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Abstract

We give a new approach to the dictionary learning (also known as “sparse coding”)

problem of recovering an unknown n ×m matrix A (for m > n) from examples of the

form

y = Ax + e,

where x is a random vector in Rm with at most τm nonzero coordinates, and e is

a random noise vector in Rn with bounded magnitude. For the case m = O(n), our

algorithm recovers every column of A within arbitrarily good constant accuracy in time

mO(log m/ log(τ−1)), in particular achieving polynomial time if τ = m−δ for any δ > 0, and

time mO(log m) if τ is (a sufficiently small) constant. Prior algorithms with comparable

assumptions on the distribution required the vector x to be much sparser—at most
√

n

nonzero coordinates—and there were intrinsic barriers preventing these algorithms

from applying for denser x.

We achieve this by designing an algorithm for noisy tensor decomposition that can

recover, under quite general conditions, an approximate rank-one decomposition of

a tensor T, given access to a tensor T′ that is τ-close to T in the spectral norm (when

considered as a matrix). To our knowledge, this is the first algorithm for tensor

decomposition that works in the constant spectral-norm noise regime, where there is

no guarantee that the local optima of T and T′ have similar structures.

Our algorithm is based on a novel approach to using and analyzing the Sum of

Squares semidefinite programming hierarchy (Parrilo 2000, Lasserre 2001), and it can

be viewed as an indication of the utility of this very general and powerful tool for

unsupervised learning problems.
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1 Introduction

The dictionary learning (also known as “sparse coding”) problem is to recover an unknown

n ×m matrix A (known as a “dictionary”) from examples of the form

y = Ax + e , (1.1)

where x is sampled from a distribution over sparse vectors in Rm (i.e., with much fewer

than m nonzero coordinates), and e is sampled from a distribution over noise vectors in

R
n of some bounded magnitude.

This problem has found applications in multiple areas, including computational neu-

roscience [OF97, OF96a, OF96b], machine learning [EP07, MRBL07], and computer vision

and image processing [EA06, MLB+08, YWHM08]. The appeal of this problem is that,

intuitively, data should be sparse in the “right” representation (where every coordinate

corresponds to a meaningful feature), and finding this representation can be a useful first

step for further processing, just as representing sound or image data in the Fourier or

wavelet bases is often a very useful preprocessing step in signal or image processing. See

[SWW12, AAJ+13, AGM13, ABGM14] and the references therein for further discussion of

the history and motivation of this problem.

This is a nonlinear problem, as both A and x are unknown, and dictionary learning is a

computationally challenging task even in the noiseless case. When A is known, recovering

x from y constitutes the sparse recovery / compressed sensing problem, which has efficient

algorithms [Don06, CRT06]. Hence, a common heuristic for dictionary learning is to use

alternating minimization, using sparse recovery to obtain a guess for x based on a guess

of A, and vice versa.

Recently there have been several works giving dictionary learning algorithms with

rigorous guarantees on their performance [SWW12, AAJ+13, AAN13, AGM13, ABGM14].

These works differ in various aspects, but they all share a common feature: they give no

guarantee of recovery unless the distribution {x} is over extremely sparse vectors, namely

having less than O(
√

n) (as opposed to merely o(n)) nonzero coordinates. (There have

been other works dealing with the less sparse case, but only at the expense of making

strong assumptions on x and/or A; see Section 1.3 for more discussion of related works.)

In this work we give a different algorithm that can be proven to approximately recover

the matrix A even when x is much denser (up to τn coordinates for some small constant

τ > 0 in some settings). The algorithm works (in the sense of approximate recovery) even

with noise, in the so-called overcomplete case (where m > n), and without making any

incoherence assumptions on the dictionary.

Our algorithm is based on the Sum of Squares (SOS) semidefinite programming hierar-

chy [Sho87, Nes00, Par00, Las01]. The SOS algorithm is a very natural method for solving

non-convex optimization problems that has found applications in a variety of scientific

fields, including control theory [HG05], quantum information theory [DPS02], game the-

ory [Par06], formal verification [Har07], and more. Nevertheless, to our knowledge this
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work provides the first rigorous bounds on the SOS algorithm’s running time for a natural

unsupervised learning problem.

1.1 Problem definition and conditions on coefficient distribution

In this section we formally define the dictionary learning problem and state our result.

We define a σ-dictionary to be an m × n matrix A = (a1| · · · |am) such that ‖ai‖ = 1 for all i,

and A⊤A � σI (where I is the identity matrix). The parameter σ is an analytical proxy for

the overcompleteness m/n of the dictionary A. In particular, if the columns of A are in

isotropic position (i.e., A⊤A is proportional to the identity), then the top eigenvalue of A⊤A

is its trace divided by n, which equals (1/n)
∑

i‖ai‖2 = m/n because all of the ai’s have unit

norm.1 In this work we are mostly interested in the case m = O(n), which corresponds to

σ = O(1).

Nice distributions. Let {x} be some distribution over the coefficients in (1.1). We will

posit some conditions on low-order moments of {x} to allow recovery. Let d be some even

constant that we will use as a parameter (think of d = O(1)). Consider a 0/1 vector x ∈ Rm

with τm nonzero coordinates. Then 1
m

∑

k∈[m] xd
i
= τ and ( 1

m

∑

xd/2
i

)2 = τ2. In other words, if

we select three “typical” coordinates i, j, k, then

xd/2
i

xd/2
j
6 τxd/2

k
. (1.2)

Equation (1.2) will motivate us in defining an analytical proxy for the condition that

the distribution {x} over coefficients is τ-sparse.2

Specifically, in the dictionary learning case, since we are interested in learning all

column vectors, we want every coordinate i to be typical (for example, if the coefficient

xi is always 0 or always 1, we will not be able to learn the corresponding column vector).

Moreover, a necessary condition for recovery is that every pair of coordinates is somewhat

typical in the sense that the events that xi and x j are nonzero are not perfectly correlated.

Indeed, suppose for simplicity that when xi is nonzero, it is distributed like an independent

standard Gaussian. Then if those two events were perfectly correlated, recovery would be

impossible since the distribution over examples would be identical if we replaced {ai, a j}
with any pair of vectors {Πai,Πa j}where Π is a rotation in the plane spanned by {ai, a j}.

1While we do not use it in this paper, we note that in the dictionary learning problem it is always

possible to learn a linear “whitening transformation” B from the samples that would place the columns in

isotropic position, at the cost of potentially changing the norms of the vectors. (There also exists a linear

transformation that keeps the vectors normalized [Bar98, For01], but we do not know how to learn it from

the samples.)
2By using an analytical proxy as opposed to requiring strict sparsity, we are only enlarging the set

of distributions under consideration. However, we will make some additional conditions below, and in

particular requiring low order non-square moments to vanish, that although seemingly mild compared to

prior works, do restrict the family of distributions.
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Given these considerations, if we normalize our distribution so that E xd
i
= 1 for all i,

then it makes sense to assume:3

E xd/2
i

xd/2
j
6 τ , (1.3)

for all i , j and for some τ≪ 1.

We can assume without loss of generality that the marginal distribution {xi} is sym-

metric around zero (namely P[xi = a] = P[xi = −a] for all a), since given two samples

y = Ax+ e and y′ = Ax′ + e′ we can treat them as a single sample y − y′ = A(x − x′)+ e− e′,

and the distribution x− x′, which is only slightly less sparse (and slightly more noisy), has

this property. In particular this means we can assume E x2k+1
i
= 0 for every integer k and

i ∈ [m]. We will strengthen this condition to assume that

E xα = 0 (1.4)

for every non-square monomial xα of degree at most d. (Here, α ∈ {0, 1, . . .}m is a multiindex

and xα denotes the monomial
∏

i xαi

i
. The degree of xα is |α| :=

∑

i αi; we say that xα is

non-square if xα is not the square of another monomial, i.e.,, if α has an odd coordinate.)

We say that a distribution {x} is (d, τ)-nice if it satisfies (1.3) and (1.4).4 One example

for a (d, τ)-nice distribution is the Bernoulli-Gaussian distribution, where xi = yizi with the

yi’s being independent 0/1 random variables satisfying P[yi = 1] = τ and the zi’s being

independent normally distributed random variables (normalized to satisfy E zd
i
= 1/τ).

Indeed, in this case, since (using Cauchy-Schwarz) E zd/2
i

zd/2
j
6

√

E zd
i
E zd

j
= 1/τ,

E xd/2
i

xd/2
j
= (E yiy j)(E zd/2

i
zd/2

j
) 6 τ2(1/τ) = τ .

In fact, we can replace here the normal distribution with any distribution satisfying

E zd
i
= 1, and also allow some dependence between the variables (in particular encapsu-

lating the models considered by [AGM13]). As our discussion above and this example

demonstrates, the parameter τ serves as a proxy to the sparsity of {x}, where a (d, τ)-nice

distribution {x} roughly corresponds to a distribution having at most τn coordinates with

significant mass. (For technical reasons, our formal definition of nice distributions, Defini-

tion 4.1, is somewhat different but is qualitatively equivalent to the above, see Remark 4.4.)

Remark 1.1. Another way to justify this notion of nice distributions is that, as our analysis

shows, it is a natural way to ensure that if a is a column of the dictionary then the random

variable 〈a, y〉 for a random sample y from (1.1) will be “spiky” in the sense that it will

have a large d-norm compared to its 2-norm. Thus it is a fairly clean way to enable

recovery, especially in the setting (such as ours) where we don’t assume orthogonality or

even incoherence between the dictionary vectors.

3Our results generalize to the case where E xd
i
∈ [c,C] for some constants C > c > 0.

4We will also assume that E x2d
i
6 nc for some constant c. This is a very mild assumption, and in some

qualitative sense is necessary to avoid pathological cases such as a distribution that outputs the all zero

vector with probability 1 − n−ω(1).
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Modeling noise. Given a noisy dictionary learning example of the form y = Ax + e, one

can also view it (assuming we are in the non-degenerate case of A having full rank) as

y = A(x+e′) for some e′ (whose magnitude is controlled by the norm of e and the condition

number of A). If e′ has sufficiently small magnitude, and is composed of i.i.d random

variables (and even under more general conditions), the distribution {x + e′} will be nice

as well. Therefore, we will not explicitly model the noise in the following, but rather treat

it as part of the distribution {x} which our definition allows to be only “approximately

sparse”.

