
Solutions to Math 103 Final

1. Prove that there exists a Schwartz function h : R → C with the following
property. If f1 is any Schwartz function on R with supp f̂1 ⊂ [0, 1] and f2 is any

Schwartz function on R with supp f̂2 ⊂ [2, 3], then (f1 + f2) ∗ h = f1.
You don’t need to write an exact formula for h. Just explain why the function h

exists.
(This problem is related to how a radio works. Each radio station sends out a

radio signal with frequency in a different range. The antennae of a radio receives
a signal which is the sum of all of these contributions. To locate the signal from a
single station, we need to find the part of the incoming signal in a given frequency
range.)

Solution to 1: Let g(ω) be a C∞ smooth function with g(ω) = 1 for ω ∈ [0, 1]
and with the support of g contained in [−1/2, 3/2]. Let h be the inverse Fourier

transform of g. Then g = ĥ. Since g is Schwartz, h is also Schwartz.
Now we consider F := (f1 + f2) ∗ h. We consider the Fourier transform:

F̂ = (f̂1 + f̂2)ĥ = (f̂1 + f̂2)g.

Since f̂1 is supported in [0, 1], f̂1g = f̂1. Since f̂2 is supported in [2, 3], f̂2g = 0.

Therefore, F̂ = f̂1. Since f1 and F are Schwartz, we get by Fourier inversion that
F = f1. In other words, (f1 + f2) ∗ h = f1 as desired.

2. Suppose that f is a Schwartz function on R. Suppose that
∫
R |f |

2 = 1 and that

f̂ is supported in [−1, 1]. Prove that for any points x, y ∈ R,

|f(x)− f(y)| ≤ 1000|x− y|.

Solution to 2: First, by the fundamental theorem of calculus, we have

|f(x)− f(y)| =
∣∣∣∣∫ y

x

f ′(z)dz

∣∣∣∣ ≤ |x− y|max
z
|f ′(z)|.

Therefore, it suffices to prove that for all z ∈ R, |f ′(z)| ≤ 1000. Next we study f ′

using the Fourier transform. Let g = f ′. Then ĝ = 2πiωf̂ . By Fourier inversion we
get

f ′(z) =

∫
R

2πiωf̂(ω)e2πiωzdω.

Since f̂ is supported in [−1, 1], we get
1



2

|f ′(z)| ≤ 2π

∫ 1

−1
|ω||f̂(ω)|dω ≤ 2π

∫ 1

−1
|f̂(ω)|dω.

Using Cauchy-Schwarz and then Plancherel we see that

∫ 1

−1
|f̂(ω)| · 1dω ≤

(∫ 1

−1
|f̂(ω)|2dω

)1/2

· (2)1/2 = 21/2

(∫
R
|f(x)|2dx

)
= 21/2.

So for every z ∈ R, |f ′(z)| ≤ 2π · 21/2 ≤ 100 as desired.

3. Suppose that f ∈ L1(R). Let

g = f ∗ e−|x|2 =

∫
R
f(y)e−|x−y|

2

dy.

Prove that

lim
x→+∞

g(x) = 0.

Pick ε > 0. We claim that there exists some R <∞ so that
∫
|y|>R |f(y)|dy < ε. To

prove the claim, we observe by the monotone (or Lebesgue dominated) convergence
theorem that

lim
R→∞

∫ R

−R
|f(y)|dy =

∫
R
|f(y)|dy.

The integral
∫
R |f(y)|dy is finite, and so∫
|y|>R

|f(y)|dy =

(∫
R
|f(y)|dy

)
−
(∫ R

−R
|f(y)|dy

)
→ 0.

Now we estimate g(x) for large x. In particular, for x > R, we see that

|g(x)| =
∣∣∣∣∫

R
f(y)e−|x−y|

2

dy

∣∣∣∣ ≤ ∣∣∣∣∫
|y|≤R

f(y)e−|x−y|
2

dy

∣∣∣∣+

∣∣∣∣∫
|y|>R

f(y)e−|x−y|
2

dy

∣∣∣∣ .
The second term on the right-hand side is bounded by

∫
|y|>R |f(y)|dy < ε. To

bound the first term on the right-hand side, we note that since |y| ≤ R and x > R,

e−|x−y|
2 ≤ e−(x−R)2 . Therefore, the first term is bounded by e−(x−R)2

∫
R |f |. All

together, if x > R, we have

|g(x)| ≤ ε+ e−(x−R)2‖f‖L1 .
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If x is sufficiently large, we see that |g(x)| < 2ε. Since ε is arbitrary, we see that
limx→+∞ g(x) = 0.

