Part II (50 points)

1. (Thurs., Oct. 26; Second Fundamental Theorem; 3 + 2 + 2 + 3 + 3 + 3 = 16 points) Let $sinc(x)$ denote the "sinc" function

$$sinc(x) = \begin{cases}
1 & \text{if } x = 0, \\
\frac{\sin x}{x} & \text{if } x \neq 0.
\end{cases}$$

Now consider the "sine integral" function

$$Si(x) = \int_0^x sinc(t) \, dt.$$

Both of these functions frequently come up in Fourier analysis and signal processing and hence have been given their own names. Remark: $Si(x)$ cannot be expressed in terms of standard elementary functions.

a) Compute $Si'(x)$ and $Si''(x)$. You will have to compute $Si''(0)$ by using the definition of the derivative. Hint: In computing $Si''(0)$, you can make use of the fact that $\sin(\Delta x) = \Delta x + O((\Delta x)^3)$.

Solution: By the second fundamental theorem of calculus, $Si'(x) = sinc(x)$. Hence, $Si''(x) = sinc'(x)$.

For $x \neq 0$, we can use the quotient rule to get

$$sinc'(x) = \frac{x \cos x - \sin x}{x^2}.$$

For $x = 0$, we need to use the analytic definition of the derivative, which says that

$$sinc'(0) = \lim_{\Delta x \to 0} \frac{\sin(\Delta x)}{\Delta x} - 1 = \lim_{\Delta x \to 0} \frac{1 - 1 + O((\Delta x)^2)}{\Delta x} = \lim_{\Delta x \to 0} O(\Delta x) = 0.$$

b) List the critical points of $Si(x)$ in the entire range $-\infty < x < \infty$. Which critical points are local maxima and which ones are local minima?

Solution: The critical points are where $sinc(x) = Si'(x) = 0$. This happens when $\sin(x) = 0$, i.e., at $x = n\pi$ for $n \in \mathbb{Z}$ not equal to 0, since $sinc(0) = 1$. To figure out which ones are local maxima/minima, we look at the sign of $sinc(x)$ near $n\pi$. First note that since the function is even, if $n\pi$ is a local max/min, so is $-n\pi$. So we can assume n is positive, i.e., x is positive. For n even, and x slightly less than $n\pi$, $\sin(x) > 0$, and hence so is $sinc(x)$, and for x slightly greater than $n\pi$, $sinc(x) < 0$. The situation is reversed for n odd. Hence, the local maxima occur at $x = n\pi$ for n even and nonzero and the local minima occur at $n\pi$ for n odd.
c) Draw a rough sketch of $S_i'(x)$ and $S_i''(x)$. The drawings only have to be qualitatively correct, but make sure that the zeros of $S_i'(x)$ are accurately displayed.

Solution:

Graph of $S_i'(x)$:

The zeros of $S_i'(x)$ are at $x = n\pi$ for $n \in \mathbb{Z}$.
Graph of $S_i''(x)$:

The zeros of $S_i''(x)$ are implicitly given by $x = \tan(x)$.
d) Sketch the graph of \(\text{Si}(x) \) on the interval \(-10\pi \leq x \leq 10\pi\) with labels for the critical points and inflection points. The drawing should be qualitatively correct and should reflect the shape of the graphs you sketched in part c).

Solution:
Zoomed in graph for \(-4\pi < x < 4\pi\):

The graph has only one zero at \(x = 0\) and is the graph of an odd function. The blue points are the critical points at \(x = n\pi\). The green lines are the approximate solutions to \(x = \tan x\) and mark the inflection points. The graph continues in this pattern all the way out to \(10\pi\). It looks like a wave whose amplitude is getting smaller.
e) Let $r > 1$ be a real number, and define

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ \frac{\sin(x^r)}{x} & \text{if } x \neq 0. \end{cases}$$

Remark: It is not too hard to show that $f(x)$ is continuous, even at $x = 0$. Consider the function

$$h(x) = \int_0^x f(t) \, dt.$$

Show that $h(x)$ can be expressed in terms of composition of Si with another function.

