18.118 DECOUPLING
LECTURE 2

INSTRUCTOR: LARRY GUTH
TRANSCRIBED BY HONG WANG

1. DECOUPLING FOR INTERVAL
Let Q = [0, N] = U}, [j — 1,7] for some large integer N. Let 6,
denote the unit interval [j — 1,j]. If suppf C €, then f = Z;V:1 f
with f](x) = ij 627riwmf<w)d,w.
Definition 1.1. The decoupling constant D,(N) is the smallest con-
stant such that for all f, suppf C €,

N
(1) 1@y < Dp(N)YQ I1Fi 7o @)
j=1

1.1. Building blocks. We consider fi, suppfi C [0, 1].

Question 1.2. Could the graph of |fi| look like several very narrow
(say width Wloo) peaks and the rest is about zero (see Figure 1 in the
attached picture)?

Let 1 be a Schwartz function and n = 1 on [0, 1]. We have J?l = J?l 7.
Then f; = f; %1 and 7 is also a Schwartz function.

Corollary 1.3. If suppfi C [0, 1], then

[fillzee S (1 f2llzr
Proof. By Young’s inequality,
[fillzee = 1l f1  77ll o
< [ fillza [l 2
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The answer is NO by the above corollary. The height of peaks of |fi|
is as much as || f1||z~. However several very narrow peaks with limited

height can not add up to the same L'-norm.
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Question 1.4. How about if we add a flat low tail (see Figure 2) to
the graph of | f1|, such that || fi||: is dominated by the flat part. Can
the graph of | f1| still have very narrow peaks?

The answer is still NO. We actually know more about 7 other than
its L>°-norm. We know that 7 is a Schwartz function:

()] Sar ()M

L+ |yl

for any large constant M. In fact, we almost know that || fi|le) <

| fill12r) for any unit interval I, where 2/ means that we stretch I to
twice the length with the same center point.

Lemma 1.5. Locally Constant Lemma If suppfi C [0,1], and I
unit interval, then
1 fillzoey S Wller )
The weighted L' ~norm is defined as || f1 HLl(wI) = [o |filwr. The weight
function wy has the following property:
Wwr Z 0.
wry~1onl.
wy 18 rapidly decaying off 1.
wy is uniform in choice of I in the sense that wyy, = wi(- —a).

Proof. For any x € I,

(@) < / AWl — v)ldy
/|f1 Suplnrc— y)|dy

We define w;(y) = sup,¢; [7(x — y)|. O

One option of wy is
1

wr(y) = (I—I—Tt(y,l)

The graph of |fi| should look like Figure 3: each peak should have
width about 1.

)50

Remark 1.6. If suppfj 7 — 1,j], then the Fourier transform of

e~ 2mii—1) ””f is supported in [0,1]. The Locally Constant Lemma still
holds for f;, Vj.

Example 1.7. We consider fi a bump function with height (|| fi|| L)
1 concentrated on [—1,1] and f1(0)=1. Figure 4 is the graph of Refy.
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We take fj(z) = ™0~V f,(x) and we sum over j: f = Z;\’Zl — fi.
Now f;(0) =1 and f(0) = N.

Notice that Ref; oscillates with frequency about % When |z| <
o < 15 (@) =11 < 4, s0 [f()] ~ N.

This implies that || f|» = N - N~VP = N1=1/p,

For the right-hand side, || f;l|» ~ 1 and (3, | fill7,)"/* ~ N2, This
example gives a lower bound of the decoupling constant as defined in

D,(N) > N'/2=1/p,

Proposition 1.8. ]fsupp]?j Cli—14,7=1,...,N, and f = Zj fi,
then for any 2 < p < oo, the decoupling constant defined in

D,(N) < NV2-1/p,
In particular, the example described above is sharp.

Remark 1.9. For p =2 and p = oo, it is easy to estimate D,(N).
When p = 2, by Plancherel’s inequality,

11172 = Z\Ifjllia-

When p = oo, by triangle inequality,
N N
1l < DM fillee < N2 N Fil7)" 2
j=1 j=1

1.2. Main Issue. In this subsection, we discuss a hypothetical exam-
ple for the issue might occur when 2 < p < oco. Let p = 4 for example,
suppose V7, |f;] looks like a function that is 1 at [0,1] and - at [1, N7
and zero elsewhere (See Figure 5 for the graph of |f;|).

e | fillzz ~ N'/? is dominated by the short wide piece at interval
1, N3].
e || fjllza ~ 1 is dominated by the peak at [0, 1].
We analyse f through the information provided by f;.
e By orthogonality, ||f|/z2 ~ N.
e By triangle inequality, || f||z~ < N.
Question 1.10. Could it happen that |f(x)| ~ N for most x € [0,1]?

Proposition [I.8] tells us that this is impossible.

N
1Fllze S NYACSTIIf1120)12 ~ N34,
j=1
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The following Local Orthogonality Lemma gives an even better es-
timate.

Lemma 1.11. Local Orthogonality If I is a unit interval, f =
Z;.V:l f; and suppf; C [j —1,7], then

11z S D il Z2 )
j

for the weight function wy with the same property as in the Locally
Constant Lemma [L3.

Proof. We choose n(x) such that || ~ 1 on I, and suppn C [—1, 1].

_ A Fo|2
—/R|;77 f]l
sgjj/RW*J%P:ij/R\ijmF

Since suppn C [—1, 1], the support of 7 * f/; lies in [j — 2,7 + 1]. Any
frequency lies inside at most O(1) intervals of the form [j — 2,7 + 1].
We define w; = |n|?. O

Proposition 1.12. (Local decoupling). If I is a unit interval, 2 < p <
o0, f; and f are defined as in Proposition then

N
1wy S NP1l gn)

J=1

Proof. By Local Orthogonality Lemma and triangle inequality
<[ mian,
I I
< QO Millzaun) QM fillzee) 2.
J J

By Locally Constant Lemma [L.5]

I filleory S W fillzrny S I fillz2un-
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1P < (10 15
SRR A
SN Wil

The last inequality follows from Holder’s inequality. O

Remark 1.13. Since wy is a measure with total mass about 1. Holder’s

inequality implies that || f||erw)) S I fllzewn of p < q and for any
function f.

For f; in particular, Locally Constant Lemma says || f;|| ey S | f5ll 21 (wr) -
Furthermore, we can show || f;||Lrw;) S || fill o) for any 1 < p,q. It
suffices to prove for p > q since other cases are provided by Holder’s
inequality. We consider a collection of unit intervals {I'} that tiles R.

Hfj”lzp(w, Z Hf]HLP I
< Z N Fill oo
< Z MWA

Z .

S IlfyHLq (wr)

c(I') = supyep wi(x). Since wy is a Schwartz function and satisfies
the property listed in Lemma

Z C(Il)q/pw[/ 5 wr.
I/

In the end we used 11 > [P when q < p to sum up ||fj||’£q(wﬂ).

1.3. Parallel Decoupling Lemma. In this subsection, we prove a
general Parallel Decoupling Lemma for general decoupling inequalities.

Lemma 1.14. For some p > 2 and for any function g;, g = Zj g; and
any Measure fi, w;, =y . i, W=y . w;, if we know

lgllzoguy < DO NGillEo )2 Vi,
i
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then we have

l9llzoy < DY 917 w) 2
J

for the same decoupling constant D.

Proof. The proof is an application of Minkowski’s inequality.

/M%IZ/!Q!%
< DY (3 15
i J
=D ||gj||%p(wi)||§}//22
J
< D' g5 a1

j
= DP[Z(Z ngH]zp(wi))2/p]p/2
i
= DY llg;ll7ow)?"
J
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