4. Suppose that E ⊂ R is a measurable set with m(E) = 1. Prove that there
exists an open interval I with

m(E ∩ I) ≥ 9

10
m(I).

Solution to 4: Since m(E) is finite, E can be well approximated by a finite union
of intervals. More precisely, for any ε > 0, there exists a finite union of intervals F
so that m(E4F ) < ε. Any finite union of intervals can be rewritten as a finite union
of disjoint intervals in a unique way. So F is a finite disjoint union of intervals Ij. If
ε < (1/100), then we claim that for one of these intervals Ij,

m(E ∩ Ij) ≥
9

10
m(Ij).

Note that m(F ∩ E) ≥ m(E)−m(F4E) ≥ 1− 1
100

= 99
100

. So∑
j

m(E ∩ Ij) = m(F ∩ E) ≥ 99

100
.

On the other hand, m(F ) ≤ m(E) +m(F4E) ≤ 1 + 1
100

= 101
100

. So∑
j

m(Ij) ≤
101

100
.

Combining the last two equations, we see that∑
j

m(E ∩ Ij) ≥
99

101

∑
j

m(Ij).

Therefore, there must be some j so that

m(E ∩ Ij) ≥
99

101
m(Ij) ≥

9

10
m(Ij).

5. Suppose that f : R→ R is C2 and 2π periodic. Suppose that

1

2π

∫ 2π

0

f = 1

max
x
|f ′(x)| ≤ 9/10.
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Let gk be f convolved with itself k times. In other words, g1 := f and gk := gk−1∗f .

(Here we use convolution for 2π-periodic functions: f ∗ g := 1
2π

∫ 2π

0
f(y)g(x− y)dy. )

Prove that g100 is strictly positive.

We study the Fourier series of f , and use it to study the Fourier series of gk.
The first equation tells us that f̂(0) = 1. We use the inequality |f ′(x)| ≤ 9/10 to

bound the other Fourier coefficients. For n 6= 0, integrating by parts gives us

f̂(n) =
1

2π

∫ 2π

0

f(x)e−inxdx = − 1

2π
· 1

−in

∫ 2π

0

f ′(x)e−inxdx.

Therefore,

|f̂(n)| ≤ |n|−1 1

2π

∫ 2π

0

|f ′(x)|dx ≤ 9

10
|n|−1.

Next we consider how ĝk relates to f̂ . By definition gk = gk−1 ∗ f . Therefore,

ĝk = ĝk−1f̂ . Since g1 = f , clearly ĝ1 = f̂ . Therefore, we see that ĝk = (f̂)k. In
particular, we see that

ĝk(0) = 1.

|ĝk(n)| ≤
(

9

10

)k
|n|−k.

If k is large, then ĝk(n) becomes small for all n 6= 0. By Fourier inversion, we can
write gk in terms of its Fourier series as

gk(x) =
∞∑

n=−∞

ĝk(n)einx = 1 +
∑

n6=0,n∈Z

ĝk(n)einx.

If k is large then the term 1 dominates the remaining term. In fact∣∣∣∣∣ ∑
n6=0,n∈Z

ĝk(n)einx

∣∣∣∣∣ ≤ ∑
n6=0,n∈Z

|ĝk(n)| ≤ 2 · (9/10)k
∞∑
n=1

|n|−k.

If k = 100, then it follows easily that this last expression is at most 1/2. Therefore,
we get

|g100(x)− 1| ≤ 1/2.

Since g100 is real, we see that g100(x) > 0 for all x.
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6. Suppose that f : R → C is a Schwartz function with
∫
R |f |

2 = 1 and with

supp f̂ ⊂ [1, 2]. Suppose that u(x, t) solves the Schrodinger equation ∂tu = i∂2xu
with initial conditions u(x, 0) = f(x), (and that u is Schwartz uniform).

Suppose in addition that

(1) |f(x)| ≤ 100(1 + |x|)−3.

