Every point of X needs to lie on one black circle (centered at p) and one green circle (centered at p_2).
Figure 2 A distance quadruple from two points of view.

In \(\mathbb{R}^2 \):

\[p_1 \quad q_1 \quad p_2 \quad q_2 \]

In \(G \), the group of rigid motions:

\[g(p_1) = p_2 \quad \text{and} \quad g(q_1) = q_2 \]
A polynomial partitioning.

In the picture, $D=4$, so each line enters at most five cells.
Figure 4

It's hard for me to draw, but $Z(P)$ is really a 2-dimensional surface in \mathbb{R}^3.

In this part of the picture, the red parallelogram is a piece of $Z(P)$. The solid lines lie in $Z(P)$, and the dotted line passes through $Z(P)$.