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1. Decoupling for interval

Let Ω = [0, N ] = ∪Nj=1[j − 1, j] for some large integer N . Let θj

denote the unit interval [j − 1, j]. If suppf̂ ⊂ Ω, then f =
∑N

j=1 fj

with fj(x) =
∫
θj
e2πiwxf̂(w)dw.

Definition 1.1. The decoupling constant Dp(N) is the smallest con-

stant such that for all f , suppf̂ ⊂ Ω,

(1) ‖f‖Lp(R) ≤ Dp(N)(
N∑
j=1

‖fj‖2Lp(R))
1/2.

1.1. Building blocks. We consider f1, suppf̂1 ⊂ [0, 1].

Question 1.2. Could the graph of |f1| look like several very narrow
(say width 1

10000
) peaks and the rest is about zero (see Figure 1 in the

attached picture)?

Let η be a Schwartz function and η = 1 on [0, 1]. We have f̂1 = f̂1 ·η.
Then f1 = f1 ∗ η̌ and η̌ is also a Schwartz function.

Corollary 1.3. If suppf̂1 ⊂ [0, 1], then

‖f1‖L∞ . ‖f1‖L1 .

Proof. By Young’s inequality,

‖f1‖L∞ = ‖f1 ∗ η̌‖L∞
≤ ‖f1‖L1‖η̌‖L∞
. ‖f1‖L1 .

�

The answer is NO by the above corollary. The height of peaks of |f1|
is as much as ‖f1‖L∞ . However several very narrow peaks with limited
height can not add up to the same L1–norm.
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Question 1.4. How about if we add a flat low tail (see Figure 2) to
the graph of |f1|, such that ‖f1‖L1 is dominated by the flat part. Can
the graph of |f1| still have very narrow peaks?

The answer is still NO. We actually know more about η̌ other than
its L∞–norm. We know that η̌ is a Schwartz function:

|η̌(y)| .M (
1

1 + |y|
)M

for any large constant M . In fact, we almost know that ‖f1‖L∞(I) .
‖f1‖L1(2I) for any unit interval I, where 2I means that we stretch I to
twice the length with the same center point.

Lemma 1.5. Locally Constant Lemma If suppf̂1 ⊂ [0, 1], and I
unit interval, then

‖f1‖L∞(I) . ‖f1‖L1(wI).

The weighted L1–norm is defined as ‖f1‖L1(wI) :=
∫
R |f1|wI . The weight

function wI has the following property:

• wI ≥ 0.
• wI ∼ 1 on I.
• wI is rapidly decaying off I.
• wI is uniform in choice of I in the sense that wI+a = wI(·−a).

Proof. For any x ∈ I,

|f1(x)| ≤
∫
|f1(y)||η̌(x− y)|dy

≤
∫
|f1(y)| sup

x∈I
|η̌(x− y)|dy

We define wI(y) = supx∈I |η̌(x− y)|. �

One option of wI is

wI(y) = (
1

1 + dist(y, I)
)50.

The graph of |f1| should look like Figure 3: each peak should have
width about 1.

Remark 1.6. If suppf̂j ⊂ [j − 1, j], then the Fourier transform of
e−2πi(j−1)xfj is supported in [0, 1]. The Locally Constant Lemma still
holds for fj, ∀j.

Example 1.7. We consider f1 a bump function with height (‖f1‖L∞)
1 concentrated on [−1, 1] and f1(0)=1. Figure 4 is the graph of Ref1.
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We take fj(x) = e2πi(j−1)xf1(x) and we sum over j: f =
∑N

j=1 = fj.

Now fj(0) = 1 and f(0) = N .
Notice that Refj oscillates with frequency about 1

j
. When |x| ≤

1
10N
≤ 1

10j
, |fj(x)− 1| ≤ 1

4
, so |f(x)| ∼ N .

This implies that ‖f‖Lp & N ·N−1/p = N1−1/p.
For the right-hand side, ‖fj‖Lp ∼ 1 and (

∑
j ‖fj‖2Lp)1/2 ∼ N1/2. This

example gives a lower bound of the decoupling constant as defined in 1

Dp(N) & N1/2−1/p.

Proposition 1.8. If suppf̂j ⊂ [j − 1, j], j = 1, . . . , N , and f =
∑

j fj,
then for any 2 ≤ p ≤ ∞, the decoupling constant defined in 1

Dp(N) . N1/2−1/p.

In particular, the example described above is sharp.

Remark 1.9. For p = 2 and p =∞, it is easy to estimate Dp(N).
When p = 2, by Plancherel’s inequality,

‖f‖2L2 =
∑
j

‖fj‖2L2 .

When p =∞, by triangle inequality,

‖f‖L∞ ≤
N∑
j=1

‖fj‖L∞ ≤ N1/2(
N∑
j=1

‖fj‖2L∞)1/2.

1.2. Main Issue. In this subsection, we discuss a hypothetical exam-
ple for the issue might occur when 2 < p <∞. Let p = 4 for example,
suppose ∀j, |fj| looks like a function that is 1 at [0, 1] and 1

N
at [1, N3]

and zero elsewhere (See Figure 5 for the graph of |fj|).
• ‖fj‖L2 ∼ N1/2 is dominated by the short wide piece at interval

[1, N3].
• ‖fj‖L4 ∼ 1 is dominated by the peak at [0, 1].