1.2 Our results

Given samples of the form {y = Ax} for a (d, τ)-nice {x}, with d a sufficiently large constant

(corresponding to having τn nonzero entries), we can approximately recover the dictionary

A in polynomial time as long as τ 6 n−δ for some δ > 0, and in quasipolynomial time

as long as τ is a sufficiently small constant. Prior polynomial-time algorithms required

the distribution to range over vectors with less than
√

n nonzero entries (and it was not

known how to improve upon this even using quasipolynomial time).

We define the correlation of a pair of vectors u, a, to be Cor(u, a) = 〈u, a〉2/(‖u‖‖a‖)2.

We say that two sets S,T of vectors are ε-close if for every s ∈ S there is t ∈ T such that

Cor(s, t) > 1 − ε, and for every t ∈ T there is s ∈ S such that Cor(s, t) > 1 − ε.5

Theorem 1.2 (Dictionary learning). For every ε > 0, σ > 1, δ > 0 there exists d and a polynomial-

time algorithm R such that for every σ-dictionary A = (a1| · · · |am) and (d, τ = n−δ)-nice {x}, given

nO(1) samples from from {y = Ax}, R outputs with probability at least 0.9 a set that is ε-close to

{a1, . . . , am}.

The hidden constants in the O(·) notation may depend on ε, σ, δ. The algorithm can

recover the dictionary vectors even in the relatively dense case when τ is (a sufficiently

small) constant, at the expense of a quasipolynomial (i.e., nO(log n)) running time. See

Theorems 4.2 and 7.6 for a precise statement of the dependencies between the constants.

Remark 1.3. Our algorithm aims to recover the vectors up to ε-accuracy, with a running

time as in a PTAS that depends (polynomially) on ε in the exponent. Prior algorithms

achieving exact recovery needed to assume much stronger conditions, such as incoherence

of dictionary columns. Because we have not made incoherence assumptions and have

only assumed the signals obey an analytic notion of sparsity, exact recovery is not possible,

and there are limitations on how precisely one can recover the dictionary vectors (even

information theoretically).

We believe that it is important to understand the extent to which dictionary recovery

can be performed with only weak assumptions on the model, particularly given that

5This notion corresponds to the sets {s/‖s‖ : s ∈ S} ∪ {−s/‖s‖ : s ∈ S} and {t/‖t‖ : t ∈ T} ∪ {−t/‖t‖ : t ∈ T}
being close in Hausdorff distance, which makes sense in our setting, since we can only hope to recover the

dictionary columns up to permutation and scaling.
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real-world signals are often only approximately sparse and have somewhat complicated

distributions of errors. When stronger conditions are present that make better error

guarantees possible, our algorithm can provide an initial solution for local search methods

(or other recovery algorithms) to boost the approximate solution to a more precise one.

We believe that understanding the precise tradeoffs between the model assumptions,

achievable precision, and running time is an interesting question for further research.

We also note that approximate recovery is directly useful in some applications (e.g.,

for learning applications one might only need to know if a feature, which is modeled by

the magnitude of 〈a, y〉 for a dictionary column a, is “on” or “off” for a particular sample

y. By an averaging argument, for a typical sample y and feature a, the events that 〈a, y〉 us

large and 〈ã, y〉 is large would have about 1 − ε correlation, where ã is the approximation

we produce for a.

Our main tool is a new algorithm for the noisy tensor decomposition problem, which is of

interest in its own right. This is the problem of recovering the set {a1, . . . , am} of vectors

given access to a noisy version of the polynomial
∑m

i=1〈ai, u〉d = ‖A⊤u‖d
d

in R[u], where

A = (a1| · · · |am) is an n × m matrix.6 We give an algorithm that is worse than prior works

in the sense that it requires a higher value of d, but can handle a much larger level of

noise than these previous algorithms. The latter property turns out to be crucial for the

dictionary learning application. Our result for noisy tensor decomposition is captured by

the following theorem:

Theorem 1.4 (Noisy tensor decomposition). For every ε > 0, σ > 1, there exists d, τ and a

probabilistic nO(log n)-time algorithm R such that for every σ-dictionary A = (a1| · · · |am), given a

polynomial P such that

‖A⊤u‖dd − τ‖u‖
d
2 � P � ‖A⊤u‖dd + τ‖u‖

d
2 , (1.5)

R outputs with probability at least 0.9 a set S that is ε-close to {a1, . . . , am}.

(We denote P � Q if Q− P is a sum of squares of polynomials. Also, as in Theorem 1.2,

there are certain conditions under which R runs in polynomial time; see Section 7.)

The condition (1.5) implies that the input P to R is τ-close to the tensor ‖A⊤u‖d
d
, in the

sense that |P(u)−‖A⊤u‖d
d
| 6 τ for every unit vector u. This allows for very significant noise,

since for a typical vector u, we expect ‖A⊤u‖d
d

to be have magnitude roughly mn−d/2 which

would be much smaller than τ for every constant τ > 0. Thus, on most of its inputs, P

can behave radically differently than ‖A⊤u‖d
d
, and in particular have many local minima

that do not correspond to local minima of the latter polynomial. For this reason, it seems

unlikely that one can establish a result such as Theorem 1.4 using a local search algorithm.7

We give an overview of our algorithm and its analysis in Section 2. Sections 4, 6 and

5 contain the complete formal proofs. In its current form, our algorithm is efficient only

6For a vector v ∈ Rm and p > 1, we define ‖v‖p = (
∑

i |vi|p)1/p.
7The conditions (1.5) and max‖u‖2=1 |P(u) − ‖A⊤u‖d

d
| 6 τ are not identical for d > 2. Nevertheless, the

discussion above applies to both conditions, since (1.5) does allow for P to have very different behavior than

‖A⊤u‖d
d
.
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in the theoretical/asymptotic sense, but it is very simple to describe (modulo its calls to

the SOS solver), see Figure 1. We believe that the Sum of Squares algorithm can be a

very useful tool for attacking machine learning problems, yielding a first solution to the

problem that can later be tailored and optimized.

1.3 Related work

Starting with the work of Olshausen and Field [OF96a, OF96b, OF97], there is a vast body

of literature using various heuristics (most commonly alternating minimization) to learn

dictionaries for sparse coding, and applying this tool to many applications. Here we focus

on papers that gave algorithms with proven performance.

Independent Component Analysis (ICA) [Com94] is one method that can be used for the

dictionary learning in the case the random variables x1, . . . , xn are statistically independent.

For the case of m = n this was shown in [Com94, FJK96, NR09], while the works [LCC07,

GVX14] extend it for the overcomplete (i.e. m > n) case.

Another recent line of works analyzed different algorithms, which in some cases are

more efficient or handle more general distributions than ICA. Spielman, Wang and

Wright [SWW12] give an algorithm to exactly recover the dictionary in the m = n

case. Agarwal, Anandkumar, Jain, Netrapalli, and Tandon [AAJ+13] and Arora, Ge and

Moitra [AGM13] obtain approximate recovery in the overcomplete (i.e. m > n) case, which

can be boosted to exact recovery under some additional conditions on the sparsity and

dictionary [AAN13, AGM13]. However, all these works require the distribution x to be

over very sparse vectors, specifically having less than
√

n nonzero entries. As discussed

in [SWW12, AGM13],
√

n sparsity seemed like a natural barrier for this problem, and

in fact, Spielman et al [SWW12] proved that every algorithm of similar nature to theirs

will fail to recover the dictionary when when the coefficient vector can have Ω(
√

n log n)

coordinates. The only work we know of that can handle vectors of support larger than√
n is the recent paper [ABGM14], but it achieves this at the expense of making fairly

strong assumptions on the structure of the dictionary, in particular assuming some spar-

sity conditions on A itself. In addition to the sparsity restriction, all these works had

additional conditions on the distribution that are incomparable or stronger than ours,

and the works [AAJ+13, AGM13, AAN13, ABGM14] make additional assumptions on the

dictionary (namely incoherence) as well.

The tensor decomposition problem is also very widely studied with a long history

(see e.g., [Tuc66, Har70, Kru77]). Some recent works providing algorithms and analysis

include [AFH+12, AGM12, BCMV14, BCV14]. However, these works are in a rather

different parameter regime than ours— assuming the tensor is given with very little noise

(inverse polynomial in the spectral norm), but on the other hand requiring very low order

moments (typically three or four, as opposed to the large constant or even logarithmic

number we use).

As described in Sections 2 and 2.1 below, the main tool we use is the Sum of Squares
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(SOS) semidefinite programming hierarchy [Sho87, Nes00, Par00, Las01]. We invoke

the SOS algorithm using the techniques and framework introduced by Barak, Kelner

and Steurer [BKS14]. In addition to introducing this framework, [BKS14] showed how

a somewhat similar technical barrier can be bypassed in a setting related to dictionary

learning— the task of recovering a sparse vector that is planted in a random subspace

of Rn given a basis for that subspace. Assuming the subspace has dimension at most d,

[BKS14] showed that the vector can be recovered as long as it has less than min(εn, n2/d2)

nonzero coordinates for some constant ε > 0, thus improving (for d ≪ n2/3) on the prior

work [DH13] that required the vector to be o(n/
√

d) sparse.

Organization of this paper

In Section 2 we give a high level overview of our ideas. Sections 4–6 contain the full proof

for solving the dictionary learning and tensor decomposition problems in quasipolynomial

time, where the sparsity parameter τ is a small constant. In Section 7 we show how this

can be improved to polynomial time when τ 6 n−δ for some constant δ > 0.

2 Overview of algorithm and its analysis

The dictionary learning problem can be easily reduced to the noisy tensor decomposition

problem. Indeed, it is not too hard to show that for an appropriately chosen parameter

d, given a sufficiently large number of examples y1, . . . , yN from the distribution {y = Ax},
the polynomial

P = 1
N

N
∑

i=1

〈yi, u〉2d (2.1)

will be roughly τ close (in the spectral norm) to the polynomial ‖A⊤u‖d
d
, where τ is the

“niceness”/“sparsity” parameter of the distribution {x}. Therefore, if we give P as input to

the tensor decomposition algorithm of Theorem 1.4, we will obtain a set that is close to

the columns of A.8

The challenge is that because τ is a positive constant, no matter how many samples

we take, the polynomial P will always be bounded away from the tensor ‖A⊤u‖d
d
. Hence

we must use a tensor decomposition algorithm that can handle a very significant amount

of noise. This is where the Sum-of-Squares algorithm comes in. This is a general tool for

solving systems of polynomial equations [Sho87, Nes00, Par00, Las01]. Given the SOS

algorithm, the description of our tensor decomposition algorithm is extremely simple (see

Figure 1 below). We now describe the basic facts we use about the SOS algorithm, and

8The polynomial (2.1) and similar variants have been used before in works on dictionary learning. The

crucial difference is that those works made strong assumptions, such as independence of the entries of {x},
that ensured this polynomial has a special structure that made it possible to efficiently optimize over it. In

contrast, our work applies in a much more general setting.
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sketch the analysis of our noisy tensor decomposition algorithm. See the survey [BS14]

and the references therein for more detail on the SOS algorithm, and Sections 4, 5 and 6

for the full description of our algorithm and its analysis (including its variants that take

polynomial time at the expense of requiring dictionary learning examples with sparser

coefficients).

