
PROOF OF THUE’S THEOREM – PART II

1. Polynomials that vanish to high order at a rational point

Suppose that P ∈ Z[x1, x2] has the special form

P (x1, x2) = P1(x1)x2 + P0(x1).

Suppose that r ∈ Q2. If P vanishes to high order at a complicated point r, how
big do the coefficients of P have to be? More precisely, we suppose that ∂j

1P (r) = 0
for 0 ≤ j ≤ l − 1. Last time we gave two examples. The polynomial q2x2 − p2 which
has size ‖r2‖, and the polynomial (q1x1 − p1)

l, which has size ‖r1‖
l.

By parameter counting it is possible to do somewhat better.

Proposition 1.1. For any r ∈ Q2, and any l ≥ 0, there is a polynomial P ∈ Z[x1, x2]
with the form P (x1, x2) = P1(x1)x2 + P0(x1) obeying the following conditions.

• ∂j
1P (r) = 0 for j = 0, ..., l − 1.

• |P | ≤ C(ǫ)l‖r1‖
l
2
+ǫ, for any ǫ > 0.

• The degree of P is . ǫ−1
(

l + log‖r1‖ ‖r2‖
)

.

Proof. We will find our solution by counting parameters. We will choose a degree
D, and let P0, P1 be polynomials of degree ≤ D. The coefficients of P0 and P1 are
≥ 2D integer variables at our disposal. We wish to satisfy the l equations

∂j
1P (r) = 0, j = 0, ..., l − 1. (1)

After a minor rewriting, each of these equations is a linear equation in the coef-
ficients of P with integer coefficients. If we write P1(x1) =

∑

i bix
i
1 and P0(x1) =

∑

i aix
i, then

0 = qD
1 q2(1/j!)∂

j
1P (r) = q2(

∑

i

bi

(

i

j

)

pi−j
1 qD−i+j

1 ) + (
∑

i

ai

(

i

j

)

pi−j
1 qD−i+j

1 p2).

The size of the coefficients in the equations is ≤ 2D‖r1‖
D‖r2‖.

By Siegel’s lemma on integer solutions of linear integer equations (in the last
lecture), we find a non-zero integer solution of these equations with

|P | ≤
[

3D · 2D‖r1‖
D‖r2‖

]
l

2D−l ≤ C l‖r1‖
l D
2D−l‖r2‖

l
2D−l .

1
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We choose D = 1000ǫ−1l+1000ǫ−1 log‖r1‖ ‖r2‖. With this value of D, D
2D−l

≤ ǫ/10,

and so the exponent of ‖r1‖ is almost l/2. Also, the term ‖r2‖
l

2D−l ≤ ‖r1‖
ǫ/10. �

Combining our parameter counting with the elementary example q2x2 − p2, we
can find P vanishing to order l at r with |P | on the order of min(‖r1‖

l/2, ‖r2‖). The
following result shows that these examples are quite sharp. I believe it is a special
case of a lemma of Schneider.

Proposition 1.2. (Schneider) If P (x1, x2) = P1(x1)x2 + P0(x1) ∈ Z[x1, x2], and
r ∈ Q2, and ∂j

1P (r) = 0 for j = 0, ..., l − 1, and if l ≥ 2, then

|P | ≥ min((2DegP )−1‖r1‖
l−1
2 , ‖r2‖).

Remark. We need to assume that l ≥ 2 to get any estimate. If we have vanishing
only to order 1, then we could have P (x1, x2) = 2x1 − x2, which vanishes at (r1, 2r1)
for any rational number r1. As soon as l ≥ 2, the size of |P | constrains the complexity
of r. It can still happen that one component of r is very complicated, but they can’t
both be very complicated.

Proof. Our assumption is that

∂jP1(r1)r2 + ∂jP0(r1) = 0, 0 ≤ j ≤ l − 1.

Let V (x) be the vector (P1(x), P0(x)). Our assumption is that for 0 ≤ j ≤ l − 1,
the derivatives ∂jV (r1) all lie on the line V · (r2, 1) = 0. In particular, any two
of these derivatives are linearly dependent. This tells us that many determinants
vanish. If V and W are two vectors in R2, we write [V, W ] for the 2× 2 matrix with
first column V and second column W . Therefore,

det[∂j1V, ∂j2V ](r1) = 0, for any 0 ≤ j1, j2 ≤ l − 1.

