
USING (POLYNOMIAL) CELL DECOMPOSITIONS

1. Szemerédi-Trotter

We will recall the standard form of the theorem.

Theorem 1.1. If S is a set of S points and L is a set of L lines (all in R
2), then

the number of incidences obeys the following bound:

I(S, L) ≤ C0[S
2/3L2/3 + S + L].

We will prove the result by using a polynomial cell decomposition together with
elementary counting bounds in each cell. We first recall the counting bounds.

Lemma 1.2. If S and L are as above, then

• I(S, L) ≤ L + S2.
• I(S, L) ≤ L2 + S.

Proof. Fix x ∈ S. Let Lx be the number of lines of L that contain x and no other
point of S. For each other point y ∈ S, there is at most one line of L containing x
and y. Therefore, I(x, L) ≤ S + Lx. So I(S, L) ≤ S2 +

∑
x∈S Lx ≤ S2 + L.

The proof of the other inequality is similar. �

Now we turn to the proof of the theorem.

Proof. If L > S2/10 or S > L2/10, then the conclusion follows from the counting
lemma. Therefore, we can now restrict to the case that

101/2S1/2 ≤ L ≤ S2/10. (1)

We will also use induction on L, and so we can assume the theorem holds for
smaller sets of lines.

Now we come to the heart of the proof. We use the polynomial cell decomposition
to cut R

2 into cells, and then we use the counting lemma in each cell.
Let d be a degree to choose later. By the polynomial cell decomposition lemma,

we can find a non-zero polynomial P of degree ≤ d so that each component of the
complement of Z(P ) contains . Sd−2 points of S. Let Oi be the components, Si

the number of points of S in Oi, and Li the number of lines of L that intersect Oi.
Since each line intersects ≤ d + 1 cells, we know that

∑
Li ≤ L(d + 1).

Applying the counting lemma in each cell, we get
1
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I(Si, Li) ≤ Li + S2

i .

We let Scell be the union of Si - all the points of S that lie in the interiors of the
cells.

I(Scell, L) =
∑

i

I(Si, Li) ≤
∑

i

Li +
∑

i

S2

i . Ld + Sd−2
∑

i

Si = Ld + S2d−2.

We let S = Scell ∪ Salg, where Salg is the set of points in Z(P ). It remains to
bound I(Salg, L). We divide L as Lcell ∪Lalg, where Lcell are the lines that intersect
some open cells, and Lalg are the lines contained in Z(P ).

Each line of Lcell has ≤ d intersection points with Z(P ), hence ≤ d incidences
with Salg. Hence I(Salg, Lcell) ≤ Ld. Summarizing everything so far, we have the
following:

I(S, L) ≤ C(Ld + S2d−2) + I(Salg, Lalg).

We will deal with the last term by induction. We will choose d ≤ L/2. So Lalg

contains ≤ L/2 lines. By induction,

I(Salg, Lalg) ≤ C0[S
2/3(L/2)2/3 + S + L/2].

Now we are ready to optimize over d. We need to choose d to be an integer between
1 and L/2. We choose d ∼ S2/3L−1/3. Because of the bounds in equation (1), we
can find d this size in the range 1 ≤ d ≤ L/2. Plugging in, we get

I(S, L) ≤ CL2/3S2/3 + C0[S
2/3(L/2)2/3 + S + L/2].

Finally, we choose C0 large enough compared to C, and the whole right hand side
is bounded by C0[S

2/3L2/3 + S + L].
�

2. The 3-dimensional version - outline of the ideas

We will prove (today and next lecture) the following 3-dimensional result, which
we can think of as a possible analogue of the ST theorem for lines in R

3.

Theorem 2.1. If S is a set of S points in R
3 and L is a set of L lines in R

3 with
at most B lines in any plane, then

I(S, L) ≤ C0[S
1/2L3/4 + L1/3B1/3S2/3 + S + L].
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In particular, if k is sufficiently large and we take S to be the set of points in ≥ k
lines of L, then plugging in we get |Sk| . L3/2k−2 +LBk−3 +Lk−1. Taking B = L1/2

and combining with our earlier bound for 3-rich points, we get

Corollary 2.2. If L is a set of L lines in R
3 with ≤ L1/2 lines in any plane and

k ≥ 3, then the number of k-rich points is . L3/2k−2.