2.1 The SOS algorithm

The SOS algorithm is a method, based on semidefinite programming, for solving a system

of polynomial equations. Alas, since this is a non-convex and NP-hard problem, the

algorithm doesn’t always succeed in producing a solution. However, it always returns

some object, which in some sense can be interpreted as a “distribution” {u} over solutions

of the system of equations. It is not an actual distribution, and in particular we cannot

sample from {u} and get an individual solution, but we can compute low order moments

of {u}. Specifically, we make the following definition:

Definition 2.1 (Pseudo-expectations). Let R[u] denote the ring of polynomials with real

coefficients in variables u = u1 . . .un. Let R[u]k denote the set of polynomials in R[u] of

degree at most k. A degree-k pseudoexpectation operator for R[u] is a linear operator L that

maps polynomials in R[u]k into R and satisfies that L(1) = 1 and L(P2) > 0 for every

polynomial P of degree at most k/2.

For every distributionD overRn and k ∈N, the operatorL defined asL(P) = ED P for

all P ∈ R[x] is degree k pseudo-expectation operator. We will use notation that naturally

extends the notation for actual expectations. We denote pseudoexpectation operators

as ẼD, where D acts as index to distinguish different operators. If ẼD is a degree-k

pseudoexpectation operator for R[u], we say thatD is a degree-k pseudodistribution for the

indeterminates u. In order to emphasize or change indeterminates, we use the notation

Ẽv∼D P(v). In case we have only one pseudodistributionD for indeterminates u, we denote

it by {u}. In that case, we also often drop the subscript for the pseudoexpectation and

write ẼP or ẼP(u) for Ẽ{u} P.

We say that a degree-k pseudodistribution {u} satisfies the constraint {P = 0} if

ẼP(u)Q(u) = 0 for all Q of degree at most k − deg P. Note that this is a stronger con-

dition than simply requiring ẼP(u) = 0. We say that {u} satisfies {P > 0} if it satisfies the

constraint {P − S = 0} where S is a sum-of-squares polynomial S ∈ Rk[u]. It is not hard

to see that if {u} was an actual distribution, then these definitions imply that all points in

the support of the distribution satisfy the constraints. We write P � 0 to denote that P is a

sum of squares of polynomials, and similarly we write P � Q to denote P −Q � 0.

A degree k pseudo-distribution can be represented by the list of nO(k) values of the

expectations of all monomials of degree up to k. It can also be written as an nO(k) ×
nO(k) matrix M whose rows and columns correspond to monomials of degree up to k/2;

the condition that ẼP(u)2
> 0 translates to the condition that this matrix is positive

10



Input: Accuracy parameter ε. A degree d polynomial P such that

‖A⊤u‖dd − τ‖u‖d2 � P � ‖A⊤u‖dd + τ‖u‖d2

where d is even.

Operation:

1. Use the SOS algorithm to find the degree-k pseudo-distribution {u} that maximizes

P(u) while satisfying ‖u‖2 ≡ 1.

2. Pick the polynomial W to be a product of O(log n) random linear functions.

3. Output the top eigenvector of the matrix M where Mi, j = ẼW(u)2uiu j.

Figure 1: Basic Tensor Decomposition algorithm. The parameters k, d, τ are chosen as a function of

the accuracy parameter ε and the top eigenvalue σ of A⊤A. The algorithm outputs a vector u that is ε-close

to a column of A with inverse polynomial probability.

semidefinite. The latter observation can be used to prove the fundamental fact about

pseudo-distributions, namely that we can efficiently optimize over them. This is captured

in the following theorem:

Theorem 2.2 (The SOS Algorithm [Sho87, Nes00, Par00, Las01]). For every ε > 0, k, n,m,M ∈
N and n-variate polynomials P1, . . . ,Pm inRk[u], whose coefficients are in {0, . . . ,M}, if there exists

a degree k pseudo-distribbution {u} satisfying the constraint {Pi = 0} for every i ∈ [m], then we

can find in (n polylog(M/ε))O(k) time a pseudo-distribution {u′} satisfying {Pi 6 ε} and {Pi > −ε}
for every i ∈ [m].

Numerical accuracy will never play an important role in our results, and so we can

just assume that we can always find in nO(k) time a degree-k pseudo-distribution satisfying

given polynomial constraints, if such a pseudo-distribution exists.

2.2 Noisy tensor decomposition

Our basic noisy tensor decomposition algorithm is described in Figure 1. This algorithm

finds (a vector close to) a column of A with inverse polynomial probability. Using similar

ideas, one can extend it to an algorithm that outputs all vectors with high probability; we

provide the details in Section 6. Following the approach of [BKS14], our analysis of this

algorithm proceeds in two phases:

(i) We show that if the pseudo-distribution {u} obtained in Step 1 is an actual distribution,

then the vector output in Step 3 is close to one of the columns of A.

(ii) We then show that the arguments used in establishing (i) generalize to the case of

pseudo-distributions as well.
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Part (i). The first part is actually not so surprising. For starters, every unit vector u that

maximizes P must be highly correlated with some column a of A. Indeed, ‖A⊤a‖d
d
> 1 for

every column a of A, and hence the maximum of P(u) over a unit u is at least 1 − τ. But if

〈u, a〉2 6 1 − ε for every column a then P(u) must be much smaller than 1. Indeed, in this

case

‖A⊤u‖dd =
∑

i

〈ai, u〉d 6 max
i
〈ai, u〉d−2

∑

〈ai, u〉2 . (2.2)

Since
∑

〈ai, u〉2 6
√
σ, this implies that, as long as d ≫ log σ

ε
, ‖A⊤u‖d

d
(and thus also P(u)) is

much smaller than 1.

Therefore, if {u} obtained in Step 1 is an actual distribution, then it would be essentially

supported on the set A = {±a1, . . . ,±am} of the columns of A and their negations. Let us

suppose that {u} is simply the uniform distribution over A. (It can be shown that this

essentially is the hardest case to tackle.) In this case the matrix M considered in Step 3 can

be written as

M = 1
m

m
∑

i=1

W(ai)2(ai)(ai)⊤ ,

where W(·) is the polynomial selected in Step 2. (This uses the fact that this polynomial is

a product of linear functions and hence satisfies W(−a)2 =W(a) for all a.) If W(·) satisfies

|W(a1)| ≫
√

m|W(ai)| (2.3)

for all i , 1 then M is very close to (a constant times) the matrix (a1)(a1)⊤, and hence

its top eigenvector is close to a1 and we would be done. We want to show that the

event (2.3) happens with probability at least inverse polynomial in m. Recall that W is a

product of t = c log n random linear functions for some constant c (e.g., c = 100 will do).

That is, W(u) =
∏t

i=1〈vi, u〉, where v1, . . . , vt are standard random Gaussian vectors. Since

E〈v j, ai〉2 = 1 and these choices are independent, EW(ai)2 = 1 for all i. However, with

probability exp(−O(t)) = m−O(1) it will hold that |〈v j, a1〉| > 2 for all j = 1 . . . t. In this case

|W(a1)| > 2t, while we can show that even conditioned on this event, with high probability

we will have |W(ai)| < 1.9t ≪ |W(a1)|/
√

m for all i, in which case (2.3) holds.9

Part (ii). The above argument establishes (i), but this is all based on a rather bold

piece of wishful thinking— that the object {u} we obtained in Step 1 of the algorithm

was actually a genuine distribution over unit vectors maximizing P. In actuality, we can

only obtain the much weaker guarantee that {u} is a degree k pseudo-distribution for some

k = O(log n). (An actual distribution corresponds to a degree-∞ pseudo-distribution.) The

technical novelty of our work lies in establishing (ii). The key observation is that in all our

arguments above, we never used any higher moments of {u}, and that all the inequalities

we showed boil down to the simple fact that a square of a polynomial is never negative.

(Such proofs are known as Sum of Squares (SOS) proofs.)

9This argument assumes that no other column is 0.9 correlated with a1. However our actual analysis

does not use this assumption, since if two column vectors are closely correlated, we are fine with outputting

any linear combination of them.
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We will not give the full analysis here, but merely show a representative example

of how one “lifts” arguments into the SOS setting. In (2.2) above we used the simple

inequality that for every vector v ∈ Rm

‖v‖dd 6 ‖v‖d−2
∞ ‖v‖22 , (2.4)

applying it to the vector v = A⊤u (where we denote ‖v‖∞ = maxi |vi|). The first (and most

major) obstacle in giving a low degree “Sum of Squares” proof for (2.4) is that this is not

a polynomial inequality. To turn it into one, we replace the L∞ norm with the Lk norm for

some large k (k = O(log m) will do). If we replace ‖v‖∞ with ‖v‖k in (2.4), and raise it to the

k/(d − 2)-th power then we obtain the inequality

(

‖v‖dd
)k/(d−2)

6 ‖v‖kk
(

‖v‖22
)k/(d−2)

, (2.5)

which is a valid inequality between polynomials in v whenever k is an integer multiple of

d − 2 (which we can ensure).

We now need to find a sum-of-squares proof for this inequality, namely that the right-

hand side of (2.5) is equal to the left-hand side plus a sum of squares, that is, we are to

show that for s = k/(d − 2),

(

∑

i

vd
i

)s

�
(

∑

i

v(d−2)s

i

)(

∑

i

v2
i

)s

.

By expanding the s-th powers in this expression, we rewrite this polynomial inequality as

∑

|α|=s

(

s

α

)

vdα �
(

∑

i

v(d−2)s

i

)

∑

|α|=s

(

s

α

)

v2α =
∑

|α|=s

(

s

α

)

v2α
∑

i

v(d−2)s

i
, (2.6)

where the summations involving α are over degree-s multiindices α ∈ {0, . . . , s}n, and
(s
α

)

denotes the multinomial coefficient
(n
α

)

= s!
α1!...αm!

