
Problem Set 6: Partial differential equations and Fourier analysis

The Fourier transform gives a systematic approach to study a wide variety of
partial differential equations, and to understand the different properties of different
equations. In class, we studied the heat equation. In this problem set, you will adapt
these ideas to study other PDE.

Background from class. We recall here some background from the lectures that
will help us apply Fourier theory to partial differential equations. The basic fact
that makes this connection possible is a simple formula for the Fourier transform of
a derivative.

Proposition 0.1. If f ∈ S, and g = f ′, then

ĝ(ω) = 2πiωf̂(ω).

Solutions to a partial differential equations depend on a space variable x and a
time variable t. There is a fairly natural generalization of Schwartz functions to
this context, which we call the space SU . Here is the definition. Suppose that
u : R×I → C is a function, where I ⊂ R is an interval (which may be open or closed
at each end). For instance, I may be [0,+∞) or [0, T ]. We say that the function
u ∈ SU(R × I) if u is C∞ (in both x and t ), and if, for any k, l,m ≥ 0, and any
compact interval I ′ ⊂ I,

sup
t∈I′

sup
x∈R
|x|k|∂lx∂mt u(x, t)| < +∞.

Informally, any mixed derivative |∂lx∂mt u| decays very rapidly in the x-variable, and
this decay is uniform over any compact set of times t.

We write û(ω, t) for the Fourier transform of u in the x variable:

û(ω, t) :=

∫
R
u(x, t)e−2πiωxdx.

Similarly, if v is a function of ω, t, we write v̌ for the inverse Fourier transform in
the ω variable:

v̌(x, t) :=

∫
R
v(ω, t)e2πiωxdω.

Here are two fundamental properties of the space SU .

Proposition 0.2. If u ∈ SU(R× I), then û ∈ SU(R× I).

The proof of this proposition is the same as the proof that if f ∈ S, then f̂ ∈ S –
Theorem 1.3 in Chapter 5 of the book.
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Proposition 0.3. If u(x, t) ∈ SU(R× I), then ∂tû(ω, t) = (∂tu)∧(ω, t). Similarly, if
v(ω, t) ∈ SU(R× I), then ∂tv̌(x, t) = (∂tv)∨(x, t).

We will prove Proposition 0.3 in the last problem. Other than that, you can use
both Propositions freely.

The first PDE that we study is

(1) ∂tu(x, t) = −∂4xu(x, t)

1. If f ∈ S, then prove that the following function u(x, t) is in SU(R× [0,∞) and
obeys u(x, 0) = f(x) and ∂tu = ∂4xu:

u(x, t) =

∫
R
e2πiωxe−(2π)

4ω4tf̂(ω)dω.

(This function u is the unique solution u ∈ SU that obeys the initial condition
u(x, 0) = f(x) and ∂tu = ∂4xu. It is not difficult to prove this, but you don’t have to
do so on the problem set.)

We study this solution u(x, t) over the next four problems.

2. Show that
∫
R |u(x, t)|2dx is a non-increasing function of t.

3. Show supx |u(x, 1)| ≤ 100
∫
R |f(x)|dx.

4. (Smoothing estimate) Show that supx |∂xu(x, 1)| ≤ 1000
∫
R |f(x)|dx.

5. (Decay estimate) For any t > 0, show that supx |u(x, t)| ≤ 1000t−1/4
∫
R |f(x)|dx.

6. Next we study the partial differential equation ∂tu(x, t) = ∂4xu(x, t). This
equation is quite badly behaved. Even with very nice initial data, this equation
often has no solution. Prove that there exists a function f ∈ S so that, for every
T > 0, there is no function u ∈ SU(R× [0, T ]) obeying u(x, 0) = f(x) and ∂tu = ∂4xu.

7. Suppose v ∈ S. Prove that eiω
2
v(ω) is a Schwartz function also.

Finally we study the partial differential equation ∂tu(x, t) = i∂2xu(x, t), the Schrodinger
equation. This equation plays a fundamental role in quantum mechanics. Given ini-
tial data f ∈ S, there is a solution u ∈ SU(R× R) defined by the equation

u(x, t) =

∫
R
e2πiωxe−i(2π)

2ω2tf̂(ω)dω.

The proof that this function u solves the partial differential equation ∂tu(x, t) =
i∂2xu(x, t) is very similar to Problem 1. The one point which is a bit trickier is to
check that the functions involved are in SU , and the main issue is dealt with in
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Problem 7. In the next two problems we prove a couple properties of the solution
u(x, t).

8. For this solution u, prove that
∫
R |u(x, t)|2dx is constant in time.

9. For this solution u, prove that
∫
R |∂xu(x, t)|2dx is constant in time also.

If you are interested in partial differential equations, it is a very nice problem to
try to understand whether solutions to the Schrodinger equation decay in time. This
is a little beyond the level of this problem set, but I would be happy to talk about
it with you. For instance, we might suppose that the initial data f has compact
support in [−1, 1], and that |f |, |∂xf |, ...|∂5xf | are all bounded by 1. Under these
circumstances, how does |u(0, t)| behave for large t? Does it go to zero? If so, at
what rate?

10. Prove Proposition 0.3. Here is a little bit of outline/hint about exchanging a
derivative and an integral. By definition of a derivative, we want to show that

lim
h→0

1

h

[∫
R
v(ω, t+ h)e2πiωxdω −

∫
R
v(ω, t)e2πiωxdω

]
=

∫
R
∂tv(ω, t)e2πiωxdω.

In other words, we are trying to prove that when h is really small, the left-hand
side and the right-hand side are close together. So this is a problem about estimating
their difference. We want to control the size of∣∣∣∣1h

∫
R
v(ω, t+ h)e2πiωxdω − 1

h

∫
R
v(ω, t)e2πiωxdω −

∫
R
∂tv(ω, t)e2πiωxdω

∣∣∣∣ .
At this point, the problem becomes like any other estimate. We know that v ∈ SU ,

which gives us a lot of estimates about v, and we want to use those estimates to
control the expression above. Finding a good way to group the terms is a good first
step...


