Evolution of a vibrational wave packet on a disordered chain
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A linear chain of point masses coupled by harmonic springs is a standard model used to introduce
concepts of solid state physics. The well-ordered chain has sinusoidal standing wave normal modes
(if the ends are fixedor traveling wave normal modesf the ends are connected in a rjng
Ballistically propagating wave packets can be built from these normal modes, and illustrate the
mechanism of heat propagation in insulating crystals. When the chain is disordered, new effects
arise. Ballistic propagation is replaced by diffusive propagation on length scales larger than the
mean free path for ballistic motion. However, a new length scale, the localization length, also enters.
On length scales longer than the localization length, neither ballistic nor diffusive propagation
occurs, and energy is trapped unless there are anharmonic forces. These ideas are illustrated by a
computer experiment. @998 American Association of Physics Teachers.

I. LINEAR CHAIN na, wheren is an integer, and a displaceman from the

Figure 1 shows a chain of point masses connected witfiominal position. Denoting the spring between masand
springs. Thenth mass has a nominal “equilibrium” position massn+1 ask,, the potential energy of the system is
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masses are all the same but the springs have vatues

Q
AR SO 5 84 0 + 8k, , wheredk,, is a small random number. A fundamental
J L J L L and surprising result is that for an infinite chain, disorder not
u3 u4

only destroys the traveling wave nature of the normal modes
of vibration, but it also causes the normal modes to be expo-
nentially localized in spaceThis means that beyond a suf-
Fig. 1. A chain of point masses, showing the nominal positions—denoted byicient distance from the “centerR, of the uth normal

u u

1 2

thick vertical lines, the actual positions, and the displacements mode, the amplitude of vibration decays exponentially with
distance,
1 upcexp(—[na—R,|/£,), (4)
V=3 21 Kn(Un=Un1)? (1) where the “localization length’é,, is a property of theuth
=

normal mode. This phenomenon was first recognized by
since the springs are assumed to have unstretched langthAnderson, and is referred to as “Anderson localization.”
equal to the spacing of the nominal positions. Newton’s laws'he Nobel prize in 1977 was shared by Van Vleck, Mott,
read and Anderson. Anderson’s citatiomeferred specifically to
) his work on localization, and Mott‘sreferred to his subse-
d°un __ ﬂ ®) quent contributions to the same subject. A good recent ref-
"odt Uy’ erence is the book by SheAgd.houles$ has written a good
feview of earlier work. There are two previous articles in
AJP on localization on a chafff and a large literature of
articles and reviews on the properties of eigenstates of
chains>0
Localization was first discussed as a property of a quan-

This paper is concerned with the question of how vibrationa
energy moves in time on such a chain.

All solutions of Newton'’s laws can be written as superpo-
sitions of the “normal modes” of vibration. These are the

special solutions of Eq2) where every displacement(t) tum electron in a disordered medium. A quantum electron

has the same time dependencg(t) =Au,, COSE,t+¢).  pahaves much like a classical wave. The results of localiza-

The indexu “counts” the normal modes, which are equal in jon theory therefore translate into consequences for classical

number to the number of mass@s “atoms”) on the chain.  yayes. The connection between the Newtonian equation of

The pattern of displacements is given by 'ghe eigenvector” yqtion for vibrations on a chain and the Satfirger equa-

Un,,, and the time dependence ceg(+ ¢) is independent of  tjon for a particle free to move on a chain of atoms is dis-

the “atom index” n. The amplitude and phaseand ¢ are  cussed in Appendix C.

free parameters to be fitted to initial data or chosen at will.

When the chain is infinite and the springisand masseM

are all identical, the normal modes have the fouy, . WAVE PACKETS

=cosQ,na) or u,,=sin@Q,na). The wave vector®), are ' _ . _

chosen to obey the boundary conditions on the chain; the Our concern will be the long-time behavior of a vibra-

infinite chain is mimicked by a finite chain & “atoms”  tional disturbancea superposition of normal modewhich

with periodic boundary conditions, ail, = 2 ../Na obeys is initially spatially Iocah;ed. A familiar Qxample is a wave

the requirements ifc is an integer. OnlyN distinct patterns packet on a perfect chain. It Is convenient to use complex
B o . numbers to represent the traveling wave solution, (Bg.

Un,=cosQ,na) or u,,=sin(@Q,nad) exist, and they can be _

chosen to be all the cosines and sines for integerem 0 to up(t) =AQe'(Q”a* @QV), 5)

