1. Geometric input

1.1. A Warm up problem.

Question 1.1. Suppose $U \subset \mathbb{R}^3$ is a bounded region and

\[
\text{Area}(\text{Proj}_{xy}\text{-plan}(U)) = A,
\text{Area}(\text{Proj}_{xy}\text{-plan}(U)) = B,
\text{Area}(\text{Proj}_{xy}\text{-plan}(U)) = C.
\]

Then how big is the volume of U?

To deal with the problem, define

\[U_z = \{(x, y) \in \mathbb{R}^2 | (x, y, z) \in U\},\]

then

\[|U| = \int_\mathbb{R} |U_z|dz,\]

and for any $z \in \mathbb{R}$, $|U_z| \leq A$.

Also let

\[X_z = \{x \in \mathbb{R} | (x, y) \in U_z\}, \quad Y_z = \{y \in \mathbb{R} | (x, y) \in U_z\}.\]

See figure [1] Then we have for any $z \in \mathbb{R}$

\[|U_z| \leq |X_z| \cdot |Y_z|,\]

and

\[\int_\mathbb{R} |X_z|dz \leq B, \quad \int_\mathbb{R} |Y_z|dz \leq C.\]
So altogether by Cauchy-Schwartz

\[U = \int_{\mathbb{R}} |U_z| dz \]
\[\leq \int_{\mathbb{R}} A^{\frac{1}{2}} (|X_z| \cdot |Y_z|)^{\frac{1}{2}} dz \]
\[= A^{\frac{1}{2}} \cdot \int_{\mathbb{R}} |X_z|^{\frac{1}{2}} |Y_z|^{\frac{1}{2}} dz \]
\[\leq A^{\frac{1}{2}} \cdot \left(\int_{\mathbb{R}} |X_z| dz \right)^{\frac{1}{2}} \cdot \left(\int_{\mathbb{R}} |Y_z| dz \right)^{\frac{1}{2}} \]
\[\leq (ABC)^{\frac{1}{2}}. \]

Actually this bound is tight: for a hyperrectangle in \(\mathbb{R}^3 \) whose edges are parallel to axes, one can check easily that the equality holds.

This argument also gives us a simple prove of the isoperimetric inequality in dimension 3.

Corollary 1.2. Suppose \(U \) is a bounded region in \(\mathbb{R}^3 \), then

\[|U| \leq |\partial U|^{\frac{3}{2}}. \]

Proof. We have

\[\text{Area}(\text{Proj}(U)) \leq |\partial U| \]

and then apply the above result. \(\square \)

Theorem 1.3 (Loomis-Whitney, 1949). Suppose we have for \(j = 1, 2, \ldots, n, \)

\[f_j : \mathbb{R}^{n-1} \to \mathbb{R}^+ \]
a positive valued function and

\[\pi_j : \mathbb{R}^n \to \mathbb{R}^{n-1} \]

the projection by forgetting the \(j \)-th coordinate, then

\[\int_{\mathbb{R}^n} \prod_{j=1}^{n} (f_j \circ \pi_j) \frac{1}{n-1} \leq \prod_{j=1}^{n} \left(\int_{\mathbb{R}} f_j \right)^{\frac{1}{n-1}}. \]

Example 1.4. Suppose \(U \subset \mathbb{R}^n \) is a bounded region and let

\[f_j = \chi_{\pi_j(U)} \]

be the characteristic function of \(\pi_j(U) \subset \mathbb{R}^{n-1} \). Then apply the Loomis-Whitney's theorem we get

\[|U| \leq LHS \leq \prod_{j=1}^{n} \left(|\pi_j(U)| \right)^{\frac{1}{n-1}}. \]

1.2. Tubes along different directions

Setup 0. Let \(l_{j,a} \subset \mathbb{R}^n \) be lines that are parallel to \(x_i \)-axis for \(1 \leq j \leq n \) and \(1 \leq a \leq N_j \). Let \(T_{i,a} \) to be the characteristic function of the 1-neighborhood of \(l_{j,a} \).

With the above setups we have the following estimate about how they overlap.

Corollary 1.5.

\[\int_{\mathbb{R}^n} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{l,a} \right)^{\frac{1}{n-1}} \leq \prod_{j=1}^{n} N_j^{\frac{1}{n-1}}, \]

where the constant depends on the dimension \(n \).

