Solutions to Math 103 Final

1. Prove that there exists a Schwartz function h : R — C with the following
property. If f; is any Schwartz function on R with supp fi C [0,1] and f5 is any
Schwartz function on R with supp fo C [2,3], then (fy + fo) * b = fi.

You don’t need to write an exact formula for h. Just explain why the function A
exists.

(This problem is related to how a radio works. Each radio station sends out a
radio signal with frequency in a different range. The antennae of a radio receives
a signal which is the sum of all of these contributions. To locate the signal from a
single station, we need to find the part of the incoming signal in a given frequency
range. )

Solution to 1: Let g(w) be a C*° smooth function with g(w) = 1 for w € [0, 1]
and with the support of g contained in [—1/2,3/2]. Let h be the inverse Fourier
transform of g. Then ¢ = h. Since g is Schwartz, h is also Schwartz.

Now we consider F' := (f; + fa) * h. We consider the Fourier transform:

F=(fi+f)h=(fi+f)g
Since f; is supported in [0, 1], fig = fi. Since f, is supported in 2, 3], fag = 0.
Therefore, F = fl. Since fi; and F' are Schwartz, we get by Fourier inversion that
F = f1. In other words, (f1 + f2) *x h = f as desired.

2. Suppose that f is a Schwartz function on R. Suppose that [ [f|* =1 and that

A

f is supported in [—1, 1]. Prove that for any points x,y € R,

|f(z) — f(y)| < 1000|z — y|.

Solution to 2: First, by the fundamental theorem of calculus, we have

1) = 1) = | [ 10| < o =yl max] )]

Therefore, it suffices to prove that for all z € R, |f'(z)| < 1000. Next we study [’
using the Fourier transform. Let g = f’. Then g = 2miwf. By Fourier inversion we
get

fI(Z) _/IRZWin(W)QQWiwzdw.

Since f is supported in [—1,1], we get
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Using Cauchy-Schwarz and then Plancherel we see that

/11 1f(w)] - ldw < (/11 |f(w)|2dw) v (2)1/2 = 9112 (/R |f(m)|2dx) g

So for every z € R, |f/(2)] < 27 - 21/2 < 100 as desired.

3. Suppose that f € LY(R). Let

g=fxel = / Fy)e " ay.
R
Prove that

lim g(z) =0.

T—+00

Pick € > 0. We claim that there exists some R < oo so that f‘y|>R |f(y)|dy < e. To

prove the claim, we observe by the monotone (or Lebesgue dominated) convergence
theorem that

i [ |f(y)ldy = / F)ldy.

R—o0 _R

The integral [, |f(y)|dy is finite, and so

[ = (L) - ([ 1rwa) o

Now we estimate g(x) for large x. In particular, for z > R, we see that

_ —lz—yl|? —|z—y|?
2)] < / e dyM /| e dy‘.

The second term on the right-hand side is bounded by f ISR |f(y)|dy < e. To

bound the first term on the right-hand side, we note that since |y| < R and x > R,
e~lrv < =B Therefore, the first term is bounded by e~ (*—#? Je Ifl. Al
together, if x > R, we have

)e—r—ylzdy‘

—(2—R)2
lg(@)] < e+ e .
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If x is sufficiently large, we see that |g(x)| < 2e. Since € is arbitrary, we see that
lim, 400 g(z) = 0.

4. Suppose that £ C R is a measurable set with m(E) = 1. Prove that there
exists an open interval I with

m(ENT) > —m(I).
10
Solution to 4: Since m(FE) is finite, F' can be well approximated by a finite union
of intervals. More precisely, for any € > 0, there exists a finite union of intervals F’
so that m(EAF) < e. Any finite union of intervals can be rewritten as a finite union
of disjoint intervals in a unique way. So [ is a finite disjoint union of intervals /;. If
€ < (1/100), then we claim that for one of these intervals [,

m(ET) > —m(I,).

10
Note that m(F N E) > m(E) —m(FAE) >1— o5 = 2. So
99
ENI; FNE
Sm(Bn L) = m(FNE) > G
On the other hand, m(F) < m(E) + m(FAE) <1+ 55 = 10¢. So

Zm = 100

Combining the last two equatlons, we see that

99
Ej: m(ENL) > T Zm(]j).
Therefore, there must be some j so that

99 9

=101 m(l;) =

m(ENI) > >

m(1;).

5. Suppose that f : R — R is C? and 27 periodic. Suppose that

1 2
L
™ Jo

max |f'(z)| <9/10.



Let gi. be f convolved with itself k£ times. In other words, g1 := f and g := gp_1%f.

(Here we use convolution for 27-periodic functions: f*g := % 02” fyglz—y)dy. )

Prove that gyqg is strictly positive.

We study the Fourier series of f, and use it to study the Fourier series of gy.
The first equation tells us that f(0) = 1. We use the inequality |f'(z)| < 9/10 to
bound the other Fourier coefficients. For n # 0, integrating by parts gives us

2T
27T/ f —mwd - f( ) —znmdm.

