
HARDY-LITTLEWOOD-SOBOLEV INEQUALITY

Consider a kernel Kα(x) := |x|−α and convolution Tαf := f ∗ Kα. Last time, we
looked at how Tα works when f = χBr

is the characteristic function on a ball of
radius r.

Proposition 0.1. ‖TαχBr
‖q . ‖χBr

‖p if and only if αq > n and n−α + n
q

= n
p
. Or

equivalently, p > 1 and α = n(1 − 1
q

+ 1
p
).

In fact, this result is true for general cases.

Theorem 0.2. (Hardy-Littlewood-Sobolev) If p > 1 and α = n(1 − 1
q

+ 1
p
), then

‖Tαf‖q . ‖f‖p.

Apart from our previous examples, the next simplest example would be f :=
∑

j χBj
where Bj are some balls. It is easy to treat nonoverlapping balls, but rather

difficult in overlapping cases. So, it might be helpful to know about the geometry of
overlapping balls.

1. Ball doubling

Lemma 1.1. (Vitali Covering Lemma) If {Bi}i∈I is a finite collection of balls,
then there exist a subcollection J ⊂ I such that {Bj}j∈J are disjoint but

⋃

i∈I Bi ⊂
⋃

j∈J 3Bj.

What happens if I is infinite? It is no longer true for infinite I: consider {B(0, r) :
r ∈ R

+}. Any two of them are overlapping, so any disjoint subcollection can contain
only one ball. You cannot cover whole space by a bounded ball, so the theorem is
false for this case. How can we fix it? If we loosen the conclusion to cover only a
compact set K ⊂

⋃

i∈I Bi, then we can always find a disjoint subcollection J(K) ⊂ I
such that K ⊂

⋃

j∈J(K) 3Bj .
From Vitali covering lemma, we get the following:

Lemma 1.2. (Ball doubling) If {Bi}i∈I is a finite collection of balls, then |
⋃

2Bi| ≤
6n|

⋃

Bi|.

Proof. From the proof of Vitali Covering Lemma, for each Bi we can find some j ∈ J
such that Bi ⊂ 3Bj. So, 2Bi ⊂ 6Bj . Hence |

⋃

2Bi| ≤ |
⋃

6Bj| ≤ 6n
∑

|Bj| =
6n|

⋃

Bj|. �
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Is it sharp? It seems to be 2n instead of 6n, but I’m not sure and at least hard
to prove. This coefficient is not so important for the proof be given later, so let’s go
over it.

2. Hardy-Littlewood maximal function

Denote the average of f on A by
∮

A
f := 1

VolA

∫

A
f . The Hardy-Littlewood maximal

function of f is defined to be Mf(x) := supr

∮

B(x,r)
|f |. Let Sg(h) := {x ∈ R

n : |g| >

h}. Then,

Lemma 2.1. |SMf(h)| . h−1‖f‖1.

Proof. For each x ∈ SMf(h), there exists r(x) such that
∮

B(x,r(x))
|f | ≥ h, so

∫

B(x,r(x))
|f | ≥

h|B(x, r(x))|. These B(x, r(x)) cover SMf(h), so by Vitali covering lemma, we can
find disjoint Bj ’s whose multiple cover SMf(h). Hence,

|SMf(h)| .
∑

j

|Bj| . h−1

∮

S

Bj

|f | ≤ h−1‖f‖1.

�

Now we can estimate the Lp-norm of Mf by that of f .

Proposition 2.2. ‖Mf‖p . ‖f‖p.

One naive approach would be dividing the range and estimate in each range.
Namely, let TMf(2

k) := {x ∈ R
n : 2k < |Mf | ≤ 2k+1} ⊂ SMf(2

k) and we have
∫

|Mf |p ∼

∞
∑

k=−∞

|TMf(2
k)|2kp .

∑

k

2−k2kp‖f‖1,

but the summation in the righthand side diverges. We need a slight modification of
the previous lemma.

Lemma 2.3. |SMf(h)| . h−1
∫

Sf (h/2)
|f |.

Proof. In the previous proof, we found disjoint Bj which covering SMf (h) such that
∫

Bj
|f | ≥ h|Bj|. However, we also have

∫

Bj\Sf (h/2)
|f | ≤ h

2
|Bj|, so

∫

Bj∩Sf (h/2)
|f | ≥

h
2
|Bj|. Do the same estimate with Bj ∩ Sf(h/2) instead of Bj and get the desired

result. �

Now we can prove the proposition.

Proof. Use the same approach above with our modified lemma.
∫

|Mf |p .

∞
∑

k=−∞

|SMf(2
k)|2kp .

∑

k

2k(p−1)

∫

Sf (2k−1)

|f |.
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By interchanging summation and integral, we have
∫

|f |
∑

2k−1≤|f |

2k(p−1) ∼

∫

|f | · |f |p−1 = ‖f‖p
p.

So, ‖Mf‖p . ‖f‖p. �

3. Proof of HLS Inequality

Step 1. Tαf(x) can be written in terms of
∮

B(x,r)
f .

Lemma 3.1.

Tαf(x) =

∫ ∞

0

rn−α−1

(
∮

B(x,r)

f

)

dr.

Proof. Just a computation. �

Step 2. Upper bounds of
∮

B(x,r)
f . One trivial upper bound is Mf(x) by definition.

Also, we can get
∮

B(x,r)

f . r−n

∫

B(x,r)

|f | . r−n‖f‖pr
n(p−1)/p = r−n/p‖f‖p

by Hölder. We would fail if we only use one of them. Rather, fix rcrit(x) and use
Mf(x) for r ≤ rcrit, Lp bound for r ≥ rcrit. This approximation always gives us
|Tαf(x)| . (Mf)A‖f‖B

p for some A, B with A + B = 1.

Step 3.
∫

|Tαf |q . ‖f‖Bq
p

∫

(Mf)Aq . ‖f‖Bq
p ‖f‖Aq

Aq as long as Aq > 1. If p = Aq,

then we have
∫

|Tαf |q . ‖f‖q
p, so ‖Tαf‖q . ‖f‖p. This case together with Aq > 1

is exactly the hypothesis condition in the theorem. Also, we already know that this
condition is the only possible case, so we are done. You may calculate rcrit, A, B to
check.