Example 1.6. Suppose \(Q_s \) is a cube of size \(s \) and for each direction it is covered by disjoint tubes.

Then for each \(j \), \(N_j \sim s^{n-1} \) and

\[\sum_{a=1}^{N_j} T_{l,a} = 1. \]

Hence

\[LHS \sim \int_{Q_s} 1 = s^n, \]

and

\[RHS = \prod_{j=1}^{n} N_j^{\frac{1}{n-1}} = s^n. \]
Example 1.7. Suppose for any j, $l_{j,a}$ are the same for all a, and they all pass the origin. Then

$$LHS \sim \int_{B_1} \prod_{j=1}^n N_j^{\frac{1}{n-1}} \sim \prod_{j=1}^n N_j^{\frac{1}{n-1}} = LHS.$$

Proof of corollary 1.5. Let π_j be the projection as in theorem 1.3 and

$$f_j = \sum_{a=1}^{N_j} \chi_{D_{j,a}} ,$$

where $D_{j,a} \subset \mathbb{R}^{n-1}$ is the disk of radius 1, centered at the point $l_{j,a} \cap \mathbb{R}^{n-1}$. Then we have

$$T_{l,a} = f_j \circ \pi_j.$$

Then

$$LHS \text{ of Cor} = \int_{\mathbb{R}^n} \prod_{j=1}^n (f_j \circ \pi_j)^{\frac{1}{n-1}}$$

$$\leq \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j \right)^{\frac{1}{n-1}}$$

$$= \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} \sum_{a=1}^{N_j} \chi_{D_{j,a}} \right)^{\frac{1}{n-1}}$$

$$\leq \prod_{j=1}^n N_j^{\frac{1}{n-1}}$$

□

Setup 1. Let $l_{j,a}$ be lines in \mathbb{R}^n with angle between $l_{j,a}$ and x_j-axis no larger than $\frac{1}{100n}$. Let $T_{j,a}$ be the characteristic function of the 1-neighborhood of $l_{j,a}$.

Question. Does inequality (1) also holds for setup 1? If $n = 2$ the answer is yes. In this case the two tubes intersect in a region very close to a unit cube, having area close to 1. See figure 2 (a). Then

$$\int_{\mathbb{R}^2} \left(\sum_{a=1}^{N_1} T_{1,a} \right) \left(\sum_{b=1}^{N_2} T_{2,b} \right) = \sum_{a=1}^{N_1} \sum_{b=1}^{N_2} \int_{\mathbb{R}^2} T_{1,a} \cdot T_{2,b}$$

$$\lesssim N_1 N_2.$$
1.3. Tilting vs bending

Setup bend. Let $\gamma_{j,a}$ be curves in \mathbb{R}^n such that for any point $x \in \gamma_{l,a}$, the angle between the tangent line at x and x_j-axis is no larger than δ. Let $T_{j,a}$ be the characteristic function of the 1-neighborhood of $\gamma_{j,a}$.

The inequality (1) also holds for the case $n = 2$. The proof is similar to the $n = 2$ case in setup 1. See figure 2 (b). However, there is a scary counterexample in dimension 3 (unpublished) by Csormyei that for large enough N, there exists ε depending on δ and curves $\gamma_{j,a}$ for $1 \leq j \leq 3, 1 \leq a \leq N$ such that

$$\int_{\mathbb{R}^3} \prod_{j=1}^{3} \left(\sum_{a=1}^{N} T_{j,a} \right)^{\frac{1}{2}} \geq N^{\varepsilon + \frac{3}{2}}.$$

The tilting case is related to the multi-linear Kakeya problem. A recent result is the following.

Theorem 1.8 (Bennett-Carbery-Tao, 2005). For setup 1 (the tilting case), suppose Q_s is the cube of size s, then for any $\varepsilon > 0$,

$$\int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a} \right)^{\frac{1}{n-1}} \lesssim s^{\varepsilon} \prod_{j=1}^{n} N_j^{\frac{1}{n-1}}. \quad (2)$$

Here the constant depends on n and ε.

