MATH 18.152 - PRACTICE MIDTERM EXAM

18.152 Introduction to PDEs, Spring 2018
Professor: Jared Speck

Practice Midterm Exam

Answer questions I-IV below. Each question is worth 25 points, for a total of 100. Partial credit may be awarded, but only if you show all of your work and it is in a logical order. In order to receive credit, whenever you make use of a theorem/proposition, make sure that you state it by name. Also, clearly state the hypotheses that are needed to apply theorem/proposition, and explain why the hypotheses are satisfied.

I. Consider the initial/boundary-value problem for the “backwards heat equation” (note carefully the minus sign) in one spatial dimension:

\[\partial_t u = -\partial_x^2 u, \quad (t, x) \in [0, 1] \times [0, 1]. \]

(a) (12 pts.) Use the separation of variables method to find all solutions to the PDE (1) of the form \(u(t, x) = v(t)w(x) \) that satisfy the boundary conditions \(u(t, 0) = 0 \) and \(u(t, 1) = 0 \) for \(t \in [0, 1] \).

(b) (13 pts.) Let \(f(x) \) be a smooth (i.e., infinitely differentiable) function on \([0, 1]\) with \(f(0) = f(1) = 0 \). Discuss the behavior of the solution \(u(t, x) \) to the following initial/boundary-value problem:

\[\begin{align*}
\partial_t u &= -\partial_x^2 u, \quad (t, x) \in [0, 1] \times [0, 1], \\
(2a) \\
(2b) u(0, x) &= f(x), \quad x \in [0, 1], \\
(2c) u(t, 0) &= 0, \quad u(t, 1) = 0, \quad t \in [0, 1].
\end{align*} \]

In particular, under the assumption \(\max_{x \in [0, 1]} |f(x)| \leq \epsilon \), where \(\epsilon \) is a small positive number, explain what conclusions can be reached about the “size” of the solution at time \(t = 1 \). The term “size” is defined here to be \(\max_{x \in [0, 1]} |u(t, x)| \). Compare/contrast this behavior with the case \(f = 0 \) (in which case the solution is \(u(t, x) = 0 \) for \((t, x) \in [0, 1] \times [0, 1]) \). In addition, compare/contrast the behavior with the behavior of the corresponding solutions that arise when equation (2a) is replaced with the ordinary heat equation \(\partial_t u = \partial_x^2 u \). Finally, explain how your previous remarks are connected to the question of the well-posedness of the problem (2a)-(2c).
II. Let \(f \in C^\infty(\mathbb{R}^3) \) be a smooth (i.e., infinitely differentiable) compactly supported function and let \(u \in C^\infty(\mathbb{R}^3) \) be the unique smooth solution to the Poisson equation
\[
\Delta u(x) = f, \quad x \in \mathbb{R}^3.
\]
Use the energy method to show that
\[
\sum_{i,j=1}^{3} \int_{\mathbb{R}^3} (\partial_i \partial_j u)^2 \, d^3x = \int_{\mathbb{R}^3} f^2 \, d^3x.
\]
In your solution, use may use the following facts, the first of which we proved in class, and the latter two can be proved using similar arguments: There exists a constant \(C > 0 \) such that the following estimates hold for all sufficiently large \(|x| \), where \(|x| = \sqrt{\sum_{a=1}^{3} (x^a)^2} \) is the standard spherical coordinate on \(\mathbb{R}^3 \):

- \(|u(x)| \leq \frac{C}{|x|} \)
- \(|\partial_i u(x)| \leq \frac{C}{|x|^2} \) for \(i = 1, 2, 3 \)
- \(|\partial_i \partial_j u(x)| \leq \frac{C}{|x|^3} \) for \(i, j = 1, 2, 3 \)
III. Let $u(t, x)$ be the solution to the following Cauchy problem in one space dimension:

$$
\partial_t u(t, x) = \partial_x^2 u(t, x), \quad (t, x) \in [0, \infty) \times \mathbb{R},
$$

$$
u(0, x) = f(x), \quad x \in \mathbb{R}
$$

where $f(x)$ is smooth (i.e. infinitely dimensional) and $f(x) = 0$ whenever $|x| > 1$. Show that there exists a constant $C > 0$ that does not depend on the function f such that for $t > 0$ and $x \in \mathbb{R}$, we have

$$
|u(t, x)| \leq C \times \int_{y=-1}^{1} |f(y)| \, dy \times \frac{1}{t^{1/2}}.
$$

(3)

Remark 0.0.1. The estimate (3) shows that $|u|$ decays at least as fast as $t^{-1/2}$ as $t \to \infty$. A similar result holds in n spatial dimensions, but the decay rate becomes $t^{-n/2}$.
IV. Let $u \in C^{1,2}([0, \infty) \times [0, 1])$ be a solution to the problem

\begin{align*}
\partial_t u - \partial_x^2 u &= 0, \quad (t, x) \in [0, \infty) \times [0, 1], \\
u(0, x) &= f(x), \quad x \in [0, 1], \\
\partial_x u(t, 0) &= 0, \quad \partial_x u(t, 1) = 0, \quad t \in [0, \infty).
\end{align*}

Define the thermal energy T of u at time t by

\begin{equation}
T(t) \overset{\text{def}}{=} \int_0^1 u(t, x) \, dx.
\end{equation}

\begin{enumerate}
\item[(a)] (8 pts.) Show that under the above assumptions, $T(t)$ is constant in time: $T(t) = T(0)$ for all $t \geq 0$.
\item[(b)] (5 pts.) Using your physical and mathematical intuition, make an educated guess about what happens to $u(t, x)$ as $t \to \infty$. In particular, relate your guess to an integral of the data $f(x)$.
\item[(c)] (12 pts.) Rigorously prove that your guess from part b) is correct.
\end{enumerate}

Remark 0.0.2. There are several different ways to approach the proof of c), and the different approaches will lead to slightly different, but related conclusions. In particular, your answer could be stated using any one of several different norms. You will receive full credit if you correctly implement any of the approaches.