Prove that for all t > 0,

|u(0, t)| < 10100t−1. (∗)
Physical interpretation: The solution to the Schrodinger equation models a quan-

tum mechanical particle. The integral
∫ b
a
|u(x, t)|2dx gives the probability that the

particle lies in the interval [a, b] at time t. Therefore, |u(x, t)|2 can be interpreted as
the ‘probability density’ that the particle is at the point x at time t. The condition
that supp f̂ ⊂ [1, 2] says that the particle has “momentum” between 1 and 2. Equa-
tion 1 implies that at time 0, the particle lies fairly close to 0 with high probability.
Since the particle has momentum in the range [1, 2], physical intuition suggests that
it is unlikely to be near zero when t is large.

Solution to 6: We consider the Fourier transform of u. As we learned in class,
û(ω, t) obeys the differential equation

∂tû(ω, t) = −4π2iω2û(ω, t).

We have the initial condition û(ω, 0) = f̂(ω), and therefore

û(ω, t) = e−4π
2iω2tf̂(ω).

By Fourier inversion, we see that

u(0, t) =

∫
R
e−4π

2iω2tf̂(ω)dω.

Next we want to use the hypotheses about f to control f̂ . First of all, since f̂ is
supported in [1, 2], we can write

u(0, t) =

∫ 2

1

e−4π
2iω2tf̂(ω)dω. (1)

The bound |f(x)| ≤ 100(1+|x|)−3 allows us to bound both f̂(ω) and its derivative.

First we bound |f̂(ω)|.
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|f̂(ω)| ≤
∫
R
|f(x)|dx ≤ 100

∫
R
(1 + |x|)−3dx ≤ 1000.

To bound the derivative of f̂(ω), we first recall that

d

dω
f̂(ω) =

∫
R
(−2πix)f(x)e−2πiωxdx.

Using the estimate |f(x)| ≤ 100(1 + |x|)−3, we get the bound∣∣∣∣ ddω f̂(ω)

∣∣∣∣ ≤ 100

∫
R
(2π|x|)(1 + |x|)−3dx ≤ 104.

Now we use these estimates for f̂ and its derivative to control the integral in
(1). We want to prove that the oscillation in the factor e−4π

2iω2t, together with the

regularity of f̂ , leads to cancellation in the integral. Because the oscillatory term
has the form e−4π

2iω2t we change variables to η = ω2. We have dη = 2ωdω, and so
dω = (1/2)η−1/2dη. Therefore, the integral (1) becomes

u(0, t) =
1

2

∫ 4

1

e−4π
2iηtf̂(η1/2)η−1/2dη.

We abbreviate g(η) = f̂(η1/2)η−1/2. Then we get

u(0, t) =
1

2

∫ 4

1

g(η)e−4π
2iηtdη.

We will control this integral by integrating by parts. We integrate by parts with
u = g(η) and dv = e−4π

2iηtdη. We note that g is a C1 function on [1, 4], and that
g vanishes at the endpoints of [1, 4]. Because of this vanishing, the boundary terms
vanish when we integrate by parts, and we get

u(0, t) =
1

2

∫ 4

1

g(η)e−4π
2iηtdη = − 1

−8π2it

∫ 4

1

g′(η)e−4π
2iηtdη.

Therefore, we get

|u(0, t)| ≤ t−1 max
η∈[1,4]

|g′(η)|.

It just remains to bound |g′(η)|. Using the Liebniz rule and the chain rule, we see
that

g′(η) =
(
f̂(η1/2)η−1/2

)′
= f̂ ′(η1/2) ·

(
1

2
η−1/2

)
η−1/2 + f̂(η1/2)

(
−1

2
η−3/2

)
.
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When η ∈ [1, 4], negative powers of η are at most 1. Using our bounds |f̂(ω)| ≤ 103

and |f̂ ′(ω)| ≤ 104, we see that

max
η∈[1,4]

|g′(η)| ≤ 104 + 103 ≤ 105.

Therefore, we get all together

|u(0, t)| ≤ 105t−1.

Final remarks: If f decays faster, we can prove even better decay for |u(0, t)|.
Given a bound of the form

|f(x)| ≤ C(1 + |x|)−m,
we can bound |f̂(ω)| and we can bound the derivatives | dk

dωk f̂(ω)| for 1 ≤ k ≤ m− 2.
Following the same strategy and integrating by parts m− 2 times, we can prove the
following stronger bound for |u(0, t)|:

|u(0, t)| ≤ C ′t−(m−2).