. We will prove (2.6) term by term, i.e., we

will show that vdα � v2α
∑

i v(d−2)s

i
for every multiindex α. Since v2α � 0, it is enough to

show that v(d−2)α �
∑

i v(d−2)s

i
. This is implied by the following general inequality, which

we prove in Appendix A:

Lemma 2.3. Let w1, . . . ,wn be polynomials. Suppose w1 � 0, . . . ,wn � 0. Then, for every

multiindex α, wα �
∑

i w|α|
i
.

We note that d is even, so wi = vd−2
i
� 0 is a square, as required by the lemma.

For the case that |α| is a power of 2, the inequality in the lemma follows by repeatedly

applying the inequality x·y � 1
2
x2+ 1

2
y2, which in turn holds because the difference between

the two sides equals 1
2
(x − y)2. As a concrete example, we can derive w3

1
w2 � w4

1
+ w4

2 in

this way,

w3
1w2 = w2

1 · w1w2 � 1
2
w4

1 +
1
2
w2

1 · w2
2 � 1

2
w4

1 +
1
2

(

1
2
w4

1 +
1
2
w4

2

)

� w4
1 + w4

2 .

13



(The first two steps use the inequality x · y � 1
2
x2 + 1

2
y2. The last step uses that both w1 and

w2 are sum of squares.)

Once we have an SOS proof for (2.5) we can conclude that it holds for pseudo-

distributions as well, and in particular that for every pseudo-distribution {u} of degree at

least k + 2k/(d − 2) satisfying {‖u‖22 = 1},

Ẽ

(

‖A⊤u‖dd
)k/(d−2)

6 Ẽ‖A⊤u‖kkσ
k/(d−2) .

We use similar ideas to port the rest of the proof to the SOS setting, concluding that

whenever {u} is a pseudo-distribution that satisfies {‖u‖2
2
= 1} and {P(u) > 1− τ}, then with

inverse polynomial probability it will hold that

ẼW(u)2〈u, a〉2 > (1 − ε) ẼW2 (2.7)

for some column a of A and ε > 0 that can be made arbitrarily close to 0. Once we have

(2.7), it is not hard to show that the matrix M = ẼW(u)2uu⊤ obtained in Step 3 of our

algorithm is close to aa⊤. Hence, we can recover a vector close to ±a by computing the top

eigenvector10 of the matrix M.

3 Preliminaries

We recall some of the notation mentioned above. We use P � Q to denote that Q − P is a

sum of square polynomials. For a vector v ∈ Rd and p > 1, we denote ‖v‖p = (
∑d

i=1 |vi|p)1/p

and ‖v‖ = ‖v‖2. For any σ > 1, a σ-dictionary is an n × m matrix A = (a1| · · · |am) such

that ‖ai‖ = 1 for all i and the spectral norm of A⊤A is at most σ or ,equivalently, ‖Au‖22 �
σ‖u‖22. Two sets S0, S1 ⊆ Rn are ε-close in symmetrized Hausdorff distance if for all b ∈ 0, 1,

mins∈Sb
maxt∈S1−b

Cor(s, t) > 1 − ε, where Cor(s, t) = 〈s, t〉2/(‖s‖‖t‖)2; we often drop the

qualifier “symmetrized Hausdorff distance” as we will not use another notion of distance

between sets of vectors in this paper.

We use the notation of pseudo-expectations and pseudo-distributions from Section 2.1.

We now state some basic useful facts about pseudo-distributions, see [BS14, BKS14,

BBH+12] for a more comprehensive treatment.

One useful property of pseudo-distributions is that we can find actual distribution that

match their first two moments.

Lemma 3.1 (Matching first two moments). Let {u} be a pseudo-distribution over Rn of degree

at least 2. Then we can efficiently sample from a Gaussian distribution11 {ξ} over Rn such that for

every polynomial Q of degree at most 2,

EQ(ξ) = ẼQ(u).

10 In the final algorithm, instead of computing the top eigenvector of the matrix M, we will sample from

a Gaussian distribution {ξ} that satisfies Eξξ⊤ =M. If M ≈ aa⊤, then such a Gaussian vector ξ is close to ±a

with high probability.
11A Gaussian distribution with covariance Σ ∈ Rn×n and mean µ ∈ Rn has density proportional to

x 7→ exp(−〈x − µ,Σ−1(x − µ)〉/2).
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Proof. By shifting, it suffices to restrict attention to the case whereE ui = 0 for all i. Consider

the matrix M such that M = Ẽuu⊤. The positivity condition implies that M is a positive

semidefinite matrix. Therefore, M admits a Cholesky factorization M = VV⊤. Let {ζ} be

the standard Gaussian distribution on Rn (mean 0 and variance 1 in each coordinate) and

consider the Gaussian distribution {ξ = Vζ}. We are to show that ξ has the same degree-2

moments as the pseudo-distribution {u}. Indeed,

E ξξ⊤ = EVζζ⊤V⊤ = VV⊤ =M = Ẽ uu⊤ .

Here, we use that E ζζ⊤ is the identity because ζ is a standard Gaussian vector. �

Another property we will use is that we can reweigh a pseudo-distribution by a positive

polynomial W to obtain a new pseudo-distribution that corresponds to the operation on

actual distributions of reweighing the probability of an element u proportional to W(u).

Lemma 3.2 (Reweighing). Let {u} be a degree-k pseudo-distribution. Then for every SOS

polynomial W of degree d < k with ẼW > 0, there exists a degree-(k− d) pseudo-distribution {u′}
such that for every polynomial P of degree at most k − d

Ẽ
{u′}

P(u′) = 1
Ẽ{u}W(u)

Ẽ
{u}

W(u)P(u) .

Proof. The functional Ẽ{u′} is linear and satisfies Ẽ{u′} 1 = 1, and so we just need to verify

the positivity property. For every polynomial P of degree at most (k − deg W)/2,

Ẽ
{u′}

P(u′)2 = (Ẽ
{u}

W(u)P(u)2)/(Ẽ
{u}

W(u))

but since W is a sum of squares, WP2 is also a sum of squares and hence the denominator

of the left-hand side is non-negative, while the numerator is by assumption positive. �

4 Dictionary Learning

We now state our formal theorem for dictionary learning. The following definition of nice

distributions captures formally the conditions needed for recovery. (It is equivalent up to

constants to the definition of Section 1.1, see Remark 4.4 below.)

Definition 4.1 (Nice distribution). Let τ ∈ (0, 1) and d ∈Nwith d even. A distribution {x}
over Rm is (d, τ)-nice if it satisfies the following properties:

1. E xd
i
= 1 for all i ∈ [m],

2. E xα 6 τ for all degree-d monomials xα < {xd
1
, . . . , xd

m}, and

3. E xα = 0 for all non-square degree-d monomials xα.
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Here, xα denotes the monomial xα1

1
· · · xαm

m . Furthermore, we require that xd
i

to have polyno-

mial variance so that E x2d
i
= nO(1). To avoid some technical issues, (d, τ)-nice distributions

are also assumed to be (d′, τ)-nice after rescaling for all even d′ 6 d. Concretely, when we

say that {x} is a (d, τ)-nice distribution, we also imply that for every positive even d′ < d,

there exists a rescaling factor λ such that the distribution {λ ·x} satisfies the three properties

above (plus polynomial variance bound).

Let us briefly discuss the meaning of these conditions. The condition E x2d
i
= nO(1) is a

weak non-degeneracy condition, ruling out distributions where the main contribution to

some low order moments comes from events that happen with super-polynomially small

probability. Condition 1 stipulates that we are in the symmetric case, where all coefficients

have more or less the same magnitude. (We can remove symmetry by either dropping

this condition or allowing the dictionary vectors to have different norms; see Remark 6.2.)

Condition 2 captures to a certain extent both the sparsity conditions and that that the

random variables xi and xi for i , j are not too correlated. Condition 3 stipulates that

there is significant “cancellations” between the negative and positive coefficients. While

it is satisfied by many natural distributions, it would be good to either show that it

can be dropped, or that it is inherently necessary. The requirement of having expectation

zero—perfect cancellation—can be somewhat relaxed to having a sufficiently small bound

(inverse polynomial in n) on the magnitude of the non-square moments.

We can now state our result for dictionary learning in quasipolynomial time. The

result for polynomial time is stated in Section 7.

Theorem 4.2 (Dictionary learning, quasipolynomial time). There exists an algorithm that for

every desired accuracy ε > 0 and overcompleteness σ > 1 solves the following problem for every

(d, τ)-nice distribution with d > d(ε, σ) = O(ε−1 log σ) and τ 6 τ(ε, σ) = (ε−1 log σ)O(ε−1 log σ)

in time n(1/ε)O(1)(d+log m): Given nO(d)/poly(τ) samples from a distribution {y = Ax} for a σ-

overcomplete dictionary A and (d, τ)-nice distribution {x}, output a set of vectors that is ε-close to

the set of columns of A (in symmetrized Hausdorff distance).

In the tensor decomposition problem, we are given a polynomial of the form ‖A⊤u‖d
d
∈ R[u]

(or equivalently a tensor of the form
∑

i a⊗d
i

) and our goal is to recover the vectors a1, . . . , am

(up to signs). It turns out the heart of the dictionary learning problem is solving a variant

of the tensor decomposition problem, where we are not given the polynomial ‖A⊤u‖d
d

but

a polynomial close to it in spectral norm. (The magnitude of this error is related to the

niceness of the distribution, which means that we cannot assume it to be arbitrarily small.)