—in Jo
Therefore,

R 1 2m 9
Fol < nl - [ 17 @lde < Flal
Next we consider how g, relates to f . By definition g, = g1 * f. Therefore,

Gk = gr1f. Since g, = f, clearly §; = f. Therefore, we see that g, = (f)*. In
particular, we see that

Qk(o) =1

ol < (15) ol

If k is large, then gi(n) becomes small for all n # 0. By Fourier inversion, we can
write g in terms of its Fourier series as

gr(x) = Z gr(n)e™ =1+ Z gr(n)e™™.

If k is large then the term 1 dominates the remaining term. In fact

o e < > ) <2 (9/10)F > |nf "
n#0,n€eZ n#0,neZ n=1

If £ = 100, then it follows easily that this last expression is at most 1/2. Therefore,
we get

|g100(z) — 1] < 1/2.
Since gyg0 is real, we see that gigo(x) > 0 for all x.
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6. Suppose that f : R — C is a Schwartz function with [, [f|*> = 1 and with

supp f C [1,2]. Suppose that u(z,t) solves the Schrodinger equation dyu = i0*u
with initial conditions u(x,0) = f(z), (and that u is Schwartz uniform).
Suppose in addition that

(1) |f ()] < 100(1 + J2])~%.
Prove that for all ¢t > 0,

lu(0,1)| < 1001, (%)
Physical interpretation: The solution to the Schrodinger equation models a quan-
tum mechanical particle. The integral f; |u(x,t)|?dz gives the probability that the
particle lies in the interval [a, b] at time ¢. Therefore, |u(x,t)|> can be interpreted as
the ‘probability density’ that the particle is at the point x at time ¢. The condition
that supp f C [1,2] says that the particle has “momentum” between 1 and 2. Equa-
tion 1 implies that at time 0, the particle lies fairly close to 0 with high probability.
Since the particle has momentum in the range [1, 2], physical intuition suggests that
it is unlikely to be near zero when ¢ is large.

Solution to 6: We consider the Fourier transform of u. As we learned in class,
t(w, t) obeys the differential equation

Oi(w,t) = —4r*iw?u(w, t).

We have the initial condition @(w,0) = f(w), and therefore
iw, t) = e f(w).
By Fourier inversion, we see that
w(0,1) = / e () .
R

Next we want to use the hypotheses about f to control f . First of all, since f is
supported in [1,2], we can write

u((),t):/1 e () dw. (1)

The bound | f(z)| < 100(1+|z|)~? allows us to bound both f(w) and its derivative.
First we bound | f(w)].



|f(w)] < /R|f(x)]dx < 100/R(1 + |z])"*dx < 1000.

To bound the derivative of f(w), we first recall that

d - .
_ — 9 —2miwx )
AL /R( mix) f(x)e " d
Using the estimate |f(z)| < 100(1 + |z])~3, we get the bound

d -
d—f(w)

w

< 100/(27r|x|)(1 + |z])*dx < 10%.
R

Now we use these estimates for f and its derivative to control the integral in
(1). We want to prove that the oscillation in the factor e 47"t together with the
regularity of f, leads to cancellation in the integral. Because the oscillatory term
has the form e4™ " we change variables to = w?. We have dn = 2wdw, and so
dw = (1/2)n~'/2dn. Therefore, the integral (1) becomes

1 4 _ 772’i a2 _
u(0,t) = 5/ e f (! 2y~ 2.
1

We abbreviate g(n) = f(n"/2)n~ /2. Then we get

1 * —472
u(0,t) = 5 [ glme = may
1

We will control this integral by integrating by parts. We integrate by parts with
u = g(n) and dv = e~ dy. We note that g is a C' function on [1,4], and that
g vanishes at the endpoints of [1,4]. Because of this vanishing, the boundary terms
vanish when we integrate by parts, and we get

1
—8m2it

1[4 s 4 e
u(0,) = —/ glm)e™ "™ "dn = / g'(me~ " dn.
1 1

2
Therefore, we get

|u(0, )] < ¢! max |g/(n)].
776[114}

It just remains to bound |¢’(n)|. Using the Liebniz rule and the chain rule, we see
that

g = (0 2) = Py () fas (o).
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When 7 € [1,4], negative powers of 5 are at most 1. Using our bounds | f(w)| < 103
and | f'(w)| < 10, we see that

max |¢'(n)| < 10* + 10% < 10°.
ne(1,4]

Therefore, we get all together

lu(0,t)] < 10t

Final remarks: If f decays faster, we can prove even better decay for |u(0,t)]|.
Given a bound of the form

[f(@)] <O+ |z))~™,

we can bound |f(w)| and we can bound the derivatives |£u—kkf(w)| for 1 <k <m-—2.
Following the same strategy and integrating by parts m — 2 times, we can prove the
following stronger bound for |u(0,?)]:

lu(0,t)] < C't~(m=2),