Now we discuss some examples. The S term and the L term are easy. If we choose
L/B planes, and use a grid configuration in each plane, we get ∼ L1/3B1/3S2/3

incidences. Finally, if we choose points and lines coming from a 3-dimensional grid,
we can get S1/2L3/4 incidences. In particular, the theorem is sharp up to constant
factors.

The main ideas are similar to the ideas in the proof of ST above, but there are one
or two extra twists and the computations are longer. In this outline, we want to ex-
plain the main steps/ideas, especially the new twists, but postpone the calculations.

We let d be a degree we can choose later, and we build a degree d polynomial cell
decomposition. In each cell we apply an incidence bound that we already know. We
could apply the counting lemma as above. We can also apply the Szemerédi-Trotter
theorem in each cell. Recall that the Szemerédi-Trotter theorem holds for points and
lines in R

n for any n by a random projection argument. Since it is stronger than the
counting lemma bounds, we may as well use ST in each cell. Then adding up the
contributions from the cells, we get

I(Scell, L) . S2/3L2/3d−1/3 + S + L.

As d increases, we get stronger and stronger bounds on the incidences in the
cells. On the other hand, as d increases, we get more points in Z(P ) and weaker
information about Z(P ).

We can again divide the lines as Lcell and Lalg. Each line of Lcell has ≤ d incidences
with Salg. Therefore, we get

I(S, L) . dL + d−1/3S2/3L2/3 + S + L + I(Salg, Lalg).

In the proof of ST, we chose d ≤ L/2, which forced Lalg ≤ L/2 and allowed us to
use induction. We cannot quite do that here. A surface of low degree may contain
arbitrarily many lines. This is true for planes and reguli, and also for many other
examples. We cannot yet use induction. Also, we need to use the bound on the
number of lines in a plane, which we haven’t used yet.

The surface Z(P ) contains ≤ d planes. Each of these planes contains ≤ B lines
of L. Let Lplanar be the subset of lines of L which lie in one of the planes of Z(P ).
Using this information and applying Szemerédi-Trotter in each plane, it’s not hard
to bound I(S, Lplanar). In particular, we’ll get the following bound:
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I(S, Lplanar) . B1/3L1/3S2/3 + dL + S + L.

This estimate is fine, and it remains to bound I(Salg, Lalg \ Lplanar). We will do
this using our tools about special points and lines in an algebraic surface – as in the
proof of the esimate on the number of 3-rich points. As in that lecture, we call a
point special if it is critical or flat, and we call a line special if each point on the line
is special. A point x ∈ Z(P ) is special if and only if a set of polynomials called SP
vanishes at x, and the polynomials in SP have degree ≤ 3d.

One of the main tools in the special lines discussion is that there aren’t that many
special lines. The number of special lines in Z(P ) which aren’t in any of the planes
is ≤ 10d2. We will choose d so that 10d2 ≤ L/2, and then we can control this term
by induction. We write Lalg = Lspec ∪ Lnonspec where Lspec are the special lines of
Lalg. Note that Lplanar ⊂ Lspec. We just recalled that |Lspec \ Lplanar| ≤ 10d2.

We have

I(Salg, Lalg \ Lplanar) ≤ I(Salg, Lspec \ Lplanar) + I(Salg, Lnonspec).

We can control the first term by induction as long as we choose 10d2 ≤ L/2. And
we will see that the second term is minor.

We write Salg = Sspec∪Snonspec. Each non-special line contains at most 3d special
points, so

I(Sspec, Lnonspec) ≤ 3dL.

On the other hand, if a point x ∈ Z(P ) lies in three lines in Z(P ), then we saw
that x is a special point of Z(P ). Therefore, each point of Snonspec is incident to le2
lines of Lalg. In particular, we get

I(Snonspec, Lnonspec) ≤ 2S.

Combining all the work so far, we see that

I(S, L) ≤ C[dL + d−1/3S2/3L2/3 + B1/3L1/3S2/3 + S + L] + I(Salg, Lspec \ Lplanar).

This inequality holds for any integer d ≥ 1, and if 10d2 ≤ L/2, then the number
of lines in Lspec \ Lplanar is ≤ L/2, and we can control that term by induction. We
optimize d in this range, and we get the bound in the theorem.

(In the full proof, we have to be a touch more careful about some of the terms
because of the induction.)

Next lecture we will do the details.