Theorem 4.3 (Noisy tensor decomposition). There exists an algorithm that for every desired

accuracy ε > 0 and overcompleteness σ > 1 solves the following problem for every degree d >

d(ε, σ) = O(1/ε) · log σ and noise parameter τ 6 τ(ε) = Ω(ε) in time n(1/ε)O(1)(d+log m): Given a

degree-d polynomial P ∈ R[u] that is τ-close to ‖A⊤u‖d
d

in spectral norm for a σ-overcomplete

dictionary A, i.e.,

‖A⊤u‖dd + τ‖u‖
d
2 � P(u) � ‖A⊤u‖dd − τ‖u‖

d
2 ,

output a set of vectors that is ε-close to the set of columns of A (in symmetrized Hausdorff distance).
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Remark 4.4 (Different notions of niceness). In Section 1.1 we defined (d, τ)-niceness in a

different way. Instead of requiring E xα 6 τ for every monomial xα < {xd
1
, . . . , xd

m}, we

only required this condition for some of these monomials, namely monomials of the form

xα = xd/2
i

xd/2
j

. It turns out that these two definitions are equivalent up to a factor d in the

exponent of τ. (This loss of a factor of d in the exponent is OK, since in our applications

τ will anyway be exponentially small in d.) To see the equivalence of the definitions,

note that every degree-d square monomial xα < {xd
1
, . . . , xd

m} involves at least two distinct

variables, say xi and x j, and therefore xα = E x2
i
x2

j
xα
′
, where xα

′
is a monomial of degree

d − 4 (so that
∑

k α
′
k
= d − 4). By Hölder’s Inequality, we can bound its expectation

E x2
i x2

j x
α′
6

(

E xd/2
i

xd/2
j

)4/d (

E xβ
)(d−4)/d

,

for β = d
d−4
α′. Since

∑

βk = d, the Arithmetic-Mean Geometric-Mean Inequality together

with our normalization E xd
k
= 1 implies

E xβ 6
∑

k

βk

d
· E xd

k = 1 ,

thus proving that E xα 6 (E xd/2
i

xd/2
j

)4/d for every degree-d square monomial xα <

{xd
1
, . . . , xd

m}.

4.1 Dictionary learning via noisy tensor decompostion

We will prove Theorem 4.3 (noisy tensor decomposition) in Section 5 and Section 6. At this

point, let us see how it yields Theorem 4.2 (dictionary learning, quasipolynomial time).

The following lemma gives the connection between tensor decomposition and dictionary

learning.

Lemma 4.5. Let {x} be a (d, τ)-nice distribution over Rm and A a σ-overcomplete dictionary.

Then,12

‖A⊤u‖dd + τσ
ddd‖u‖d2 � Ex 〈Ax, u〉d � ‖A⊤u‖dd .

Proof. Consider the polynomial p(v) = ‖v‖d
d
+ τdd‖v‖d2 −Ex〈x, v〉d in the monomial basis for

the variables v1, . . . , vm. All coefficients corresponding to non-squared monomials are zero

(by the third property of nice istibutions). All other coefficients are nonnegative (by the

first and second property of nice distributions). We conclude that p is a sum of squares.

The relation ‖A⊤u‖d
d
+τσdd‖u‖d2 � Ex〈Ax, u〉d follows by substituting v = A⊤u and using the

relation ‖A⊤u‖d2 � σd‖u‖d2.

For the lower bound, we see that the polynomial q(v) = Ex〈x, v〉d−‖v‖dd is a nonnegative

combination of square monomials. Thus, q(v) � 0 and the desired bound follows by

substituting v = A⊤u. �

12The factor dd can be somewhat reduced, e.g., to dd/2. However, this improvement would be hidden by

O(·) notation at a later point. For simplicity, we will work with the simple dd bound at this point.
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Proof of Theorem 4.2. If we take a sufficiently large number of samples y1, . . . , yN from the

distribution {y = Ax} (e.g., N > nO(d)/τ2 will do), then with high probability every coeffi-

cient of the polynomial P = 1
N

∑

〈yi, u〉d ∈ R[u] would be τ/nd-close to the corresponding

coefficient of E〈y, u〉d. Therefore, ±(P − E〈Ax, u〉d) � τ · ‖u‖d2. Together with Lemma 4.5 it

follows that

‖A⊤u‖dd + 2τσddd‖u‖d2 � P � ‖A⊤u‖dd − 2τσddd‖u‖d2 .
Therefore, we can apply the algorithm in Theorem 4.3 (noisy tensor decomposition) for

noise parameter τ′ = 2τkddd to obtain a set S of unit vectors that is ε-close to the set of

columns of A (in symmetrized Hausdorff distance). �

5 Sampling pseudo-distributions

In this section we will develop an efficient algorithm that behaves in certain ways like

a hypothetical sampling procedure for low-degree pseudo-distributions. (Sampling pro-

cedures, even inefficient or approximate ones, cannot exist in general for low-degree

pseudo-distributions [Gri01, Sch08].) This algorithm will be a key ingredient of our algo-

rithm for Theorem 4.3 (noisy tensor decomposition, quasipolynomial time).

Here is the property of a sampling procedure that our algorithm mimics: Suppose

we have a probability distribution {u} over unit vectors in Rm that satisfies E〈c, u〉k > e−εk

for some unit vector c ∈ Rm, small ε > 0, and k ≫ 1/ε (so that e−εk is very small). This

condition implies that if we sample a vector u from the distribution then with probability

at least e−εk/2 the vector satisfies 〈c, u〉k > e−εk/2, which means 〈c, u〉2 > e−2ε/2−1/k
> 1−O(ε).

(Since e−εk was very small to begin with, the additional factor 2 for the correlation and the

probability is insubstantial.)

The algorithm in the following theorem achieves the above property of sampling

procedures with the key advantage that it applies to any low-degree pseudo-distributions.

Theorem 5.1 (Sampling pseudo-distributions). For every even k > 0, there exists a randomized

algorithm with running time nO(k) and success probability 2−k/ poly(ε) for the following problem:

Given a degree-k pseudo distribution {u} over Rn that satisfies the polynomial constraint ‖u‖22 = 1

and the condition Ẽ〈c, u〉k > e−εk for some unit vector c ∈ Rn, output a unit vector c′ ∈ Rn with

〈c, c′〉 > 1 −O(ε).

The result follows from the following lemmas.

Lemma 5.2. Let c ∈ Rn be a unit vector and let {u} be a degree-(k + 2) pseudo-distribution over

R
n that satisfies the polynomial constraint ‖u‖22 = 1. Suppose Ẽ〈c, u〉k > e−εk for ε > 0. Then,

there exists a degree-k sum-of-squares polynomial W such that

ẼW · 〈c, u〉2 > (1 −O (ε)) ẼW .

Furthermore, there exists a randomized algorithm that runs in time nO(k) and computes such a

polynomial W with probability at least 2−O(k/poly(ε)).
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Proof. Let us first analyze the random polynomial w = 〈ξ, u〉2 for an n-dimensional stan-

dard Gaussian vector ξ. Let τM be such that a standard Gaussian variable ξ0 conditioned

on ξ0 > τM has expectation Eξ0>τM
ξ2

0 = M. This threshold satisfies τM 6 M and thus

P{ξ0 > τM} > 2−O(M2). Conditioned on the event 〈c, ξ〉 > τM+1, the expectation of the

random polynomial w satisfies

E
{ξ | 〈c,ξ〉>τM+1}

w = (M + 1) · 〈c, u〉2 + ‖u‖22 − 〈c, u〉2 =M · 〈c, u〉2 + ‖u‖22 .

(Here, we use that ξ = 〈c, ξ〉c + ξ′, where ξ′ is a standard Gaussian vector in the subspace

orthogonal to c so that E〈ξ′, u〉2 = ‖u‖2
2
− 〈c, u〉2.)

Let w(1), . . . ,w(k/2) be independent samples from the distribution {w | 〈c, ξ〉 > τM+1}. Then,

let W = w(1) · · ·w(k/2)/Mk/2. The expectation of this random polynomial satisfies

EW =
(

〈c, u〉2 + 1
M
· ‖u‖22

)k/2
.

Let W = (〈c, u〉2+1/M)k/2. Since the pseudo-distribution {u} satisfies the constraint ‖u‖22 = 1,

it also satisfies the constraint EW =W. We claim that,

W · 〈c, u〉2 �
(

1 − 2
M

)

·W −
(

1 − 1
M

)k/2
. (5.1)

Consider the univariate polynomial

p(α) = α2 · (α2 + 1
M

)k/2 + (1 − 1
M

)k/2 − (1 − 2
M

)(α2 + 1
M

)k/2 .

This polynomial is nonnegative on R, because for α2
> 1 − 2/M, the first term cancels the

last term, and for α2 < 1− 2/M, the second term cancels the last term. Since p is univariate

and nonnegative on R, it follows that p is a sum of squares. Hence, equation (5.1) follows

by substituting α = 〈c, u〉.
The following bound shows that there exists a polynomial W that satisfies the conclu-

sion of the lemma,

E
W
ẼW · 〈c, u〉2 > (1 − 2

M
)E

W
ẼW − e−k/2M

> (1 − 2
M
− e−1/2εM)E

W
ẼW

> (1 −O (ε))E
W
ẼW . (5.2)

The first step uses (5.1) and the bound (1 − 1/M) 6 e−1/M. The second step uses that

EW ẼW = ẼW > Ẽ〈c, u〉k > e−εk (premise of the lemma). For the third step, we choose

M = (1/ε) · log(1/ε) to trade-off the two error terms 2/M and e−1/2εM.

To show the second part of the lemma, we give a randomized algorithm that runs

in time nO(k) and computes a polynomial W0 with the desired properties with prob-

ability 2−O(k/ poly(ε)). The algorithm samples independent standard Gaussian vectors

ξ(1), . . . , ξ(k/2) and outputs the polynomial W0 =
1

MK/2 〈ξ(1), u〉2 · · · 〈ξ(k/2), u〉2. We are to show that
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ẼW0〈c, u〉2 > (1−O(ε)) ẼW0 with probability 2−O(k/poly(ε)) over the choice of W0. The distri-

bution {W}has density 2−O(M2) in the distribution {W0}, in the sense that there exists an event

EwithP{W0} E > 2−O(M2) and {W} = {W0 | E}. (The event is E = {〈ξ(1), c〉, . . . , 〈ξ(k/2), c〉 > τM+1}).
We will first bound the second moment EW(ẼW)2. The main step is the following

bound on the expectation of the random polynomial w(u)w(u′) ∈ R[u, u′]4,

E
{ξ|〈c,ξ〉>τM+1}

w(u)w(u′) = E
{ξ|〈c,ξ〉>τM+1}

(

〈c, ξ〉〈c, u〉+ 〈ξ′, u〉
)2(

〈c, ξ〉〈c, u′〉 + 〈ξ′, u′〉
)2

� 2100M2
(

〈c, u〉2 + 1
M
‖u‖

)2(

〈c, u′〉2 + 1
M
‖u′‖

)2
(5.3)

In the second step, ξ′ is a standard Gaussian vector in the subspace orthogonal to c. The

third step uses the crude upper bound Eξ|〈c,ξ〉>τM+1
〈c, ξ〉4 6 210M2

for M > 1.

The inequality (5.3) implies the second moment bound EW(ẼW)2
6 2100kM2

(EW ẼW)2.