Now it follows by the Liebniz rule that

∂jdet[V, ∂V ](r1) = 0, for any 0 ≤ j ≤ l − 2.

Remark: Because the determinant is multilinear, we have the Leibniz rule ∂det[V, W ] =
det[∂V, W ]+det[V, ∂W ], which holds for any vector-valued functions V, W : R → R2.

Now det[V, ∂V ] is a polynomial in one variable with integer coefficients. If this
polynomial is non-zero, then by Gauss’s lemma (see last lecture) we conclude that

|det[V, ∂V ]| ≥ ‖r1‖
l−1.

Expanding out in terms of P , we have |det[V, ∂V ]| = |∂P0P1−∂P1P0| ≤ 2(DegP )2|P |2.

Therefore, we have |P | ≥ (2DegP )−1‖r1‖
l−1
2 .
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The polynomial det[V, ∂V ] may also be identically zero. This is a degenerate
case, and the polynomial must simplify dramatically. One possibility is that P1 is
identically zero. In this case P (x1, x2) = P0(x1), and by the Gauss lemma we have
that |P | ≥ ‖r1‖

l. If P1 is not identically zero, then the derivative of the ratio P0/P1

is identically zero. (The numerator of this derivative is det[V, ∂V ].) In this case,
the polynomial P factors as (q2x2 − p2)P̃ (x1), where P̃ (x1) has integer coefficients.
(compare proof of Gauss lemma) In this case, |P | ≥ ‖r2‖. �

The lower bounds on |P | in this lemma are pretty close to the upper bounds on
|P | in the examples above. Speaking informally, both bounds are pretty close to
min(‖r1‖

l/2, ‖r2‖).

2. Polynomials that vanish at algebraic points

Our whole discussion can be generalized in a straightforward way to algebraic
points instead of rational points. In the proof of Thue’s theorem, we have an algebraic
number β, and r1 and r2 are rational numbers that approximate β with very large
heights. The point (r1, r2) is close to (β, β). We are going to compare finding an
integral polynomial that vanishes to high order at (β, β) and finding an integral
polynomial that vanishes to high order at (r1, r2).

By using parameter counting, we will see that there is an integral polynomial
vanishing to high order at (β, β) whose coefficients are much smaller than what we
could find for a polynomial vanishing to high order at (r1, r2).

Proposition 2.1. Let β ∈ R be an algebraic number. For any natural number
l, and any ǫ > 0, there is a polynomial P ∈ Z[x1, x2] with the form P (x1, x2) =
P1(x1)x2 + P0(x1) with the following properties.

• ∂j
1P (β, β) = 0 for 0 ≤ j ≤ l − 1.

• |P | ≤ C(β)l/ǫ.
• The degree of P is ≤ (1 + ǫ)(1/2)deg(β)l + 1.

Proof. This Proposition follows by the same parameter counting argument as above.
There is one significant new idea in order to deal with algebraic numbers. We let D a
degree to choose later. As above, we write P1(x) =

∑D
i=0 bix

i and P0(x) =
∑D

i=0 aix
i.

The coefficents ai and bi are ≥ 2D integer variables at our disposal. For each 0 ≤
j ≤ l − 1, our vanishing equation is

0 = (1/j!)∂j
1P (β, β) =

∑

i

bi

(

i

j

)

βi−j+1 +
∑

i

ai

(

i

j

)

βi−j. (1)

This is a linear equation in ai, bi with coefficients in Z[β]. We will see that it is
equivalent to deg(β) linear equations with coefficients in Z. Since β is an algebraic
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number, we will check that 1, β, ..., βdeg(β)−1 form a basis for the vector space Q[β] over
the field Q. In particular, any power βi can be expanded as a rational combination
of 1, β, ..., βdeg(β)−1. Substituting in, we can rewrite equation (1) in the form:

0 =

deg(β)−1
∑

k=0

βk

[

∑

i

biBik +
∑

i

aiAik

]