N/2. The subscript is superfluous because the valueis HereAq is a complex number, related to the amplitude and

an equally good label. The cosine and sine solutions have th%ase in Eq(3) asAq=|Aglexpléc). As usual, it is implied

i p
same frequency, which turns out to be that the physical disturbance is theal part of this complex

wo=2VKk/IM sin(Qa/2), function. One advantage is that now the time dependence of
u,(t) appears as a multiplicative factor exfit), indepen-
dent of n, so that the traveling wave solutions can be re-
garded as “normal modes” rather than superpositions.
Un(t)=[AqlcogQnat wgot+ ¢q). 3 The most general solution of Newton’s laws is a superpo-
§_ition of traveling waves, with arbitrary complex coefficients

as derived in elementary solid state tekta. particularly
useful superposition state is the traveling wave

|Ag| and ¢q are free parameters. These states, after quantA
zation, have energyiwg and are called “phonons.” The “'Q’
model can be generalized to three-dimensional lattices and 1 l

a
vector displacements,,. The resulting “phonon gas” pic- Un(t)= — dQAge'(Qna~wal), (6)
ture is one of the basic building blocks of the physics of V2m J-mia
crystalline solids. Here the sum over discrete wave vect@s-2wu/Na is
written as an integral over a continuous set, because the
II. LOCALIZATION spacing 2r/Na goes to zero for a long chain. A wave packet

. o . . is a spatially localized version of a traveling wave. The most
This article is about some of the interesting changes thatonvenient representation is to let the amplitéggpeak at a

occur in the vibrations when the system is not perfectly or-chosen wave vecta,, and fall off with a Gaussian form,
dered, but contains some random disorder. For simplicity the

. . . . H 2 2
article considers one dimension and the case where the Ag=Ae QRog~(12b%(Q-Q0)", (7)
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Fig. 2. The wave packet for short times. Time is measured in units of the

Table I. Modes of time evolution of a packet.

Center of pulse Squared width of pulse

propagating Ro+ vt b?+aZt?/b?
diffusing Ro b2+ 2Dt
localized Ro £2

ponents propagate at slightly different group velocities
=votag(Q—Qp). The width increases quadratically with
time for intermediate times and linearly with time for large
times.

Figure 2 shows such a Gaussian wave packet moving on a
linear chain. The spreading is not yet visible. The chain is
actually disordered weakly, but the effects of disorder are not
obvious for the short time interval shown.

IV. MODES OF TIME EVOLUTION

The aim of this article is to discover the nature of the

period of the shortest vibration the chain can sustain. Distance is measurddormal modes of a disordered lattice. The wave-packet con-

in units of the mass separatian The solid line is Eq(8). The dots are the

struction just reviewed plays a crucial role. It is the method

actual positions of the point masses, with displacement plotted vertically fonby which we understand the nature of the normal modes of

clarity. The calculations are made for a chain of length 15000ith R,
chosen to be 75@0 Q,=1.82354, and b=50a. The frequencyw, is
79% of the maximum frequency of the chain. The normal m@gehas
phase velocityw,/Qy=2.72 and group velocity ,=1.92. These are indi-

cated by sloping straight lines which denote the translation in time of a poin

the perfect ordered chain. Specifically, they are traveling
waves, spatially extended with equal amplitude on all lattice
points, but also they build pulse-like disturbances which
propagateballistically. That is, they have a velocity, of

of constant phase and of the center of energy, respectively. One compleffopagation. A similar wave-packet construction for the dis-

period 2w/ wy=1.26 is shown.

The phase factor exp(iQRy) has the effect of making the

ordered lattice will reveal much about the nature of the nor-
mal modes.

Table | gives the various characteristic forms of time evo-
lution of a pulse that may be expected. Two separate effects

wave packet spatially centered at time zero on the “atom” atc@n happen because of disorder. One is scattering of waves

the locationna=R,. An explicit form for u,(t) can be
found if the spread b of wave vectors is small enough that
the frequencywg can be approximated by a Taylor series
around the central frequenay, (equal towg evaluated at
Q=0Qy.) Similarly, the limits of the integral should safely
extend to o because the contribution fronQ|>w/a
should be negligible. Denote the Taylor expansion dyy
~wo+vo(Q—Qp) +ay(Q—Qp)?/2, wherev, is the group
velocity dog/dQ and a, is the second derivative
d?wo/dQ? Then the integral in Eq(6) is performed by
completing the square in the exponent. The answer is

A
un(t)= (67T iag) ™
(na._ RO_Uot)Z

Xex‘( T 20t iagt)

This is a pulse centered B, + vt with a wave vectoQ,
propagating ballistically with velocity,. As shown in Ap-

) ei(Qoﬂa— wot). (8)

from the disorder. The other is localization. Scattering causes
the phase of the normal mode to become disorganized after a
distance known as the “mean free path,” denoted pyFor
distances longer thak), a disturbance can no longer propa-
gate ballistically but can still propagate diffusively. In one
dimension, the diffusion equation shows that a disturbance
localized in a spatial region of width att=0 spreads over

a root-mean-square distangéb®+ 2Dt, whereD is the dif-
fusion constant. Localization means that diffusive propaga-
tion is prohibited at length scales longer than the localization
length¢,, . On a one-dimensional lattice with weak disorder,
there is a wide range of frequencies for whigh<¢, , al-
lowing diffusive propagation to occur over significant times
and distances before ultimately reaching a maximum dis-
tance of¢,, and stopping.