By Lemma 5.3 and (5.2), it follows that

P
W

{

ẼW · (1 − 〈c, u〉2) 6 O(ε) ẼW
}

> ε2 · 2−100kM2

= 2−O(kM2) .

Since {W} has density 2−O(M2) in {W0}, it also follows that

P
W0

{

ẼW0 · 〈c, u〉2 > (1 −O(ε)) ẼW0

}

> 2−O(kM2) . �

Lemma 5.3. Let {A,B} be a distribution that satisfies 0 6 A 6 B. Suppose EA 6 εEB and

EB2
6 t(EB)2. Then, P{A 6 eδεB} > δ2/9t for all 0 6 δ 6 1.

Proof. Let 1good be the 0/1 indicator of the event {A 6 eδεB} and let pgood = E1good. Let

1bad = 1 − 1good be the 0/1 indicator of the complement. The expecation of 1goodB satisfies

the lower bound Ẽ1goodB > (1 − e−δ) ẼB because εEB > EA > eδεE1badB and thus

Ẽ1badB > e−δ ẼB. At the same time, we can upper bound the expectation of 1goodB in

terms of pgood using Cauchy–Schwarz and the second moment bound EB2
6 t(EB)2,

E1goodB 6 (E1
2
good · EB2)1/2

6 (pgood · t)1/2
EB.

It follows that pgood > (1 − e−δ)2/t > δ2/9t. �

Lemma 5.4. Let c ∈ Rn be a unit vector and let {u} be a degree-2 pseudo-distribution over Rn

that satisfies the constraint ‖u‖22 = 1. Suppose Ẽ〈c, u〉2 > 1 − ε for ε > 0. Then, there exists a

distribution {v} over unit vectors in Rn such that P{〈c, v〉2 > 1 − 2ε} = Ω(1). Moreover, there

exists a randomized polynomial-time algorithm to sample from such a distribution {v}.

Proof. Let {ξ} be the Gaussian distribution with the same first two moments as {u} (so

that EQ(v) = ẼQ(u) for every degree-2 polynomial Q). (See Lemma 3.1.) We choose

v = ξ/‖ξ‖2. Since the first two moments of {ξ} and {u} match, we have E(‖ξ‖22 − 〈c, ξ〉2) 6

εE‖ξ‖22. Since {ξ} is a Gaussian distribution, it satisfiesE‖ξ‖42 6 O(E‖ξ‖22)2. By Lemma 5.3,

it follows that the event {〈c, ξ〉2 > (1 − 2ε)‖ξ‖22} has constant probability. This event is

equivalent to the event {〈c, v〉2 > 1 − 2ε}. �
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6 Noisy tensor decomposition

In this section we will prove Theorem 4.3 (noisy tensor decomposition, quasi-polynomial

time).

Theorem (Restatement of Theorem 4.3). There exists an algorithm that for every desired

accuracy ε > 0 and overcompleteness σ > 1 solves the following problem for every degree

d > d(ε, σ) = O(1/ε) · log σ and noise parameter τ 6 τ(ε) = Ω(ε) in time n(1/ε)O(1)(d+log m): Given

a degree-d polynomial P ∈ R[u] that is τ-close to ‖A⊤u‖d
d

in spectral norm for a σ-overcomplete

dictionary A, i.e.,

‖A⊤u‖dd + τ‖u‖
d
2 � P(u) � ‖A⊤u‖dd − τ‖u‖

d
2 ,

output a set of vectors that is ε-close to the set of columns of A (in symmetrized Hausdorff distance).

The proof combines the following lemma with Theorem 5.1 (sampling pseudo-

distributions). The lemma formalizes the following fact in terms of low-degree pseudo-

distributions: the polynomial ‖A⊤u‖d
d
∈ R[u] assumes large values over the sphere only at

points close to one of the columns of A. Note that the conclusion of the lemma allows us to

reconstruct a column of A in time nO(k) using Theorem 5.1 (sampling pseudo-distributions).

Lemma 6.1. Let A be a σ-overcomplete dictionary and let {u} be a degree-3k pseudo-distribution

over Rn that satisfies the polynomial constraints {‖A⊤u‖d
d
> e−δd, ‖u‖22 = 1}. Then, there exists a

column c of A such that Ẽ〈c, u〉k > e−εk for ε = O(δ +
log σ

d
+

log m

k
).

Proof. First, we claim that the pseudo-distribution {u} also satisfies the constraint {‖A⊤u‖k
k
>

e−δ
′k} where δ′ = d

d−2
δ +

log σ

d−2
. The proof of this claim follows by a sum-of-squares version

of the following form of Hölder’s inequality,

‖v‖d 6 ‖v‖1−2/d
k

· ‖v‖2/d
2
.

(This inequality holds for all norms ‖·‖k with k > 1, including ‖·‖∞.) In particular, if k is

an integer multiple of d − 2, the following relation of degree k + 2k/(d − 2) holds among

polynomials in R[v],

(‖v‖dd)k/(d−2) � (‖v‖22)k/(d−2) · ‖v‖kk .

See the overview section for a proof of this fact. By substituting v = A⊤u and using the

facts that ‖A⊤u‖22 � σ‖u‖2 and that {u} satisfies the constraint {‖u‖2 = 1}, we get that {u}
satisfies {‖A⊤u‖k

k
> (‖A⊤u‖d

d
)k/(d−2)/σk/(d−2)}, which implies the claim because {‖A⊤u‖d

d
> e−δd}.

By an averaging argument, there exists some column c of A that satisfies Ẽ〈c, u〉k >
Ẽ‖A⊤u‖k

k
/m > e−δ

′k/m = e−εk for ε = δ′ +
log m

k
as desired. �
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Proof of Theorem 4.3 from Lemma 6.1 and Theorem 5.1. Our tensor decomposition

algorithms constructs a set of unit vectors S ⊆ Rm in an iterative way. We will determine

the choice of the parameters k > 1 and γ > 0 later.

– Start with S = ∅.
– While there exists a degree-k pseudo-distribution {u} that satisfies the constraints

{P(u) > 1 − τ, ‖u‖22 = 1} and {〈s, u〉2 6 1 − γ} for every s ∈ S:

– Use the algorithm in Theorem 5.1 (sampling pseudo-distributions) to obtain

in time nk/ poly(ε) a unit vector c′ ∈ Rm that satisfies P(c′) > e−εd − τ for ε =

O(τ
d
+

log σ

d

log m

k
) (by Lemma 6.1) and 〈c′, s〉2 6 1 − γ/10 for every vector s ∈ S.

– Add the vector c′ to the set S.

Let us first explain why we can find a vector c′ that satisfies the above conditions if

there exists such a pseudo-distribution {u}. Recall that the input polynomial P satisfies

±(P−‖A⊤u‖d
d
) � τ‖u‖d2. Therefore, the above pseudo-distributions satisfy {‖A⊤u‖d

d
> 1−2τ =

e−δd} for δ = O(τ/d). Hence, Lemma 6.1 implies that a column c of A satisfies Ẽ〈c, u〉k > e−ε
′k

for ε′ = O((τ
d
+

log σ

d

log m

k
). Thus, the algorithm of Theorem 5.1 will output a unit vector

c′ with 〈c, c′〉k > e−O(ε′)k = e−εk with probability at least 2−k/ poly(ε). Note that the condition

〈c, c′〉k > e−εk implies that P(c′) > e−εd− τ. By repeating the algorithm 2k/poly(ε) times we can

ensure that with high probability one of the vectors found in this way satisfies the desired

condition. We claim that the condition 〈c, c′〉2 > 1 − O(ε) implies that 〈c′, s〉 6 1 − γ/10

for all s ∈ S (assuming a suitable choice of γ). Let γ′ = 1
2
‖(c′)⊗2 − s⊗2‖2. We are to

show γ′ > γ/10. By the triangle inequality, ‖c⊗2 − s⊗2‖2 6 O(ε)+ 4γ′. Together with an SOS

version of the triangle inequalitity, ‖s⊗2−u⊗2‖2 � 8γ′+O(ε)+2‖c⊗2−u⊗2‖2 . Since {u} satisfies

{〈s, u〉2 6 1−γ} it follows that {2γ 6 8γ′+O(ε)+2‖c⊗2−u⊗2‖2}, which implies the constraint

{〈c, u〉2 6 1 − γ/2 + 2γ′ +O(ε)} (using the constraint {‖u‖2 = 1}). However, since c satisfies

Ẽ〈c, u〉k > e−εk, we have γ/2−2γ′−O(ε) 6 O(ε), which means that γ′ > γ/4−O(ε) > γ/10 as

desired. (Here, we are assuming that γwas chosen so that γ/ε is a large enough constant.)

Next we claim that every vector in s ∈ S is close to one of the columns of A. Indeed,

every such vector satisfies ‖A⊤s‖d
d
> e−εd − 2τ, which by Lemma 6.1 implies that 〈s, c〉2 >

1 −O(ε + τ/d + (log σ)/d) = 1 −O(ε) for a column c of A.

Next we claim that if the algorithm terminates then for every column c of A there

exists a vector s ∈ S with 〈c, s〉2 > 1 − γ. Indeed, if there exists a column that violates this

condition, then it would satisfy all constraints for the pseudo-distribution, which means

that the algorithm does not terminate at this point.

To finish the proof of the theorem it remains to bound the number of iterations of

the algorithm. We claim that the number of iterations is bounded by the number m of

columns of A because in each iteration the vectors in S will cover at least one more of the

columns of A. As observed before, every vector s ∈ S is close to a column cs of A in the

sense that ‖s⊗2 − c⊗2
s ‖2 = O(ε). However, since c′ satisfies 〈c′, s〉2 6 1 − γ/10, we have by

triangle inequality γ/5 6 ‖(c′)⊗2 − s⊗2‖2 6 2‖(c′)⊗2 − c⊗2
s ‖2 + 2‖s⊗2 − c⊗2

s ‖2, which means that

‖(c′)⊗2 − c⊗2
s ‖2 > γ/10 − O(ε). Therefore, the vector c′ is not close to any of the vectors cs

for s ∈ S, which means that it has to be close to another column of A. (Here, we are again
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assuming that γ was chosen so that γ/ε is a large enough constant.) �

Remark 6.2 (Handling columns with varying norms). Many of our techniques also apply

to dictionaries with columns of different ℓ2 norms. In particular, using the same algorithm,

we can reconstruct in this case a single vector close to one of the columns. More generally,

we can reconstruct a set of vectors that is close to the set of columns with maximum norm.

