
Decoupling seminar – notes following lecture 3

For next week, I thought it would help to have some notes to read over about
lecture 3. The goal of the notes is to give an outline of the proof of multilinear
restriction from multilinear Kakeya. There are a lot of characters to keep track of.
The first section of the notes is a statement of the theorems and the definitions to
look over. I will hand out copies at the start of next lecture.

1. Review of the theorems and the characters in the story

Theorem 1. (Multilinear Kakeya) Suppose that lj,a are lines in Rn, with

Angle(lj,a, xj-axis) ≤ (10n)−1.

Let Tj,a,W be the characteristic function of the W -neighborhood of lj,a.
Let gj =

∑
a bj,aTj,a,W for some weights bj,a ≥ 0.

Then, for any cube QS of side length S ≥ W , we have the following inequality:
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Theorem 2. (Multilinear restriction) Suppose that Sj ⊂ Rn are C2 compact hyper-
surfaces. Suppose that for any point ω ∈ Sj, the normal vector NSj

(ω) obeys

Angle(NSj
(ω), xj-axis) ≤ (10n)−1.

Suppose that supp f̂j ⊂ N1/RSj.
Let µBR

denote a weight function which is 1 on BR and decays rapidly away from
BR. Then
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We decompose N1/RSj as a disjoint union of blocks θ, each with dimensions ∼
R−1/2× ...×R−1/2×R−1. We define fj,θ by f̂j,θ = χθf̂j, so that fj =

∑
θ fj,θ. We let

ωθ be the center of θ.
We let θ∗ denote the dual tube, which has dimensions ∼ R1/2 × ...×R1/2 ×R. It

is defined as follows:

θ∗ := {x ∈ Rn so that |x · (ω − ωθ)| ≤ 1 for all ω ∈ θ}.
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2. Properties of fj,θ

In this section we give some heuristics about the properties of fj,θ. We state two
“white lies” about the properties of the functions fj,θ. These white lies are not
actually true, but I think that they are morally true. Using these properties, the
“proof” of multilinear restriction is short and clean. Here are the two properties.

(1) Locally constant. Morally, |fj,θ| should be roughly constant on any trans-
late of θ∗. More precisely, for any x ∈ Rn,

maxy∈θ∗ |fj,θ(x+ y)|
miny∈θ∗ |fj,θ(x+ y)|

≤ Cn.

(2) Orthogonality. If B ⊂ Rn is a ball of radius at least R1/2 or a cube of side
length at least R1/2, then∫

B

|fj|2 ∼
∑
θ

∫
B

|fj,θ|2.

Neither of these two properties is actually true. I think of them as being morally
true. In the next lecture, we will state more complicated results that are honestly true
and that have the same spirit as the locally constant property and the orthogonality
property. When we do that, the weight µBR

will enter the story.

3. The “proof” of multilinear restriction

In this section, we give a ‘proof’ of multilinear restriction assuming that the func-
tions fj,θ obeys the locally constant property and the orthogonality property. These
properties are white lies, so this isn’t a completely rigorous proof, but it shows the
main ideas of the real proof.

We define M(R) to be the best constant in the inequality

(3)

∮
QR

n∏
j=1

|fj|
2

n−1 ≤M(R)
n∏
j=1

(∮
QR

|fj|2
) 1

n−1

.

(If the locally constant property and the orthogonality property were literally true,
we would need a weight µBR

on the right-hand side.)
We want to prove that M(R) . Rε. We will prove an inequality that compares

M(R) and M(R1/2), controlling the growth of M(R). This inequality implies that
M(R) grows at most like Rε.

We break QR into a disjoint union of smaller cubes of side length R1/2. We evaluate
the integral on each smaller cube, bringing in M(R1/2). Using orthogonality and the
locally constant property we see that the resulting integral looks like the LHS of the
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multilinear Kakeya inequality. To help follow the argument, we indicate at the side
when we use the locally constant property (LC), and when we use orthogonality (O).
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By the locally constant property, the function
∑

θ |fj,θ|2 is essentially a weighted
sum of characteristic functions of tubes that point in roughly the xj direction.
In other words, there is a weighted sum of tubes, gj, so that

∑
θ |fj,θ|2 ≤ gj ≤

Cn
∑

θ |fj,θ|2, and the functions gj obey the hypotheses of the multilinear Kakeya in-
equality. Using the multilinear Kakeya inequality, we see that the last line is bounded
by
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All together, we see that

M(R) ≤ Cn,εR
εM(R1/2) (∗)

Iterating inequality (∗) log logR times shows that M(R) . RεM(10).