V. NORMAL MODES OF THE DISORDERED
CHAIN

What is the nature of the normal modes when the chain is

pendix C, the energy is related to the squared modulus of thigisordered? For a finite chain & “atoms,” the normal

wave,

2 (na—Ry—wv,t)?
Xp( (" ajt?)/b”
The center of this pulse is at positi®y+ vt for all timest.
The spatial width of this pulse is/(b?+a2t%b?), which

|Un(t)|2=( ) ©)

7 o.o.1p €
b4+ aOtZ) 1/2

modes can be explicitly found on a computer by finding the
eigenvaluesl)i and eigenvectorfu) of anNXxN real sym-
metric matrix, as explained in Appendix B. The indexuns
from 0 toN and labels the normal modes. The notatioh
denotes a column vector whose eleme(tsu)=uy,,...,
(n|w)=up,,... contain the displacement pattern of théh

equalsb for short times. At longer times, the pulse spreads innormal mode at thath atom. A solution of Newton’s laws
width. This happens because the different normal mode comui,(t),...,u,(t),... iscompactly denoted by the column vec-
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Fig. 4. The participation ratip=&/a of the vibrational normal modes of
Fig. 3. Calculated vibrational density of states for the disordered chairthe disordered chain, calculated according to @4), is shown as a histo-
compared with the exact density of states of the ordered diEin(A6)]. gram, averaged over frequency bins. The dashed line is a schematic extrapo-
As shown here and in Fig. 4, frequency is measured in unit€dof lation to larger size chains. The mean free déthcalculated from Eq(12)
=k/M. The perfect chain haen,=2 in these units. In the rest of the is shown as the smooth curve.
paper, time is measured in units of the period/®,,,, of the fastest vibra-
tion, and the value 04 is 2.

actual atomic dimension$ut instead a “macroscopic” sys-
.. tem of much longer length. We would like to extract from
tor |U(t)). The symboln) denotes a column vector which is qur calculation information which applies to systems of un-
all zeros except foa 1 in thenth entry, so thaf{n|U(t))  limited length. Suppose we had a much larger computer and
denotesuy(t). The normal modes span the space of possiblgould manage & 10° “atoms” (or 1-mm samplé.The spec-
stategU) of the chain, and can be chosen to be orthonormairum shown in Fig. 3 would be unchanged. However, the
<,u,|,u’):5%#,. An example of normal modes and vector modes in Fig. 4 which have localization length 1880¢
notation for a four-atom chain is given in Appendix B. =pa< 300G would in the next calculation have longer lo-
Figure 3 shows a histogram of the density of vibrationalcalization lengths. The fact thésaturates at200@ in Fig.
states of a 3000 “atom” chain. The spring constakfsvere 4 is (from this point of view an artifact of the finite size of
chosen in the formk,=k(1+r,), wherer, is chosen by a the sample studied. It is knowhthat the true behavior of
random number generator and is uniformly distributed in theas a function of eigenfrequeneyis £xw 2. For any finite
interval (—0.07,0.07). This corresponds to a weak disordersize chain, the normal modes at low enouglwill extend
The corresponding answers for a strongly disordered casieom one end of the chain to the other, but for a larger chain,
with r, randomly distributed in € 0.7,0.7) can be seen in a the modes at the same frequency will be localized. For an
recent papet! The result is compared with EGA6) for the  infinite chain, only modes of infinitely small frequency are
perfect chain. The small random disorder hardly affects thelelocalized. As the lengtN of a chain increases, the number
overall frequency spectrum, except to broaden the peak af modes which extend throughout the chain should increase

®= Omax- asN*2, but the fraction of modes which appear delocalized
A very useful diagnostic for localization is the “participa- should decrease a$ /2
tion ratio” p, of the normal modew) introduced by Bell The other important property of the normal modes of the
and Deart? The inverse of this is defined by disordered chain is their mean free pdth. There is no
5 formula which enables$, to be calculated from just the ei-
1:<M|M>:§n: [(n[w)]%, (10 genvectorlu). The definition begins by asserting that to first
approximation we have traveling wave states with wave vec-
1/pM:z [(n| w)?. (11) tor Q. Then the mean free path is defined as the distance
n a wave packetof central wave vecto®) can travel on av-

erage before its trajectory is randomized by scattering from
éhe disorder. In the next section a computer experiment will
implement this definition. Disorder is put in by choosing a
specific set of spring constanks=k(1+r,) with r, ran-
domly and uniformly distributed in the intervaHR,R),

Equation (10) just states a normalization condition on the
normal modes. For a traveling wave in a perfect crystal, th
amplitude is the same at every site, |$a|u)|>=1/N, and

1/p,=1/IN. For a hypothetical state which is localized on a

single point|(n| x)|* is zero everywhere except at that point whereR serves as the small parameter of the theory. A the-

where it is 1, and P, =1. Thus the participation ratip,, . )
measures the number of sites where the djatédas a sig- oretical value forlg can be found by perturbation theory.
The answer, derived in Appendix A, is

nificant amplitude. For a one-dimensional system, the local-

ization length,, is p,a. Figure 4 shows the results for the lo 31 2 wﬁmx— wé
disordered chain, averaged over modes within frequency a _4\R w—é . (12
bins.