By adapting the algorithm somewhat we can also achieve recovery guarantees for

columns with significantly smaller norm than the maximum norm. Concretely, we can

modify the algorithm so that we ask for pseudo-distributions satisfying P(u) > ρ, where ρ

is a parameter that we gradually decrease so we can get all the vectors. However, we need

to also change the right-hand side of the constraint 〈u, s〉2 6 1−γ to a value that decreases

with ρ. Otherwise, the algorithm might not terminate, as there can be exponentially

vectors that are somewhat far from a column vector c, and all of them will have fairly

large value for P(·). Such a modified algorithm can still obtain all the column vectors (up

to a small error) if we assume that the they are sufficiently incoherent. That is, 〈a, a′〉 6 µ for

every distinct columns a, a′ of A with µ depending on the norm ratios. Similar (and in fact

often stronger) assumptions were made in prior works on dictionary learning. (However,

we need these assumptions only when the vectors have different norms.)

7 Polynomial-time algorithms

In this section we show how we can improve our tensor decomposition algorithm when

we have access to examples of very sparse linear combinations of the dictionary columns,

culminating in Theorem 7.6 that gives a polynomial-time algorithm for the dictionary

problem for the case the distribution is (d, τ)-nice for τ = n−Ω(1).

7.1 Sampling pseudo-distributions

The following theorem refines Theorem 5.1 (sampling pseudo-distributions) reconstruct-

ing a vector c′ that is close to a target vector c. We make an additional assumption about

having access to samples from a distribution {W} over sum-of-squares polynomials. This

distribution comes with a noise parameter τ that controls how well the distribution corre-

lated with the target vector c. If this noise parameter is sufficiently small, samples from

distribution allow the algorithm to work under a more refined but milder condition on

the pseudo-distribution {u}. For our dictionary learning algorithm, we can satisfy this

condition when the noise parameter τ of the distribution {W} satisfies τ ≪ m1/k. (The

noise parameter τ roughly coincides with the niceness parameter of the distribution {x}.)

Theorem 7.1 (refined sampling from pseudo-distributions). For every k > 1, there exists a

nO(k)-time algorithm with the following guarantees: Suppose the input of the algorithm is a pseudo-

distribution {u} over Rn and a sum-of-squares polynomial W ∈ R[u] satisfying the following

properties for some unit vector c ∈ Rn:
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– The sum-of-squares polynomial W is chosen from a distribution {W} with with mean W̄ =

EW W and second moment EW W(u)W(u′) � M · W̄(u) · W̄(u′) satisfying

〈c, u〉2(1+k) � W̄ � (〈c, u〉2 + τ‖u‖2
2
)1+k . (7.1)

– The pseudo-distribution {u} has degree 2(1 + 2k) and satisfies the polynomial constraint

‖u‖22 = 1 and the conditions

Ẽ〈c, u〉2(1+2k)
> e−εk Ẽ〈c, u〉2 and Ẽ〈c, u〉2 > τk. (7.2)

Then, the output of the algorithm is a unit vector c′ ∈ Rn such that with probability at least

τ2/M2O(k)/poly(ε),

〈c, c′〉2 > e−O(ε+3(1/k+1)τ) .

The following lemma is the main new ingredient of the proof of this theorem.

Lemma 7.2. Let {u} be a degree-2(1+2k) pseudodistribution that satisfies the constraint ‖u‖22 = 1.

Let {W} be a distribution over sum-of-squares polynomials. Suppose {u} and {W} satisfy the

conditions in Theorem 7.1. Then, Ẽu W · 〈c, u〉2k
> e−ε

′k
Ẽu W with probability τ2/M2O(k) over the

choice of W for ε′ = ε + 3(1/k + 1)τ.

Note that the conclusion of the lemma implies that we can recover a vector c′ with

〈c′, c〉2 > 1−O(ε′) using Theorem 5.1 in time nk/poly(ε′) with probability 2O(k)/ poly(ε′). Therefore,

Theorem 7.1 follows by combining Lemma 7.2 with Theorem 5.1.

Proof of Lemma 7.2. We will show that the polynomials W̄〈c, u〉k and W̄ have similar pseudo-

expectations by comparing them to the polynomials 〈c, u〉2. We will show that Ẽ W̄〈c, u〉k
For brevity, choose polynomials α = 〈c, u〉2 ∈ R[u] and β = ‖u‖2 ∈ R[u] so that 0 � α � β.
Then,

α1+k � W̄ � (α + τβ)1+k = α

k
∑

i=0

(

1 + k

i

)

αk−i(τβ)i + (τβ)k+1

� αβk

k
∑

i=0

(1 + k)iτi + τk+1βk+1 �
(

1 + 2(t + k)τ
)

αβk + τk+1βk+1 . (7.3)

Here, the last step uses the assumption (1 + k)τ 6 1/2 to bound the series
∑k

i=1(1 + k)iτi
6

2(t + k)τ. It follows that

Ẽ W̄〈c, u〉k > Ẽα1+2k
> e−εk Ẽα .

(Here, we used (7.2)) At the same time,

Ẽ W̄ 6
(

1 + 2(1 + k)τ
)

Ẽα + τk+1
6

(

1 + 2(1 + k + 1)τ
)

Ẽα 6 e2(2+k)τ
Ẽα .

Here, the second step uses the assumption τk+1
6 τ Ẽ〈c, u〉2. Together, the two bounds

imply Ẽ W̄〈c, u〉2k
> e−εk−2(2+k)τ Ẽ W̄.
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In order to lower bound the probability of the event {ẼW〈c, u〉2k
> e−ε

′k
ẼW}, we

will upper bound the second moment E(ẼW)2 and apply Lemma 5.3. By the premise

EW(u)W(u′) �M · W̄(u)W̄(u′), we get

E

(

ẼW
)2
= Ẽ
{u}{u′}

EW(u)W(u′) � Ẽ
{u}{u′}

M · W̄(u)W̄(u′) =M ·
(

Ẽ W̄
)2
.

By Lemma 5.3, the probabilility of the event {ẼW〈c, u〉2k
> (e−εk−2(2+k)τ − δ) ẼW} is at least

Ω(δ2/M). We choose δ = τ2−O(k) to lower bound the probability of the event {ẼW〈c, u〉2k
>

e−ε
′k
ẼW} for ε′ = ε + 3(1/k + 1)τ byΩ(τ2/M2O(k)). �

7.2 Tensor decomposition

The following lemma shows that a pseudo-distribution {u} that satisfies the constraints

{‖A⊤u‖2(t+k)

2(t+k)
≈ 1, ‖u‖22 = 1} also satisfies the condition of Theorem 7.1 for one of the columns

of the dictionary A.

Lemma 7.3. Let A ∈ Rn×m be a σ-overcomplete dictionary and let {u} be a degree-2(k + t)

pseudo-distribution over Rn that satisfies ‖u‖22 = 1. Suppose {u} also satisfies the polynomial

constraint ‖A⊤u‖2(1+k)

2(1+k)
> e−2(k−1)εσ for k > 1. Then, there exists a column c of A such that

Ẽ〈c, u〉2k
> e−2εk

Ẽ〈c, u〉2 and Ẽ〈c, u〉2 > εe−2kε/m.

Remark. For the lower bound on Ẽ〈c, u〉2, we typically only need that it is polynomial. The

algorithm in Theorem 7.1 allows us to recover a vector close to c in time nt assuming that

τk ≪ 1/m.

Proof. We will prove the contrapositive. Let a1, . . . , am ∈ Rn be the columns of A and

let ε′ = εe−2kε. Suppose every column c satisfies either Ẽ〈c, u〉2(1+k) < e−2εk
Ẽ〈c, u〉2 or

Ẽ〈c, u〉2 < ε′/m. We are to show that the pseudo-distribution {u} cannot satisfy the

constraint ‖A⊤u‖2(1+k)

2(1+k)
> e2(k−1)εσ. Indeed, these conditions allow us to upper bound

Ẽ‖A⊤u‖2(1+k)

2(1+k)
=

m
∑

i=1

Ẽ〈ai, u〉2(1+k)
6 e−2εk

Ẽ‖A⊤u‖22 + ε′ 6 (1 + ε)e−2kεσ.

It follows that the pseudo-distribution {u} cannot satisfy the constraint ‖A⊤u‖2(1+k)

2(1+k)
>

e2(k−1)εσ.

�

7.3 Dictionary learning

The following lemma shows that up to polynomial reweighing the distribution {y = Ax}
gives us access to a distribution {W} that satisfies the condition of Theorem 7.1.
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Lemma 7.4. Let A ∈ Rn×m be a σ-overcomplete dictionary and and let {x} be a (k, τ)-nice distribu-

tion overRm with k > 4. For i ∈ [m], letDi be the distribution obtained from reweighing the distri-

bution {w = c〈Ax, u〉2} by x2
i
, where c = E x2

i
/E x4

i
. Then, 〈a(i), u〉2 � EDi

w � 〈a(i), u〉2 + τσ‖u‖22.

Proof. The expectation of w after reweighing by x2
i

satisfies

E
Di

w = 1
E{x} x

2
i

E
{x}

x2
i · c〈Ax, u〉2 =

∑

j

1
E{x} x

4
i

E
{x}

x2
i x2

j 〈a(i), u〉2〈a( j), u〉2

The last step uses that all non-square moments of {x} vanish. The desired bounds follow

because the coefficient of 〈a(i), u〉2 is 1 and for all indices j , i, the coefficients of 〈a( j), u〉2 are

all between 0 and τ. For the final bounds, we also use ‖A⊤u‖22 � σ‖u‖2. �

Theorem 7.5 (Dictionary learning, polynomial time, single dictionary vector). There exists

an algorithm that solves the following problem for every desired accuracy ε > 0, overcompletess

σ > 2, in time nO(k) with success probability n−O(k)/ poly(ε) for noise τ 6 O(ε), where k = (1/ε) log σ+
log m

log(1/τ)
: Given k samples from a distribution of the form {y = Ax} and a degree-k pseudo-distribution

{u} that satisfies {‖Au‖k
k
> e−εk, ‖u‖2

2
= 1}, where A is a σ-overcomplete dicionary and {x} is a (4, τ)-

nice distribution, output a unit vector c′ such that there exists a column c of A with 〈c, c′〉2 > 1−O(ε)

and Ẽ〈c, u〉k > e−O(ε)k
Ẽ〈c, u〉2.

