1 Incidence Geometry

Topic: take a bunch of simple shapes like circles or lines, and study how they can intersect each other.

Definition 1.1. If L is a set of $|L|$ lines in \mathbb{R}^{2}, let $P_{k}(L)$ be the set of points lying in at least k lines, called k-fold intersections; then we can ask what the maximum value of $P_{k}(L)$ in terms of k and $|L|$ is.

For example, we can get $P_{k}(L)=|L| / k$ trivially by dividing the lines into sets of k and intersecting each set.

In an $N \times N$ grid of points, let L be the set of lines that contain between R and $2 R$ points. Then there are at most $\theta\left(\frac{N^{2}}{R^{2}}\right)$ lines of those lines through each point: in any such line, the closest point to x must lie in a square of sidelength $\frac{2 N}{R}$ centered at x. We claim that there are at least $\theta\left(\frac{N^{2}}{R^{2}}\right)$ of those lines through each point, too: each of the points in the quarter of that square of sidelength $\frac{2 N}{R}$ closest to the center of the grid determines a line that contains at least R points, and by the following lemma, a constant fraction of them are distinct and contain not too many points: Lemma 1. For all B, there are more than $\frac{1}{100} B^{2}$ integer pairs $(x, y) \in\left[\frac{B}{2}, \frac{B}{]}^{2}\right.$ with gcd 1
Proof. Throw out the $\frac{1}{4}$ pairs where both are divisible by 2 , the $\frac{1}{9}$ divisible by 3 , and so on. $\frac{1}{4}+\frac{1}{9}+\cdots<\frac{99}{100}$.

If k is the smallest degree of any grid point, then k is about $\frac{N^{2}}{R^{2}},\left|P_{k}\right| \geq N^{2}$, and $|L|=\left|P_{k}\right| k / R=$ $\frac{N^{4}}{R^{3}}$, so $\left|P_{k}\right|=|L|^{2} k^{-3}$.

Proposition 1.2. $\forall k \in[\sqrt{|L|}]$, there's a configuration such that $\left|P_{k}\right| \geq c L^{2} K^{-3}$.
In the early 1980s, it was proven that one of the two bounds above is tight up to a constant factor:
Theorem 1.3 (Szemerédi, Trotter). For some constant $c,\left|P_{k}\right| \leq c\left(\frac{|L|}{k}+\frac{|L|^{2}}{k^{3}}\right)$.
If $k>\sqrt{|L|}$, the first term dominates; if $k \geq \sqrt{L}$, the second term dominates.
Proposition 1.4. $\left|P_{k}\right| \leq \frac{\binom{|L|}{2}}{\binom{K}{2}} \leq 2 L^{2} k^{-2}$
Proof. There are $\binom{L}{2}$ pairs of lines, and $\forall x \in P_{k}$, there are at least $\binom{k}{2}$ pairs of lines that intersect at x.

Proposition 1.5. Prop: If $\frac{k^{2}}{4}>|L|$, then $\left|P_{K}\right|<\frac{k}{2}$.

Proof. Suppose not. Restrict to a subset P of size $\frac{k}{2}$. For all $x \in P$, there are at least $\frac{k}{2}$ lines through x that don't contain any other points of P, so $|L| \geq|P| \frac{k}{2}=\frac{k^{2}}{4}$.

Proposition 1.6. If $|L|<\frac{k^{2}}{4}$, then $\left|P_{k}\right|<2 \frac{|L|}{k}$.
Proof. Suppose not. By the last proposition, $\left|P_{k}\right|<\frac{k}{2}$. For all $x \in P$, there are at least $\frac{k}{2}$ lines through x that don't contain any other points of P, so $|L| \geq\left|P_{k}\right| \frac{k}{2}$, as desired.

So far, we've only used the fact that two lines intersect in at most one point. But that can't be enough to prove the Szemerédi-Trotter Theorem, because in a finite field \mathbb{F}_{q}^{2}, we could take all the lines: that gives $|L|=q^{2}+q$ and $k=q+1$, which violates the Szemerédi-Trotter upper bound. (Note that in that case there's a phase transition around $k=\sqrt{|L|}$, from $\left|P_{k}\right|=\sqrt{|L|}$ to $\left|P_{k}\right|=|L|$.)

The extra fact we'll use is some topology, specifically the Euler characteristic. Take a large disc containing all the intersections and let $V_{i n t}$ and $E_{\text {int }}$ be the interior vertices and edges; there are also $2 \mid L$ vertices and $2|L|$ edges along the boundary of the disc. Every edge is in at most two faces (1 if along the boundary) and every face contains at least three edges, so $3|F| \leq 2\left|E_{\text {int }}\right|+2|L|$, so $\left|E_{\text {int }}\right| \leq 3\left|V_{\text {int }}\right|+2|L|$. Hence $\sum_{v \in V_{\text {int }}}\left(\frac{1}{2} \operatorname{deg}(v)-3\right) \leq 2 L$ (in fact, it's at most L). If every intersection had multiplicity at least 3 , then $\left|P_{k}\right| \leq \frac{2 L}{K-3}$; we need to figure out a stronger argument because intersections might have multiplicity 2.
K_{5} isn't planar, since $10=\left|E\left(K_{5}\right)\right|>3\left|V\left(K_{5}\right)\right|-6=9$.

2 Crossing Numbers of Graphs

If G is a graph, a legal map F into the plane takes vertices to distinct points and edges to curves between their endpoints' points.

The crossing number of F is the number of pairs of edges' curves that intersect, and the crossing number of a graph is the minimum crossing number over legal embeddings. For instance, $C N\left(K_{5}\right)=1$.