= 0,

where Aik and Bik are rational numbers. Since 1, β, ..., βdeg(β)−1 are linearly indepen-
dent over Q, this list of equations is equivalent to the deg(β) equations

∑

i

biBik +
∑

i

aiAik = 0, for all 0 ≤ k ≤ deg(β) − 1. (2)

After multiplying by a large constant to clear the denominators, we get deg(β)
equations with integer coefficients. In total, our original l equations ∂j

1P (r) = 0 for
j = 0, ..., l − 1 are equivalent to deg(β)l integer linear equations in the coefficients
of P . Since we have > 2D coefficients, we can find a non-trivial integer solution as
long as D ≥ (1/2)deg(β)l.

Our next task is to estimate the size of the solution. To do this, we need to
estimate the heights of the coefficients Aik, Bik. Also we get a much better estimate
by taking D slightly larger than (1/2)deg(β)l, and for this reason we choose D to
be the least integer ≥ (1 + ǫ)(1/2)deg(β)l. To estimate the heights of Aik, Bik, we
consider more carefully how to expand βd in terms of 1, β, ..., βd−1.

Lemma 2.2. Suppose Q(β) = 0, where Q ∈ Z[x] with degree deg(Q) = deg(β) and
leading coefficient qdeg(beta). Then for any d ≥ 0, we can write

qd
deg(β)β

d =

deg(β)−1
∑

k=0

Akdβ
k,

where Akd ∈ Z and |Akd| ≤ [2|Q|]d.

Proof. We have 0 = Q(β) =
∑deg(β)

k=0 qkβ
k. We do the proof by induction on d,

starting with d = deg(β). For d = deg(β), the equation Q(β) = 0 directly gives

q
deg(β)
deg(beta)β

deg(β) =

deg(β)−1
∑

k=0

(−qk)β
k. (∗)

If we multiply both sides by q
deg(β)−1
deg(β) , we get a good expansion for the case d =

deg(β). Now we proceed by induction. Suppose that qd
deg(β)β

d =
∑deg(β)−1

k=0 Akdβ
k.

Multiplying by qdeg(β)β, we get



PROOF OF THUE’S THEOREM – PART II 5

q
deg(β)+1
deg(β) βdeg(β)+1 =

deg(β)−1
∑

k=0

Akdqdeg(β)β
k+1 =

deg(β)−1
∑

k=1

Ak−1,dqdeg(β)β
k+

deg(β)−1
∑

k=0

Adeg(β)−1,d(−qk)β
k.

�

Plugging in this lemma, we see that qD
deg(β)Aik, q

D
deg(β)Bik are integers of size ≤

D[2|Q|]D. The integer matrix that we are solving has coefficients of size ≤ D[2|Q|]D.
It is a matrix with dimensions (2D + 2) × deg(β)l, and so it has operator norm
≤ (2D + 2)D[2|Q|]D ≤ C(β)D.

Now applying Siegel’s lemma, we see that we can find an integer solution P with
|P | bounded by

C(β)D deg(β)l
2D−deg(β)l ≤ C(β)D/ǫ.

Since D ≤ C(β)l, we can redefine C(β) so that |P | ≤ C(β)l/ǫ.
�

3. Summary

Suppose that β is an algebraic number, and that r1, r2 are two very good rational
approximations of β. We may suppose that ‖r1‖ is very large and ‖r2‖ is (much)
larger. Say ‖r2‖ ∼ ‖r1‖

m.
We consider polynomials P ∈ Z[x1, x2] of the simple form P (x1, x2) = P1(x1)x2 +

P0(x1). We can arrange that ∂j
1P (β, β) = 0 for 0 ≤ j ≤ m − 1 with |P | ≤ C(β)m.

On the other hand, if ∂j
1P (r) = 0 for 0 ≤ j ≤ l−1, then we must have |P | & ‖r1‖

l/2.
Since ‖r1‖ is much larger than C(β), it follows that l must be much smaller than m.
This creates a certain tension.

As we will see, if r was too close to (β, β), than P would have to vanish too much
at r, giving a contradiction.


