
Problem Set 1

Reading: Read the course description, especially the discussion of the different
applications of Fourier analysis.

Problems:

1. Let f(x) be defined as follows: if 0 ≤ x < π, then f(x) = 1; if π ≤ x < 2π, then
f(x) = 0; f extends to be 2π-periodic on R. (This is the function that we discussed
in the first lecture.)

Compute the Fourier coefficients f̂(n). (Recall f̂(n) := (1/2π)
∫ 2π

0
f(x)e−inxdx.)

Analysis cobwebs: From time to time in the psets, we will review important ideas
from 18.100. In this pset, we review uniform convergence and continuity.

Recall that a sequence of functions fn converges uniformly to a function f if for
every ε > 0, there exists N so that for all n ≥ N and all x, |fn(x) − f(x)| < ε. In
the first analysis course, you learned the following proposition:

Proposition 1. If fn : R→ C are continuous functions and fn converges uniformly
to f , then f is also continuous.

Read over the following proof. Some of the exercises below are based on this
proposition and/or its proof.

Proof. For any x ∈ R and any ε > 0, we have to find some δ > 0 and we have to
prove that whenever |x− x′| < δ, |f(x)− f(x′)| < ε.

By uniform continuity, there exists an N so that for all x′ ∈ R,

|fN(x′)− f(x′)| < ε

4
. (1)

Since fN is continuous, there exists a δ > 0 so that whenever |x− x′| < δ,

|fN(x′)− fN(x)| < ε

4
. (2)

Now, whenever |x− x′| < δ, we can bound |f(x)− f(x′)| using (1) and (2):

|f(x)−f(x′)| ≤ |f(x)−fN(x)|+ |fN(x)−fN(x′)|+ |fN(x′)−f(x′)| < ε

4
+
ε

4
+
ε

4
< ε.

�

2. Consider a trigonometric series
∑∞

n=−∞ ane
inx. In this sum, n ranges over all

the integers, and for each n, an is a complex number. Suppose that
∑

n |an| is finite.
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This implies that for each x ∈ R, the sum converges. Therefore, the sum defines a
function f : R→ C,

f(x) :=
∞∑

n=−∞

ane
inx.

Prove that f is continuous.

3. Let f be as in Problem 2: f(x) =
∑∞

n=−∞ ane
inx, where

∑
n |an| is finite. Recall

that f̂(n) is defined as

f̂(n) := 1
2π

∫ 2π

0
f(x)e−inxdx.

Prove that f̂(n) = an.
This exercise is a step in our proof that Fourier series converge.

4. One of the themes in this course is proving quantitative estimates. In a first
course on real analysis, we might prove that a function is continuous. Saying that a
function is continuous is a qualitative statement about the function. In this course,
we will often be interested in quantitative statements. To start to get a feel for
going from qualitative statements to quantitative statements, we now consider a
quantitative problem related to Proposition 1.

Suppose that fn : [0, 1] → C and f : [0, 1] → C are functions that obey the
following inequalities. Suppose that

|fn(x)− f(x)| < 1

n
. (1)

Also suppose that each fn obeys the following estimate: for any x, x′ ∈ [0, 1],

|fn(x)− fn(x′)| ≤ n|x− x′|. (2)

The first inequality implies that fn converges to f uniformly and the second in-
equality implies that each function fn is continuous. By Proposition 1, it follows
that f is continuous. But in this problem, we are interested in quantitative es-
timates about the continuity of f . Prove that the limiting function f obeys the
following estimate:

|f(x)− f(x′)| ≤ 1000|x− x′|1/2.

Introductory Letter:

Write me an email introducing yourself. (My email address is lguth@math.mit.edu)
What interested you in taking this course? What other math courses have you

taken (and what are you taking now)?
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In particular, tell me about the analysis classes you’ve taken. What parts or topics
did you find interesting? Were there parts that you found boring or frustrating?

Are there particular topics or skills you’d like to work on this semester? Is there
anything else you’d like me to know?