Lemma 1.9 (Main lemma). For any $\varepsilon > 0$, there exists δ, such that if all angles between $l_{j,a}$ and x_j-axis are no larger than δ, then inequality (2) holds.

proof of the theorem by lemma 1.9 Suppose $S_j \subset S^{n-1}$ be the region on the unit sphere in \mathbb{R}^n, consisting of points such that all lines passing through origin and the point has angle with x_j-axis no larger than $\frac{1}{100n}$.

Figure 2. Tilting and bending in dimension 2.
Let
\[S_j = \bigcup_b S_{j,b}, \]
where each \(S_{j,b} \) has diameter no larger than \(\frac{\delta}{10} \). See figure 3. Also let \(e_j \) be the vector such that only the \(j \)-th coordinate is 1 and all the other coordinates are 0, so \(e_j \) is actually the intersection point of \(x_j \)-axis with \(S^{n-1} \) and also the center of \(S_j \).

![Figure 3. Subdivide \(S_j \) into small pieces.](image)

Define
\[g_j = \sum_{a=1}^{N_j} T_{j,a}, \quad g_{j,b} = \sum_{l_j,a \cap S^{n-1} \in S_{j,b}} T_{j,a}, \]
then
\[g_j = \sum_b g_{j,b}. \]

Now
\[LHS \ of \ theorem = \int_{Q_s} \prod_j g_j^{\frac{1}{n-1}} \]
\[= \int_{Q_s} \prod_j (\sum_b g_{j,b})^{\frac{1}{n-1}} \]
\[\leq \sum_{(b_1, \ldots, b_n)} \int_{Q_s} \prod_{j=1}^n g_{j,b_j}^{\frac{1}{n-1}}. \]

First note that the number of choice of \((b_1, \ldots, b_n)\) depends on both \(n\) and \(\delta\). Second, if each \(S_{j,b_j} \) is centered at the point \(e_j \), then we can
apply lemma 1.9 directly. If some S_{j,b_j} is not centered at e_j, we can apply a linear change of variables to move the center of S_{j,b_j} to e_j. The determinant of the coordinate change is controlled by δ and hence by ε. Then we have for any $(b_1, ..., b_n)$,
\[
\int_{Q_s} \prod_{j=1}^{n} g_{j,b_j}^{\frac{1}{n}} \lesssim s^\varepsilon \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}}.
\]
Thus altogether we conclude that
\[
LHS \text{ of theorem } \leq \sum_{(b_1, ..., b_n)} \int_{Q_s} \prod_{j=1}^{n} g_{j,b_j}^{\frac{1}{n}} \lesssim s^\varepsilon \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}}.
\]

Now let us try to prove the main lemma. First we should look on a cube of size δ^{-1}.

Lemma 1.10. If $s \leq \delta^{-1}$, then
\[
\int_{Q_s} \prod_{j=1}^{n} (\sum_{a=1}^{N_j} T_{j,a})^{\frac{1}{n-1}} \lesssim \prod_{j=1}^{n} N_j(Q_s)^{\frac{1}{n-1}},
\]
where the constant depends on n, and
\[
N_j(Q_s) = \#\{a | \text{supp}(T_{j,a}) \cap Q_s \neq \phi\}.
\]

Proof. Since $s \leq \delta^{-1}$ we have
\[
\text{supp}(T_{j,a}) \cap Q_s \subset \tilde{T}_{j,a},
\]
where $\tilde{T}_{j,a}$ is a neighborhood of lines parallel to x_j-axis of radius ~ 1. See figure 4. We slightly abuse the notation to use $\tilde{T}_{j,a}$ also denote the characteristic function of the region. Then by theorem 1.3, we have
\[
LHS \leq \int_{Q_s} \prod_{j=1}^{n} (\sum_{a=1}^{N_j} \tilde{T}_{j,a})^{\frac{1}{n-1}} \lesssim \text{RHS}.
\]

Now we want to deal with a cube of larger size. The basic idea is to divide the large cube into small ones of size we have already dealt with. To do this, define $T_{j,a,w}$ to be the characteristic function of w-neighborhood of the line $l_{j,a}$ so $T_{j,a,1} = T_{j,a}$.