We analyse f through the information provided by fj.

• By orthogonality, ‖f‖L2 ∼ N .
• By triangle inequality, ‖f‖L∞ ≤ N .

Question 1.10. Could it happen that |f(x)| ∼ N for most x ∈ [0, 1]?

Proposition 1.8 tells us that this is impossible.

‖f‖L4 . N1/4(
N∑
j=1

‖fj‖2L4)1/2 ∼ N3/4.
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The following Local Orthogonality Lemma gives an even better es-
timate.

Lemma 1.11. Local Orthogonality If I is a unit interval, f =∑N
j=1 fj and suppf̂j ⊂ [j − 1, j], then

‖f‖2L2(I) .
∑
j

‖fj‖2L2(wI)

for the weight function wI with the same property as in the Locally
Constant Lemma 1.5.

Proof. We choose η(x) such that |η| ∼ 1 on I, and suppη̂ ⊂ [−1, 1].∫
I

|f |2 ≤
∫
R
|fη|2

=

∫
R
|η̂ ∗ f̂ |2

=

∫
R
|
∑
j

η̂ ∗ f̂j|2

.
∑
j

∫
R
|η̂ ∗ f̂j|2 =

∑
j

∫
R
|fj|2|η|2

Since suppη̂ ⊂ [−1, 1], the support of η̂ ∗ f̂j lies in [j − 2, j + 1]. Any
frequency lies inside at most O(1) intervals of the form [j − 2, j + 1].
We define wI = |η|2. �

Proposition 1.12. (Local decoupling). If I is a unit interval, 2 ≤ p ≤
∞, fj and f are defined as in Proposition 1.8, then

‖f‖Lp(I) . N1/2−1/p(
N∑
j=1

‖fj‖2Lp(wI)
)1/2.

Proof. By Local Orthogonality Lemma 1.11 and triangle inequality∫
I

|f |p ≤ (

∫
I

|f |2)‖f‖p−2L∞(I)

≤ (
∑
j

‖fj‖2L2(wI)
)(
∑
j

‖fj‖L∞(I))
p−2.

By Locally Constant Lemma 1.5,

‖fj‖L∞(I) . ‖fj‖L1(wI) . ‖fj‖L2(wI).
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∫
I

|f |p ≤ (
∑
j

‖fj‖2L2(wI)
)(
∑
j

‖fj‖L2(wI))
p−2

. N
p−2
2 (

∑
j

‖fj‖2L2(wI)
)
p
2

. N
p−2
2 (

∑
j

‖fj‖2Lp(wI)
)
p
2

The last inequality follows from Hölder’s inequality. �

Remark 1.13. Since wI is a measure with total mass about 1. Hölder’s
inequality implies that ‖f‖Lp(wI) . ‖f‖Lq(wI) if p ≤ q and for any
function f .

For fj in particular, Locally Constant Lemma says ‖fj‖L∞(I) . ‖fj‖L1(wI).
Furthermore, we can show ‖fj‖Lp(wI) . ‖fj‖Lq(wI) for any 1 ≤ p, q. It
suffices to prove for p > q since other cases are provided by Hölder’s
inequality. We consider a collection of unit intervals {I ′} that tiles R.

‖fj‖pLp(wI)
≤

∑
I′

c(I ′)‖fj‖pLp(I′)

≤
∑
I′

c(I ′)‖fj‖pL∞(I′)

.
∑
I′

c(I ′)‖fj‖pL1(wI′ )

.
∑
I′

c(I ′)‖fj‖pLq(wI′ )

. ‖fj‖pLq(wI)

c(I ′) := supx∈I′ wI(x). Since wI is a Schwartz function and satisfies
the property listed in Lemma 1.5,∑

I′

c(I ′)q/pwI′ . wI .

In the end we used lq ≥ lp when q ≤ p to sum up ‖fj‖pLq(wI′ )
.

1.3. Parallel Decoupling Lemma. In this subsection, we prove a
general Parallel Decoupling Lemma for general decoupling inequalities.

Lemma 1.14. For some p ≥ 2 and for any function gj, g =
∑

j gj and

any measure µi, wi, µ =
∑

i µi, w =
∑

iwi, if we know

‖g‖Lp(µi) ≤ D(
∑
j

‖gj‖2Lp(wi)
)1/2,∀i,
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then we have
‖g‖Lp(µ) ≤ D(

∑
j

‖gj‖2Lp(wi)
)1/2

for the same decoupling constant D.

Proof. The proof is an application of Minkowski’s inequality.∫
|g|pµ =

∑
i

∫
|g|pµi

≤ Dp
∑
i

(
∑
j

‖gj‖2Lp(wi)
)p/2

= Dp‖
∑
j

‖gj‖2Lp(wi)
‖p/2
l
p/2
i

≤ Dp[
∑
j

‖‖gj‖2Lp(wi)
‖
l
p/2
i

]p/2

= Dp[
∑
j

(
∑
i

‖gj‖pLp(wi)
)2/p]p/2

= Dp(
∑
j

‖gj‖2Lp(w))
p/2
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