
Practice Midterm Solutions

1. Suppose that f is continuous and 2π-periodic. Is it true that

lim
N→∞

∫ 2π

0

|SNf(x)− f(x)|dx = 0?

Explain your answer.

Yes. We know from a theorem in the course that ‖SNf − f‖ → 0, and so∫ 2π

0

|SNf − f |2 → 0.

Now by Cauchy-Schwarz∫ 2π

0

|SNf(x)− f(x)|dx =

∫ 2π

0

|SNf(x)− f(x)| · 1dx ≤

≤
(∫ 2π

0

|SNf(x)− f(x)|2dx
)1/2

(2π)1/2 → 0.

2. Let gN be the 2π-periodic function defined on [−π, π] by setting gN(x) = πN
if |x| ≤ 1/N and gN(x) = 1/N if 1/N ≤ |x| ≤ π. Suppose that f is a C0 and
2π-periodic function. Prove from first principles that limN→∞ f ∗ gN(0) = f(0).

“Prove from first principles” means that you cannot cite the good kernel theorem,
but you can imitate the proof of the good kernel theorem.

By the definition of a convolution,

f∗gN(0) =
1

2π

∫ π

−π
f(y)gN(−y)dy =

1

2π

∫ 1/N

−1/N
πNf(y)dy+

1

2π

∫
1/N≤|y|≤π

(1/N)f(y)dy.

We will show that the first integral tends to f(0) and that the second integral
tends to 0.

Since f is C0, for any ε > 0, there is an Nε so that for all N ≥ Nε, for all |y| ≤ 1/N ,

|f(0)− f(y)| < ε. We also note that 1
2π

∫ 1/N

−1/N πN = 1. So if N > Nε, we see that∣∣∣∣∣ 1

2π

∫ 1/N

−1/N
πNf(y)dy − f(0)

∣∣∣∣∣ =

∣∣∣∣∣ 1

2π

∫ 1/N

−1/N
πN (f(y)− f(0)) dy

∣∣∣∣∣ ≤
≤ 1

2π

∫ 1/N

−1/N
πNεdy = ε.

1
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Since ε > 0 was arbitrary, this shows that 1
2π

∫ 1/N

−1/N πNf(y)dy → f(0).

On the other hand,∣∣∣∣ 1

2π

∫
1/N≤|y|≤π

(1/N)f(y)dy

∣∣∣∣ ≤ max |f | · (1/N)→ 0.

3. This problem is about the partial differential equation ∂tu(x, t) = ∂3xu(x, t)
(where x ∈ R).

a.) Consider the initial value problem ∂tu(x, t) = ∂3xu(x, t), with initial data
u(x, 0) = f(x), where f is a Schwartz function. Give a formula for the solution

u(x, t) in terms of f̂ . You don’t need to give a full proof that the formula holds.

Solution to a.)
First we rewrite the equation in terms of û:

∂tû(ω, t) = (2πiω)3û(ω, t).

We have the initial values û(ω, 0) = f̂(ω). Solving the resulting ODE gives

û(ω, t) = e(2πiω)
3tf̂(ω) = e−8π

3iω3tf̂(ω).

Now Fourier inversion gives

u(x, t) =

∫
R
e2πiωxe−8π

3iω3tf̂(ω)dω. (∗)

b.) Using the formula from part a.), prove the following estimate. Suppose that

•
∫
R |f(x)|dx ≤ 1,

•
∫
R |∂

2
xf(x)|dx ≤ 1.

Prove that |u(x, t)| ≤ 100 for all x ∈ R and all t ≥ 0.

Solution to b.): First we use our two inequalities about f to estimate f̂(ω). For
any function g, the triangle inequality gives

|ĝ(ω)| =
∣∣∣∣∫

R
e−2πiωxg(x)dx

∣∣∣∣ ≤ ∫
R
|g(x)|dx.

In particular, the first inequality gives immediately |f̂(ω)| ≤ 1 for all ω ∈ R.

Let f2 := ∂2xf . As on the formula sheet, we know that f̂2(ω) = (2πiω)2f̂(ω). Since∫
R |f2(x)|dx ≤ 1, we see that ∣∣∣(2πiω)2f̂(ω)

∣∣∣ ≤ 1,
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and so

|f̂(ω)| ≤ 1

4π2ω2
.

Combining our two bounds on f̂(ω), we see that

|f̂(ω)| ≤ min

(
1,

1

4π2ω2

)
≤ 10

1 + |ω|2
.

Finally, we insert this information into the formula (∗) for the solution u:

|u(x, t)| =
∣∣∣∣∫

R
e2πiωxe−8π

3iω3tf̂(ω)dω

∣∣∣∣ ≤ ∫
R
|f̂(ω)|dω ≤

≤
∫
R

10

1 + |ω|2
dω ≤ 100.

4. Suppose that g(x) = 1 + cosx. In this problem, we consider what happens
when we convolve g with itself many times. Here we use convolution in the setting
of periodic functions, so

f1 ∗ f2(x) :=
1

2π

∫ 2π

0

f1(y)f2(x− y)dy.

Let g2 := g ∗ g. Let gk+1 := g ∗ gk. Find limk→∞ gk(1).

Hint: Recall that if f3 = f1 ∗ f2, then f̂3(n) = f̂1(n)f̂2(n).

We know that ĝk(n) = (ĝ(n))k. Now g(x) = 1 + cosx = 1 + (1/2)eix + (1/2)e−ix.
Therefore, ĝ(0) = 1, ĝ(±1) = (1/2) and ĝ(n) = 0 for other n. Therefore, ĝk(0) = 1,
ĝk(±1) = 2−k, and ĝ(n) = 0 for other n. Since gk is clearly smooth, it is equal to the
sum of its Fourier series, and we get the simple formula

gk = 1 + 2−keix + 2−ke−ix = 1 + 2−k cosx.

Therefore, limk→∞ gk(1) = 1.

5. Suppose that f is C2 and 2π-periodic. Suppose that
∫ 2π

0
|f ′(x)|2 = 1. Prove

that |SNf(x)− f(x)| ≤ 10N−1/2.

Since f is C2 periodic, we know that SNf(x)→ f(x). Therefore,

|SNf(x)− f(x)| ≤
∑
|n|>N

|f̂(n)|.

We let g := f ′. On the other hand, by Parseval’s theorem, we know that
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1 ≥ ‖g‖2 =
∑
n

|ĝ(n)|2 =
∞∑

n=−∞

|n|2|f̂(n)|2.

We will use this inequality and Cauchy-Schwarz to bound
∑
|n|>N |f̂(n)|:

∑
|n|>N

|f̂(n)| =
∑
|n|>N

|f̂(n)||n||n|−1 ≤

(∑
n

|n|2|f̂(n)|2
)1/2

∑
|n|>N

|n|−2
1/2

≤

≤ 1 · (10N−1)1/2 ≤ 10N−1/2.