Lemma 1.11. Suppose Q_s is a cube of size
\[
\frac{1}{20n} \delta^{-1} \leq s \leq \frac{1}{10n} \delta^{-1},
\]
then we have
\[\int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a} \right)^{\frac{1}{n-1}} \leq \delta^n \cdot \int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a,\delta^{-1}} \right)^{\frac{1}{n-1}}, \]
where the constant depends on \(n \).

Proof. Give lemma 1.10, we need only to check
\[\text{RHS} \geq \prod_{j=1}^{n} N_j(Q_s)^{\frac{1}{n-1}}. \]

Observe that if \(s \leq \frac{1}{10} \delta^{-1} \) and \(\text{supp}(T_{j,a}) \cap Q_s \neq \phi \), then \(T_{j,a,\delta^{-1}} \equiv 1 \) on \(Q_s \). See figure 5.

Figure 4. \(T_{j,a} \) is contained in a slightly larger tubes that are parallel to axis.

Figure 5. The larger tube covers the whole cube \(Q_s \).
Then on Q_s, we have
\[
\sum_{a=1}^{N_j} T_{j,a,\delta}^{-1} \geq N_j(Q_s).
\]
Also we know that the volume of Q_s is $\gtrsim \delta^{-n}$ so we are done. □

Lemma 1.12. Suppose Q_s is a cube of size
\[
s \leq \delta^{-1},
\]
then
\[
\int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a} \right)^{\frac{1}{n-1}} \leq C(n) \cdot \delta^n \cdot \int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a,\delta^{-1}} \right)^{\frac{1}{n-1}},
\]
where $C(n)$ is a constant depending on n.

Proof. Suppose that
\[
Q_s = \bigcup_b Q_{t,b},
\]
where each $Q_{t,b}$ is of size
\[
t \in \left[\frac{1}{20n} \delta^{-1}, \frac{1}{10n} \delta^{-1} \right].
\]
Then we have
\[
\int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a} \right)^{\frac{1}{n-1}} = \sum_b \int_{Q_{t,b}} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a} \right)^{\frac{1}{n-1}} \leq C(n) \cdot \delta^n \cdot \sum_b \int_{Q_{t,b}} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a,\delta^{-1}} \right)^{\frac{1}{n-1}} = C(n) \cdot \delta^n \cdot \int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a,\delta^{-1}} \right)^{\frac{1}{n-1}}.
\]
□

Now by the same idea but just rescaling the size, we have

Lemma 1.13. Suppose Q_s is a cube of size
\[
s \leq \delta^{-m},
\]
then
\[
\int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a,\delta^{-m-1}} \right)^{\frac{1}{n-1}} \lesssim \delta^n \cdot \int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a,\delta^{-m}} \right)^{\frac{1}{n-1}},
\]
where the constant depends on n.
proof of lemma 1.9} Suppose $s \leq \delta^m$. We induct on m to prove that

$$\int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a} \right)^{\frac{1}{n-1}} \leq C(n)^m \cdot \delta^m \cdot \int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a,\delta^{-m}} \right)^{\frac{1}{n-1}},$$

where $C(n)$ is the same as in lemma 1.13.

Now on Q_s, we have

$$0 \leq \sum_{j=1}^{N_j} T_{j,a,\delta^{-m}} \leq N_j,$$

so by formula (3),

$$\int_{Q_s} \prod_{j=1}^{n} \left(\sum_{a=1}^{N_j} T_{j,a} \right)^{\frac{1}{n-1}} \leq C(n)^m \cdot \delta^m \cdot \int_{Q_s} \prod_{j=1}^{n} N_j^{\frac{1}{n-1}}$$

$$\leq C(n)^m \cdot \delta^m \cdot s^n \cdot \prod_{j=1}^{n} N_j^{\frac{1}{n-1}}$$

$$\leq C(n)^m \cdot \prod_{j=1}^{n} N_j^{\frac{1}{n-1}}.$$

Note that

$$C(n)^m \leq C(n)^{\frac{\log(s)}{-\log(\delta)}} = s^{\frac{\log(C(n))}{-\log(\delta)}},$$

so we only need to pick small enough δ such that

$$\frac{\log(C(n))}{-\log(\delta)} \leq \varepsilon$$

to finish the proof. \square