18.152 - Course Notes (Spring 2017)
Home
Date
Topic+ Link to course notes
2-7-17
Introduction to PDEs
2-9-17
Snow day
2-14-17
Introduction to the heat equation
2-16-17
The heat equation: Uniqueness
2-23-17
The heat equation: Weak maximum principle and introduction to the fundamental solution
2-28-17
The heat equation: Fundamental solution and the global Cauchy problem
3-2-17
Laplace's and Poisson's equations
3-7-17
Poisson's equation: Fundamental solution
3-9-17
Poisson's equation: Green functions
3-14-17
Poisson's equation: Poisson's formula, Harnack's inequality, and Liouville's theorem
3-16-17
Introduction to the wave equation
3-21-17
The wave equation: The method of spherical means
3-23-17
The wave equation: Kirchhoff's formula and Minkowskian geometry
4-4-17
The wave equation: Geometric energy estimates
4-6-17
Midterm Exam
4-11-17
The wave equation: Geometric energy estimates (continued)
4-13-17
Classification of second order equations
4-20-17
Introduction to the Fourier transform
4-25-17
Introduction to the Fourier transform (continued)
4-27-17
Fourier inversion and Plancherel's theorem
5-2-17
Introduction to SchrÃ¶dinger's equation
5-4-17
Introduction to SchrÃ¶dinger's equation (continued)
5-9-17
Introduction to Lagrangian field theories
5-11-17
Introduction to Lagrangian field theories (continued)
5-16-17
Introduction to Lagrangian field theories (continued)
5-18-17
Transport equations and Burger's equation