Proof. We run the algorithm in Theorem 7.1 on the pseudo-distribution {u} and the fol-

lowing distribution {W} over squared polynomials: Choose k′ = k/2 − 1 independent

samples y1, . . . , yk′ from the distribution {y = Ax} and form the degree-(k − 2) polyno-

mial W = 〈y1, u〉2 · · · 〈yk′ , u〉2. This distribution {W} does not satisfy the condition in

Theorem 7.1 but it turns out to be sufficiently close to a distribution that satisfies the

condition. Let us first verify that the pseudo-distribution {u} satisfies the condition of

Theorem 7.1 for a vector c as in the theorem above. Indeed, by Lemma 7.3, there exists a

column c of A such that Ẽ〈c, u〉k > e−O(ε)k
Ẽ〈c, u〉2 and Ẽ〈c, u〉2 > O(ε)e−O(εk)/m > τk. (Since

k > (1/ε) log σ, the pseudo-distribution {u} satisfies the constraint {‖A⊤u‖k
k
> e−O(ε)kσ} as

required by Lemma 7.3.) It follows that if we run the algorithm in Theorem 7.1 for a

distribution over polynomials that satisfies condition (7.1) for this column c of the dictio-

nary A, then the algorithm outputs a vector c′ with the above properties with significant

probability.

We will use Lemma 7.4 to reason about the distribution {W}. Without loss of generality,

we assume that c is the first column of the dictionary A. Let x̄ = (x1, . . . , xk′) be k′ inde-

pendent samples from {x}. (The distribution {W} is the same as {〈Ax1, u〉2 · · · 〈Axk′ , u〉2}.)
We claim that the distribution {W} satisfies (7.1) after reweighing by the function

r(x̄)2 = x2
1,1
· · · x2

k′,1
(the product of the square of the first coordinates of x1, . . . , xk′). The

distribution after reweighing is, up to scaling of the polynomials, equal to the distribution

D = {W = w1 · · ·wk′}, where w1, . . . ,wk′ are independent samples from the distributionD1

in Lemma 7.4. By Lemma 7.4, this reweighted distribution satisfies the condition (7.1),

that is,

〈c, u〉2k′ � E
D

W � (〈c, u〉2 + τσ‖u‖22)k′ .
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Since we assume {x} to be (4, τ)-nice, the variance ofD is bounded by nO(k).

LetA be the algorithm in Theorem 7.1. SinceD satisfies the conditions of Theorem 7.1,

if we run A on the pseudo-distribution {u} and the distribution D over polynomials, it

will succeed with probability n−O(k)/ poly(ε). We claim that the success probability on the

distribution {W} (before reweighing) is comparable. Let p(W) be the probability that

the algorithm succeeds for a particular input polynomial W. Under the distribution

D, algorithm A has success probability ED p(W) > n−O(k)/ poly(ε). We relate this success

probability to the success probability under {W} as follows,

n−O(k)/ poly(ε)
6 E
D

p(W) = 1
E{x̄} r(x)2 E

{x̄}
r(x̄)2p(W) 6 1

E{x̄} r(x)2

(

E
{x̄}

r(x̄)4p(W) · E
{W}

p(W)

)1/2

,

where the last step uses Cauchy–Schwarz. The niceness property of {x} implies that

Ex̄ r(x̄)4p(W) 6 Ex̄ r(x̄)4 = (E{x} x
4
1
)k′ = nO(k) · (E{x} x

2
1
)2k′ = nO(k)(E{x̄} r(x̄)2)2. Therefore,

the success probability of A under the distribution {W} (before reweighing) satisfies

E{W} p(W) > n−O(k)/ poly(ε).

�

The following theorem gives a polynomial time algorithm for dicionary learning under

(d, τ)-nice distributions for all τ = nΩ(1).

Theorem 7.6 (Dictionary learning, polynomial time). There exists an algorithm that for every

desired accuracy ε > 0 and overcompleteness σ > 1 solves the following problem for every (d, τ)-

nice distribution with d > d(ε, σ) = O(d−1 log σ) and τ 6 τ(ε, σ) = (ε−1 log σ)O(ε−1 log σ) in time

n(1/ε)O(1)k for k = d + O(
log m

log(1/τ)
): Given nO(d)/poly(τ) samples from a distribution {y = Ax} for a

σ-overcomplete dictionary A and (d, τ)-nice distribution {x}, output a set of vectors that is ε-close

to the set of columns of A (in symmetrized Hausdorff distance).

Proof. We will show how to use Theorem 7.5 to recover a single vector that is close to one

of the columns of A. By repeating this step in the same way as in the proof of Theorem 4.3

(noisy tensor decomposition) we can recover a set of vectors that is close to the set of

columns of A.

To recover a single vector, we estimate from the samples of {y = Ax} a polynomial P

that is close to ‖A⊤u‖d
d

in the same way as in the proof of Theorem 4.2. (The distance of P

from ‖A⊤u‖d
d

in spectral norm will be O(τdd) = O(ε).) Next, we compute a degree-k pseudo-

distribution {u} that satisfies the constraints {P > 1 − ε, ‖u‖22 = 1}.13 The same argument

as in the proof of Lemma 6.1 shows that {u} also satisfies the constraint {‖Au‖k
k
> eO(ε)k},

which means that {u} satisfies the premise of Theorem 7.5. Therefore, the algorithm in

Theorem 7.5 recovers a vector close to one of the columns of A.

�

13To recover all vectors, we would also add constraints {〈s, u〉2 6 1 − γ} for all vectors s that have already

been recovered (see proof of Theorem 4.3).
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8 Conclusions and Open Problems

The Sum of Squares method has found many uses across a variety of disciplines, and in this

work we demonstrate its potential for solving unsupervised learning problems in regimes

that have so far eluded other algorithms. It is an interesting direction to identify other

problems that can be solved using this algorithm.

The generality of the SOS method comes at a steep cost of efficiency. It is a fascinating

open problem, and one we are quite optimistic about, to use the ideas from the SOS-based

algorithm to design practically efficient algorithms.
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A Proof of Lemma 2.3

Lemma 2.3 is a consequence of the following sum-of-squares version of the AM-GM

inequality.14

Lemma A.1. Let w1, . . . ,wn be polynomials. Suppose w1, . . . ,wn � 0. Then,

wn
1
+ · · · + wn

n

n
� w1w2 · · ·wn .

To see that this lemma implies Lemma 2.3, write for a multi-index α with |α| = s the

polynomial wα as a product wα =
∏s

j=1 wi j
, where wi is repeated αi times. (E.g., we would

write w2
1
w2w2

3 as w1w1w2w3w3 and we would have (i1, . . . , i5) = (1, 1, 2, 3, 3).) Then applying

Lemma A.1 to the polynomials wi1 , . . . ,wis gives the inequality asserted in Lemma 2.3,

wα = wi1 · · ·wis �
ws

i1
+ · · · + ws

is

s
=

∑

i

αi

|α|wi �
∑

i

ws
i ,

where the second inequality uses that 0 6 αi/|α| 6 1 and the premise wi � 0.

Proof of Lemma A.1. To prove Lemma A.1, we will give a sequence of polynomials

R0, . . . ,Rn−1 such that R0 = (zn
1
+ . . . zn

n)/n, Rn−1 = z1 . . . zn, and R0 � . . . � Rn−1. To this end,

let

Rk =
1

n!

∑

σ∈Sn

wn−k
σ1

k+1
∏

j=2

wσ j
,

where Sn denotes the symmetric group on n elements. So, for instance,

R0 =
1

n!

∑

σ∈Sn

wn
σ1
=

1

n

(

wn
1 + · · · + wn

n

)

,

R1 =
1

n!

∑

σ∈Sn

wn−1
σ1

wσ2
=

1

n(n − 1)

(

wn−1
1 w2 + wn−1

1 w3 + wn−1
1 w4 + · · · + wn−1

n wn−1

)

,

R2 =
1

n!

∑

σ∈Sn

wn−2
σ1

wσ2
wσ3
=

1

n
(n−1

2

)

(

wn−2
1 w2w3 + wn−2

1 w2w4 + · · · + wn−2
n wn−2wn−1

)

, and

Rn−1 =
1

n!

∑

σ∈Sn

wσ1
wσ2
· · ·wσn = w1w2 · · ·wn.

The following claim will then complete the proof:

Claim A.2. For any k ∈ {1, . . . , n − 1}, Rk−1 − Rk is a sum of squares.

14The first sum-of-squares proof of the AM-GM inequality dates back to Hurwitz in 1891 [Hur91]. For

related results and sums-of-squares proofs of more general sets of inequalities, see [Rez87, Rez89, FH14].
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Proof. For a given permutation σ ∈ Sn, the corresponding monomials in Rk and Rk−1 will

share many of the same variables, differing only in the exponents of wσ1
and wσk+1

. We will

thus try to arrange the terms of Rk−1 − Rk so that we can pull out the common variables,

which will let us reduce our inequality to one involving only two variables.

Rk−1 − Rk =
1

n!

∑

σ∈Sn

















(

wn−k+1
σ1

k
∏

j=2

wσ j

)

−
(

wn−k
σ1

k+1
∏

j=2

wσ j

)

















=
1

n!

∑

σ∈Sn

wn−k
σ1

(

wσ1
− wσk+1

)

( k
∏

j=2

wσ j

)

=
1

n!

∑

a,b∈[n]
a,b

∑

σ∈Sn
σ1=a
σk+1=b

wn−k
σ1

(

wσ1
− wσk+1

)

( k
∏

j=2

wσ j

)

=
1

n!

∑

a,b∈[n]
a,b

wn−k
a (wa − wb)

∑

σ∈Sn
σ1=a
σk+1=b

k
∏

j=2

wσ j

=
1

n!

∑

a,b∈[n]
a<b

(

wn−k
a − wn−k

b

)

(wa − wb) ·



























∑

σ∈Sn
σ1=a
σk+1=b

k
∏

j=2

wσ j



























.

Since the wi are sums of squares, the expression inside the braces is as well. It is therefore

enough to show that
(

wn−k
a − wn−k

b

)

(wa −wb) is a sum of squares. This follows from the fact

that

wn−k
a −wn−k

b = (wa −wb)
(

wn−k−1
a + wn−k−2

a wb + · · · + wn−k−2
b wa + wn−k−1

b

)

,

and thus

(

wn−k
a − wn−k

b

)

(wa −wb) = (wa − wb)
2
(

wn−k−1
a +wn−k−2

a wb + · · · + wn−k−2
b wa + wn−k−1

b

)

.

�
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