not as good as turning Lq into Lq,δ.

6. The last iteration

In this section, we prove the main decoupling theorem by using Main Lemma 2
at many scales. The argument follows the same outline as the proof of multilinear
restriction in Section 4, but there is an extra twist.
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As above, let s = 2(n+1)
n−1

. We will prove that Dn,p(R) . Rε for 2 ≤ p ≤ s. The
proof is by induction on the dimension, so we can assume that Dn−1,p(R) . Rε.

As we saw in Section 3, Dn,p(R) ≈ D̃n,p(R) ≈ Rγ(n,p). We just have to show that

γ(n, p) = 0. To understand D̃n,p(R), we work in the multilinear decoupling setup.
Suppose that fi obey the multilinear decoupling setup (MDS) as in Section 3.

We focus on the most interesting case p = s. At the end we discuss how to slightly
modify the proof to handle the cases 2 ≤ p ≤ s.

We want to prove a bound of the form∮
BR

n∏
i=1

|fi|
s
n . Rε

n∏
i=1

‖fi‖
s
n

L
s,1/R
avg (BR)

.

As in Section 4, we consider a sequence of scales. We pick a large integer M and
we let r = R2−M . We will use Main Lemma 2 at scales r, r2, r4, ..., r2M = R. We
abbreviate ra = r2a .

We begin with a crude inequality at the small scale r:

(11)

∮
BR

n∏
i=1

|fi|
s
n . rC AvgBr⊂BR

n∏
i=1

‖fi‖
s
n

L2
avg(Br)

.

This inequality was not sharp, so we lost a factor of rC = RC2−M . Now we can
apply Main Lemma 2 on each ball of radius r2 = r1. We get

rC AvgBr⊂BR

n∏
i=1

‖fi‖
s
n

L2
avg(Br)

. rC AvgBr1⊂BR

n∏
i=1

‖fi‖
1
2
· s
n

L2
avg(Br1 )‖fi‖

1
2
· s
n

L
s,1/r1
avg (Br1 )

.

(Remark: When we use Main Lemma 2, there is also a factor of rε which we absorb
into rC .)

At this point, we are not exactly in a position to iterate Main Lemma 2, because
of the terms of the form ‖fi‖Ls,1/r1avg (Br1 )

. These terms are partly decoupled. We use

Holder’s inequality to separate them from the L2 terms, and then we will decouple
them the rest of the way in terms of Dn,s(R/r1).

Recall that the multilinear Holder inequality says that if bj > 0 and
∑
bj = 1,

then

Avg
∏
j

A
bj
j ≤

∏
j

(AvgAj)
bj .

We will apply the (n+1)-linear Holder inequality with exponents 1
2
+ 1

2n
+...+ 1

2n
= 1.
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rC AvgBr1⊂BR

n∏
i=1

‖fi‖
1
2
· s
n

L2
avg(Br1 )‖fi‖

1
2
· s
n

L
s,1/r1
avg (Br1 )

=

= rC AvgBr1⊂BR

(
n∏
i=1

‖fi‖
s
n

L2
avg(Br1 )

) 1
2 n∏
i=1

(
‖fi‖s

L
s,1/r1
avg (Br1 )

) 1
2n ≤ ( by Holder )

(12) ≤ rC

(
AvgBr1⊂BR

n∏
i=1

‖fi‖
s
n

L2
avg(Br1 )

) 1
2 n∏
i=1

(
AvgBr1⊂BR ‖fi‖

s

L
s,1/r1
avg (Br1 )

) 1
2n
.

The first factor is ready to apply Main Lemma 2 again at the next scale. The
second factor is slightly decoupled, and now we explain how to decouple it the rest
of the way.

Using Minkowski’s inequality, Lemma 2, we can bound

AvgBr1⊂BR‖fi‖
s

L
s,1/r1
avg (Br1 )

≤ ‖fi‖s
L
s,1/r1
avg (BR)

.

This expression involves decoupling fi into contributions from caps of size r
−1/2
1 . We

want to decouple fi into finer caps of size R−1/2. To do so, we use parabolic rescaling,
Proposition 4, to decouple fi further, bringing in a factor of Dn,s(R/r1):

‖fi‖Ls,1/r1avg (BR)
≤ Dn,s(R/r1)‖fi‖Ls,1/Ravg (BR)

. (R/r1)γ‖fi‖Ls,1/Ravg (BR)
= Rγ(1− 2

2M
)‖fi‖Ls,1/Ravg (BR)

.

All together, we see that the second factor of Equation 12 is bounded as follows:

n∏
i=1

(
AvgBr1⊂BR ‖fi‖

s

L
s,1/r1
avg (Br1 )

) 1
2n ≤ Rsγ( 1

2
− 1

2M
)

(
n∏
i=1

‖fi‖
s
n

L
s,1/R
avg (BR)

)1/2

.

Putting together the whole argument so far, we have proven that:∮
BR

n∏
i=1

|fi|
s
n . rC

(
AvgBr⊂BR

n∏
i=1

‖fi‖
s
n

L2
avg(Br)

)
≤

≤ rC

(
AvgBr1⊂BR

n∏
i=1

‖fi‖
s
n

L2
avg(Br1 )

) 1
2

Rsγ( 1
2
− 1

2M
)

(
n∏
i=1

‖fi‖
s
n

L
s,1/R
avg (BR)

)1/2

.

Now we can iterate this computation. Repeating the computation one more time,
we get:



17

≤ rC

(
AvgBr2⊂BR

n∏
i=1

‖fi‖
s
n

L2
avg(Br2 )

) 1
4

Rsγ( 3
4
− 2

2M
)

(
n∏
i=1

‖fi‖
s
n

L
s,1/R
avg (BR)

)3/4

.

After iterating all the way to scale R, we get that this is

≤ rC

(
n∏
i=1

‖fi‖
s
n

L2
avg(BR)

) 1

2M

Rsγ(1− M

2M
)

(
n∏
i=1

‖fi‖
s
n

L
s,1/R
avg (BR)

)1− 1

2M

.

Using that ‖fi‖L2
avg(BR) = ‖fi‖L2,1/R

avg (BR)
≤ ‖fi‖Ls,1/Ravg (BR)

, we see that this is

≤ rCRsγ(1− M

2M
)
n∏
i=1

‖fi‖
s
n

L
s,1/R
avg (BR)

.

In other words, we have shown that∮
BR

n∏
i=1

|fi|
s
n . rCRsγ(1− M

2M
)
n∏
i=1

‖fi‖
s
n

L
s,1/R
avg (BR)

.

Since fi were arbitrary functions obeying the multilinear decoupling setup, we see
that

Rsγ ≈ D̃n,s(R) . rCRsγ(1− M

2M
).

Rearranging, we see that

Rsγ M

2M . rC = R
C

2M .

Since C in independent of M , we can now take M → ∞, showing that γ = 0.

This proves decoupling at the sharp exponent s = 2(n+1)
n−1

.
Let us summarize and review the argument. We proved a multilinear decoupling

estimate by a combination of the crude inequality 11, Main Lemma 2, and induction.
The crude inequality dealt with scale 1 to scale r = R2−M , and so in some sense it was
used 1

2M
of the time. Main Lemma 2 accomplished a fraction M

2M
of the decoupling.

The remaining decoupling was done by induction. The argument works because the
crude step is negligible compared to the part done by Main Lemma 2.