It is important to realize that the actual object of interest isThis result is shown in Fig. 4. Note thkg diverges as R?
not the 3000 “atom” chair(corresponding to km length in  as the strength of the perturbatiBhgoes to zero, and also
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(similar to ¢ as 1£ué as the frequencyng goes to zero.
When the same calculation is done for three-dimensional vi-

brational waves, the long-wavelength mean free path di- t=10
verges as L3, which is the vibrational version of Rayleigh
scattering.

t=8

VI. TIME EVOLUTION ON THE DISORDERED
CHAIN

Using Fig. 4, we have chosen an appropriate frequency
wo=1.5812=0.7% .« and wave vectoQ,=1.82354 for
computer experiments with a wave packet. These choices t=4
correspond to a predicted mean free path o @2d local-
ization length of 74@8. Then there is a sequence of length

Local Energy
%
[o)]

scalesh (wavelength<| (mean free path<¢ (localization =2

length<<L (sample sizg Actually the sample size is only

four times larger than the localization length. A wave local- t=0

ized with é~L/4 has exponential tails on both sides, which o ‘ ‘ ‘ ‘ ‘

causes the disturbance to interact with the boundary. To 7480 7490 7500 7510 7520 7530 7540
avoid such surface effects, we have embedded the 3000 atom Atom Number

section in the middle of a 15 000 atom chain.

What is the appropriate definition of a wave packet on a
disordered chain? Our answer is to use the perfect chain
formulas, Eqs(6)—(8), to pick displacements and velocities
at timet=0. This gives a candidate initial pulse. For a per-The detailed local energy distribution evolves in a compli-
fect chain, by construction, this pulse is built from eigen-cated way, but on this time scale, no broadening or other
states whose frequencies are confined to the windgy Significant change of shape of the envelope of the pulse can
+p,/b. For the disordered chain, the exact eigenmodes difPe seen with resolution of a few percent. Within the envelope

fer from the plane-wave states of the perfect chain, so ther@ INteresting substructure is starting to develop, which is
is no longer perfect confinement of the frequency spectrurﬁne?t'oneﬂ agalln att';he znd.of Sec.dyl. I(fjtrge chain ha(ljdbeen
of the pulse to this window. Our aim is to discover the natureP€"Tect. the puise broadening pre icted by E9). wou

of normal modes of the disordered chain for frequencies nedf2ve been=1% att=10, consistent with the figure. The
wo. Therefore we “filtered” the initial pulse by expanding mea_sured full W|_dth at half-m_aX|mum of the energy distribu-
in the exact eigenstatég) and then multiplying each ampli- tion is ~12a, which agrees with the formulayan 2b for the

tude by the factor eXp-(w,—wg)%/26w?].* Gaussian profile of E¢9). o

The pulse can now be propagated forward in time, using At somewhat longer times, sho_wn in Fig. 6, several new
either Eq.(C5) or else direct forward integration in time of €ffects are seen. By=>50 the main part of the pulse has
Newton’s laws, as explained in Appendix D. The two proce-traveled ballistically a distance of 83 3% less than pre-
dures gave the same result. dicted from the group velocity ,=1.92 for the perfect lat-

The energy on the chain is distributed in time-varyingtice. The width of this main pulse is 60% wider thantat
fashion between kinetic energy of moving atoms and poten=0, exactly as predicted by Eq9) for the perfect lattice.
tial energy of distorted chains. There are several sensiblelowever, the pulse height has shrunk by a factor of 2; the
ways, and no unique way, afefininga quantityg,(t), the area under the leading pulse is not conserved. Inspection of
local energy at timeé associated with atom. For example, the upper curve of Fig. 6, or equivalently, the lower curve of
one can use all the kinetic energy of atamand half the Fig. 7, shows that the missing energy is mostly in a few
potential energy of each of the two connected springs. Aecondary pulses which have split off the main pulse at in-
sensible definition should be additive,E,(t)=E,. It termedlatg times and are propagating backward. Apparently,
should make no substantive difference which sensible defiét @Pproximately=7 andt=19 the pulse encountered some
nition is used. Our definition, EGC6), explained in Appen- Particularly severe fluctuations in the spring—constant disor-
dix C, is novel and is chosen because of mathematical anéer which reflected part of the incident energy. 8y200,
computational elegance, but it is not necessary to use such gown in the top panel of Fig. 7, most of the energy is in
abstract definition. Once the local enerfy(t) is defined, —secondary pulses with directions of propagation which are

Fig. 5. The local energy at fairly short times.

terR(t) of | d the widtk{r2(t)) of Ise: and into the diffusi\{e _regimg. _
centerR(t) of a pulse and the widty(r*(t)) of a pulse Although the ballistic leading edge of the pulse continues
R(H)=>, naEn(t)/ > Eq1), to contain quite a lot of the energy until at least200, the
n n center of energy, defined in E€L3), already begins to devi-

(13 ate from a ballistic trajectory as early &s50. Figure 8
(ra()y=2> (na— R(t))zEn(t)/ > Eq(t). shows the time evolution of the center of energy for two
n : pulses, prepared with identical recipes but started at two dif-
Figure 5 shows the spatial evolution of the enef@gfined ferent locations that are 25 “atoms” apart. By-200 the
in Appendix Q of the wave for the first ten units of time. center reaches its maximum excursion of 150, and then pro-
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Fig. 6. The local energy at medium times. The bold line represents the path
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of the center of energy of the leading pulse. There are also secondary pulses 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000
traveling from right to left at larger times, whose paths are represented by Atom Number
_thir?ner solid lines, and one of the many weak multiply scattc_ered pulses is_, Fig. 7. The local energy at fairly long times.
indicated by the dashed line. The top panel is repeated on a different scale in
Fig. 7.

the wave has propagated a distagcdallistic propagation

ceeds to wander slowly by 25 “atoms.” This wandering at a velocity of 1.92 would reach a distangein t~400.
seems chaotic, but in fact, in the technical sense of “chaos’However, by this time there is little remaining ballistic be-
it is just the opposite. Chaotic behavior is by definition ahavior, and theory predicts diffusive spreading witit)
divergence of initially close trajectories which grows expo-=2Dt. Statistical theory gives in one dimensi@n=ul,
nentially in time. It is quite remarkable how “nonchaotic” which is predicted to be 180 for our pulse. Diffusion should
Fig. 8 is. Absence of chaos is a fundamental property of althen be observed for times untiD2= £2, or t~ 1500.
systems of coupled harmonic oscillators, but we did not an- The squared width of the energy pulse is defined in Eq.
ticipate either the long-time fluctuations of Fig. 8 or the in- (13), and plotted in Fig. 9. For times up te=1000 the nu-
sensitivity to starting point. _ _ merical data agree well with the diffusive prediction, except

Quantum mechanics enriches classical mechanics by ofhat the value oD obtained from the linear slope is 300
fering a vivid particle interpretation of wave behavior. The raher than 180. If this revised value Bfis used to predict
pu_lse eVO'“g'O” shown in Figs. 5-7 is equwalgnt to the EYOhen the localization length is reached, the answeQ00,
!utlon of [4]* for a guantum eIeptron ona cham. of atoms. It agrees very well with the breakdown of linear behavior of
is a “band” electron experiencing weak scattering from dis-, "

. . . L (re)y vst seen in Fig. 9.

order in the lattice. For a while it propagates ballistically, For timest>1000. a new regime occurs. as is shown in
corresponding to a single classical trajectory, but then it scat-. ’ gim T
ters and no longer has a single deterministic route. Instead, t'9- 10. The pulse no longer varies much in time, at least
is a superposition of trajectories. The waveform gives a sta-
tistical description of where the particle has gone. For some
purposes it is adequate to ignore interference between differ- 7650
ent trajectories, and to think of the time evolution as an en-
semble of random walks. At this level, a Boltzmann gas
theory description works, and describes the time evolution of
this ensemble in terms of scattering probabilities at different
sites. This is the spirit behind the mean free path calculation
of Appendix A.

As discussed in Sec. V, the mean free dathpredicted to
be 92, and the localization lengtl is found to be 748.
This enables us to understand Fig. 8. After ballistically
propagating a distance of abdytthe propagation becomes
randomized and no further change of the center of energy is 7450 L —t
expected, except for some statistical fluctuations which de- 0 1000 2000 3000
pend on the initial conditions. Our two pulses have similar time
initial conditions and propagate through the same disorderegg. 8. The center of energy vs time. The straight line drawn near the
regions. Localization should not be an important factor untilvertical axis represents ballistic propagation with group velocity 1.92.
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energy does not spread uniformly in space, but is very spiky.
This is not an artifact, but an interesting interference effect
] which is not contained in the description in terms of diffu-

§ sion. Scattered waves from different spatial fluctuations of
] spring constants interfere strongly with each other, so that
parts of the chain have large oscillation amplitudes and other
parts have nearly zero amplitude, in a pattern which evolves
] in time. This effect is noticeable long before localization sets
1 in. However, it is(in a sensga precursor of localization,
because the origin of localization has been traced to destruc-
tive interference between incident and backscattered wave
components. The appearance of this interference effect be-
fore the onset of localization is one of a class of effects
known in the solid state literature as “weak
localization.” 1516

1x10°

8x10° [
6x10° |
xi10° [

s [

2x10°

squared width of packet

0 1000 2000 3000
time

Fig. 9. Squared width of the packet vs time. The straight line representd/ll. HHGHER DIMENSIONS
diffusive propagation witi{r2)=2Dt and D =309. ) ) ] ] ) ) )
Vibrations in solids are generally three dimensional in
character. Unfortunately, computer simulations in three di-

until details are examined. Energy was initially inserted intomensions become much harde_r. A matrix size of 3000
normal modes of frequency, nearw,, but arranged to 3000 no longer handles a spatial length of 300but (re-
interfere destructively, except in a narrow spatial region offémbering the three spatial degrees of freedom for each
width b nearR,. For t>1000, the original pattern of de- atom only 10a, which is short enough that localization ef-
structive interference has disappeared, and the full spatidgcts become mixed with finite size effects. The most impor-
extent of the eigenstates is seen in the pulse. Since the eigel@nt new effect id=3 is a sharp boundary in the frequency
states decay exponentially for distances greater tian SPectrum which separates states which are strictly delocal-
~740, the pulse cannot go farther and is localized. As timdZed (impossible in lower dimensiongrom states which are
evolves, the relative phases of the different localized normacalized. Near the boundary, the localized states have very
modes changes, and the detailed spatial pattern of the enertf'd values of¢, diverging as the boundary is approached.
pulse changes. This leads to a surprising secular fluctuatioparther away from the boundary, the localization lengths can

of the center of energy seen in Fig. 8 and a weak fluctuatioR®Ccome very short, if the disorder is great enough. On the
in the width seen in Fig. 9. delocalized side of the boundary, the extended states have

A careful look at Figs. 6, 7, and 10 shows an effect whichVerY. short mean free paths, going close to zero as the bound-

contradicts a too-classical particle interpretation. The locaf'Y iS approached. Therefore, ballistic propagation does not
occur in this part of the spectrum, and states can be called

“intrinsically diffusive.” Wave-packet-like states formed in

this region of the spectrum show neither a ballistic nor a
I D D D S localized regime, and continue diffusing until they fill the
sample. On the localized side of the boundary, but close

128048 enough that, is large, one could perhaps construct super-
sl hasdhitond,

positions of normal modes, like wave packets, which would
be initially localized on a shorter length scale thgn The
time evolution of such a disturbance would be diffusive, with
no ballistic region, until the size of the disturbance equaled
t=4024 ¢,., at which time further spreading would stop. It is prob-
MWM il ably impossible in three dimensions to find a spectral region
where ballistic propagation as well as diffusion and localiza-
tion can all be seen as a wave packet evolves. Verifying

these ideas numerically is not easy, and controversy still re-
mains.
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‘ APPENDIX A: PERTURBATIVE TREATMENT OF
3000 4000 5000 6000 7000 8000 9000 100001100012000 WEAK DISORDER
Atom Number

Localization cannot be found by adding disorder perturba-
Fig. 10. The local energy at very long times. tively to the theory of a perfect crystal. The fact that modes
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are always localized in one dimension indicates that ordinary
perturbation theory cannot succeed at long times. However,
for a wave packet on a weakly disordered chain, there is an
interval of time between the scattering time=|/v and the
time when the distancé(2Dt) of diffusion equals the local-
ization length¢, during which the effect of localization is
unimportant and perturbation theory gives a useful descrip-
tion of diffusion.

Even though the pulse propagation problem is purely clas-

‘
sical, the quantum version offers a simpler treatment. As
historical evidence for this, heat conduction in insulators was

first understood qualitatively by Debye in 1912 using classi-
cal ideas, but only after Peierls introduced the quantum ver-
sion in 1929 did the theory become complete and predictive.
The highT limit of Peierls’s theory gives the correct classi-

cal theory which Debye’s work foreshadowed. The deriva-

tion of Eq.(12) is a technical detail which the reader is free

to skip, Fig. 11. A chain of four point masses, with periodic boundary conditions.
First write the Hamiltonian in terms of quantum raising For equal spring constants, the patterns of the four vibrational normal modes
. t : are shown. The mass points are numbered 1,2,3,4 in the counterclockwise
and lowering operatorag andag, for the uncoupled oscilla- i cction starting with the rightmost point.
tors Q of the ordered chain,

=T+ T, (A1) _ .
convenient to use periodic or Born—Von Karman bounda
tt period B Von K boundary
" 1 conditions, which can be visualized in several ways. One
'7”0:% hwg| agagt 5/, (A2) " visualization is to embed the four atoms in an infinite line of

atoms, enforcing the condition,(t) =u,4(t) which says
1 + that each group of four atoms has an identical motion. An-
-%FN E, Voqragag: (A3) other visualization is to bend the line into a ring as in Fig. 11.
QQ Let K, denotek,/M. In vector form, Newton’s equations of
o is the ordered chain, and; contains the random dis- motion are
order. The frequencywq is, as before,wnasin@Qal2)|, d?|U
where the maximum frequency i®ma=2VK=2Q. The 2>
scattering potentiaV oo depends on the particular choice of dt
random numberK,. We are interested in the average rate ofwhereK is 1/M times the 4<4 matrix of second derivatives
scattering, and can average this over an ensemble of ranf the potential,
domly prepared chains. The standard perturbative formula is

=—K-|U), (B1)

K4+ Kl - Kl 0 - K4
1 2=
— =7 2 (Voo ) d(hag—tiwg), (Ad) | K KatKy o =K 0
Q Q 0 —K, KoKz —Ks |’
where the angular brackets denote the ensemble average. It is K 0 K Kot K
not hard to show that 4 3 3T 4 (B2)
(Voo |?) = #(fiwg) (hwg)R?. (A5) U1
u
The only significanQ’ dependence remaining in the sum of U)= u2
Eq. (A4) is a factor of the vibrational density of states u3
4

P wg), namelyy’
The real-symmetric matriK has some special properties

5 _i S shwg—t _i 1 AG which continue to hold for chains of atoms of arbitrary
Aw)= NS (hog—ho)= % [ 2 > (A6) length N, namely: (1) on the diagonal occur the positive
@max— @ numbersK,,_;+K,: (2) on the adjacent subdiagonals occur

This is the formula which is plotted in Fig. 3. Finally, Eg. the negative numbers K ; (3) all further subdiagonals are

(12) for the mean free path,=v 74 follows by combining  filled with zeros except for the far corners which contain

Egs. (A4) and (A5) and using the formulavg —Ky; (4) the sum of the elements in each row and in each
= (a/2),/w2max—wQ2, column is zero. This last property expresses the translational

invariance of the potential energy, namely, the fact that if

each atom(at positionna+u,) is given an additional con-
APPENDIX B: VECTOR NOTATION stant displacement, the potential energy is unchanged and

there is no additional restoring force. It is also easy to prove

Displacement information for a chain 8f masses can be that for any displacement vectfld), the quantity(U|K|U)

encoded in a vectdiJ(t)) which hasN components, one for s just 2V/M, which is twice the potential energy per unit
each “atom” u,(t)=(n|U(t)). As a specific illustration, mass stored in that displacement pattern, a non-negative
consider a line of four masses connected by spriggdtis  number. Therefore the matrik is a non-negative matrix.
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The eigenvalues and eigenvectorkoplay a special role. written asx(t)=RgAexp(—iwt)], where A is a complex
Denote these vectors i) and the corresponding eigenval- number of modulugA| = Vx(0)2+v(0)%/w? and phases
ues by ,‘"i' The eigenvalues of a non-negative real- — i551(,(0)/wx(0)). There is more than one way to general-
symmetric matrix are real and non-negative, so they havge this notation to the problem of coupled oscillators, but the
real and non-negative square roeis, which are the fre-  following version seems particularly interesting. Define a
quencies of the “normal modes™ of oscillation. The motion complex vector
given byA |u)cos,t+¢,) (with A, and ¢, arbitrary real IW(1)=| V(1)) =i Q|U(1)). (C1)
number$ is a solution of Newton’s laws. This solution has a
stationary displacement pattern which oscillates in time sinuThe real vectorgV(t)) and |U(t)) are defined as in Egs.
soidally. It is a standing wave “stationary state” or normal (B5) and(B4). The matrix(2 obeysQ?=K; that is, it is the
mode. For the chain of four atoms shown in Fig. 11, thepositive square root of the matrik To be explicit,Q) can be
displacement patterns of the four normal modes are easy teritten as
find if the springsk,=MQ? have all equal values. The nor-

mal mode displacements are indicated in the figure, and are QZE wﬂ|ﬂ><M|- (C2
given by the orthonormal vectors "
1 1 To be even more explicit, for the four-atom chain of the
11 1 0 previous section, whek; is a constantiK, the matrix(} can
|0)= AREE |1)= sl -1 be constructed using Eq&C2) and(B3), and is
1 0 1+v2 -1 1-v2 -1
(B3)
0 1 o K| -1 1+v2 -1 1-V2 3
|2>:i 1 |3>_} -1 “2|l1-v2 -1 1+vZ -1 ©3
V2 _01 2 _11 -1 1-v2 -1 1+v2

. . ) The square of this matrix is indeed EH&R2).
The corresponding eigenfrequencies abg=0, w1=w, The complex vectofW(t)) encodes almost all dynamical
=v2Q, andwz=20Q. Notice that the mode labeld@) has  jnformation about the system of oscillators. Velocities are in

every atom displaced equally, which means that it is a uniyhe reg part of W(t)) and positiongexcept for the absolute
form translation. Therefore this mode has no restoring forcey, osition of the center of magsre in the imaginary part.

the_ltl:or.respOEding frequency is 0. Eather thﬁf‘ a sinusoid@enter of mass position information is lost beca@seper-
OOSC' a:[on,t the mot|o:1 colrrﬁspon Itrf:g to f[ Ist ve?orlt 'S ating on a constant vectd) gives zero. In technical lan-
[0)(Up+uot), €., a translation with constant velocity. guage,|W(t)) is orthogonal to the null space 6t andK,

I\_/Iodes|1> and|[2) are degenerate; therefore Imear_ combma—Wh"e the null space contains the center of mass information.
tions of|1) and|2) are also normal modes. In particular, the

des (15 =i|2))/v3 i i h th The center of mass moves with uniform velocity, and we
modes (1)=i[2))/v2 are traveling waves, whereas the rep-,qoce 5 reference frame at rest with respect to the center of
resentation in Eq(B3) using real numbers corresponds to

mass.
standing waves. . . . .
: . One of the interesting things about the vectdf(t)) is
The most general solution of Newton’s laws is a superpo g g or(t))

" o . ° : that Newton’s laws become
sition of normal mode oscillations with arbitrary amplitudes
and phases. As an example, the initial value problem can be _ d|W(t))
solved once the initial positiorj&) (0)) and initial velocities T
|[V(0)) are known. It is easy to verifyffrom the complete-
ness and orthogonality of the eigenvectry that the solu-

= QW(1)). (C4)

If Q is reinterpreted as a Hamiltonian, aj\(t)) as a state

tion is vector, then this is a time-dependent Sclinger equation.
The solution is
|U(t)>=§ |u)(rlU(0))cogw,t) IW(t)) =€~ 2 W(0)), (C5)
sin(w, 1) which is just a symbolic version of Eq&4) and(B5). The
+ )| V(0)) ——E=], (B4) classical one-dimensional lattice vibration problem is iso-
W, morphic to the quantum problem of a single electron propa-
gating on a chain of atoms, each of which has a single orbital
IV(t))=2 [|u){ulV(0))cog w,t) available for the electron. The basis vecto} refers in the
a quantum problem to the orbital on sitg and (n|W¥(t))
—|u)(u|U(0)w, sin(w,t)]. (B5)  (analogous tdn|W(t))) is the amplitude for the electron to

be on this site. The Hamiltonian matrix has elementsl

to hop from sitem to siten which are the quantum analog of

Qn, the matrix elements of the square root of the spring—

constant matrix.

APPENDIX C: COMPLEX NOTATION: RELATION There is one point of difference between the classical

TO SCHRODINGER EQUATION wave on the chain and the quantum electron, namely, vector

|Q=0), which has equal amplitude at every site, is a uni-

For a single harmonic oscillator, the solution of the initial form translation of the classical lattice, with no restoring

value problemx(t)=x(0)cosgt)+[v(0)/w]sin(wt) is often  force, and thus a corresponding null eigenvalue. This has no

For the casdu)=[0), we use the limit as», approaches
zero, sinf, )/, —t.
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analog in the electron propagation problem. The uniformwe can get a complete trajectory over 30 units of time with
translation of the lattice guarantees the existence of soundhe same expense as a single update usindg¥L.once for

like propagation. That is, for a long chain there must bean arbitrary time. We have verified that the two methods
eigenstates of the vibrational problem which look locally like agree well up to times of 700 or greater. Knowledge of
uniform translations and have very low frequencies. Sucteigenvectors was necessary to set up the wave packet; this
states are uniquely resistant to localization, with divergingknowledge was used to fifdv(—At)), which is needed to
localization lengths as the frequency goes to zero. start Eq.(D2).

The usefulness of the Scluioger form of Newton’s laws Once the leading edges of the propagating wave packet
in our case is the following. The Schtfimger equation has a reach the ends of the 3000 “atom” chain, the vector method
conserved quantity, ¥ (t)|¥(t)), or the norm of the wave Eq.(D1) begins to yield spurious effects from the wrapping
function, which expresses particle number conservation. Tharound of the chain implicit in periodic boundary conditions.
corresponding lattice quantitfW(t)|W(t)), must also be Hard wall or free boundary conditions would yield equally
conserved, and it is easy to see that it is justid, twice the ~ spurious reflection effects. These are all avoided by embed-
total (kinetic plus potentialenergy per unit mass of the os- ding the 3000 “atom” chain in a much longer chain whose
cillating masses. The importance of this is that sinceSPring constants are chosen by the same random recipe, and
(W(t)|W(t))==,(n|W(t))|?, we have just written the en- USINg foryvard integration of Newton'’s law, E(P2), for the
ergy as an additive sum of single-site quantities, and we arkng chain.
entitled (if we wish) to define

= 2
E"(t)_(M/2)|<n|W(t)>| (CB) IC. Kittel, Introduction to Solid State Physid¢sViley, New York, 1996,
as the local energi,(t) at siten. In the quantum problem, 7th ed., see especially pp. 99—100.

- : : 2 °N. F. Mott and W. D. Twose, “The theory of impurity conduction,” Adv.
we are curious about the time evolution|6h| W (t))|%, the Phys.10, 107- 1631067 see especially pp. 137-130.

occupancy of siten; S|m|IarIy, in the classical prOblem We  31he original article is P. W. Anderson, “Absence of diffusion in certain
will study the time evolution ofE,(t), a quantity which random lattices,” Phys. Revl09, 1492—-15051958; Anderson’s Nobel
appears naturally in the equations of motion once we adoptaddress is reprinted in “Local moments and localized states,” Rev. Mod.
this notation. Phys.50, 191-201(1978.

“Mott's Nobel address is reprinted in “Electrons in glass,” Rev. Mod.

) Phys.50, 203—208(1978.
APPENDIX D: NUMERICAL METHODS 5P. ShengIntroduction to Wave Scattering, Localization, and Mesoscopic

. . PhenomendAcademic, San Diego, 1995
A workstation with 256 Mbytes of memory can handle 5D. J. Thouless, “Electrons in disordered systems and the theory of local-
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