Solution: Consider the function $F(x) = \frac{\text{Si}(x^r)}{r}$. By the chain rule,

$$F'(x) = \text{Si}'(x^r) \frac{d}{dx}(x^r) = \text{sinc}(x^r)x^{r-1} = f(x).$$

Hence, by the first fundamental theorem of calculus

$$h(x) = F(x) - F(0) = F(x).$$

Thus, $h(x)$ is, up to a scaling factor, the composition of $\text{Si}(x)$ with x^r.

f) Compute

$$\lim_{x \to 3} \frac{x^2}{x - 3} \int_3^x \text{sinc}(t) \, dt.$$

Solution: By the fundamental theorem of calculus, the limit is equal to

$$\lim_{x \to 3} \frac{x^2}{x - 3} (\text{Si}(x) - \text{Si}(3)) = 9 \lim_{x \to 3} \frac{\text{Si}(x) - \text{Si}(3)}{x - 3} = 9 \lim_{\Delta x \to 0} \frac{\text{Si}(3 + \Delta x) - \text{Si}(3)}{\Delta x} = 9 \text{Si}'(3) = 3 \sin 3.$$
2. (Fri., Oct. 27; volumes by slicing; $4 + 1 = 5$ points) 7.3: 22

Solution:

(a) If V is the volume in the bowl and $A(h)$ is the surface area with the liquid having total height h, then

$$\frac{dV}{dt} = -cA(h)$$

for some constant $c > 0$. By the disks method,

$$V = \int_{0}^{h} A(x) \, dx.$$

Hence, by the fundamental theorem of calculus,

$$\frac{dV}{dh} = A(h).$$

Using the chain rule, we have

$$-cA(h) = \frac{dV}{dh} \frac{dh}{dt} = A(h) \frac{dh}{dt}.$$

Hence, $\frac{dh}{dt} = -c$.

(b) By integrating both sides of the equation obtained from part (a), we get

$$\int_{0}^{t} dh = \int_{0}^{t} -c \, dt$$

and hence

$$h(t) - h(0) = -ct.$$

Thus, if $h(t) = 0$, then $t = \frac{h_0}{c}$.

3. (Fri., Oct. 27; volumes by slicing; 10 points) Find the volume of the three-dimensional solid with $x > 0, y > 0, z > 0$ and $z^4 < x + y < z$.

Hint: First find the area of the horizontal cross sections, which are perpendicular to the z axis.

Solution: First note that the z values go from 0 to 1, as $z^4 < z$. Now, the horizontal cross sections at a fixed height $0 < z < 1$ is the parallelogram bounded by the x-axis, the y-axis and the lines $x + y = z^4, x + y = z$. Hence, the area of the cross section is the difference between the area of the big triangle formed by the two axes and the line $x + y = z$ and the area of the smaller triangle formed by the axes and the line $x + y = z^4$. The big triangle has base and height z and hence area $\frac{z^2}{2}$, while the small triangle has area $\frac{z^6}{2}$. Hence, the area of the cross section is $A(z) = \frac{z^2 - z^8}{2}$.
The volume of the solid is
\[\int_0^1 A(z) \, dz = \int_0^1 \frac{z^2 - z^8}{2} \, dz = \frac{1}{6} - \frac{1}{18} = \frac{1}{9}. \]

4. (Tues., Oct. 31; shell and disk method; 2 + 1 + 2 + 1 = 6 points) (Donut with triangular cross sections)

a) An equilateral triangle in the \((x, y)\) plane of side length \(\ell\) has a base that runs along the \(x\) axis. The center of the triangle is a distance \(R\) from the \(y\) axis, where \(R > \frac{1}{2} \ell\) (and thus the triangle does not intersect the \(y\) axis). The triangle is revolved around the \(y\) axis to create a solid. Use the cylindrical shell method to express the volume of the solid in terms of an integral. Your answer should depend on \(\ell\) and \(R\).

Solution: The triangle is built up of two parts. Between \(x = R - \frac{\ell}{2}\) and \(x = R\), the triangle is the region under the graph
\[y = \tan \left(\frac{\pi}{3} \right) \left(x - R + \frac{\ell}{2} \right) = \sqrt{3} \left(x - R + \frac{\ell}{2} \right). \]

From \(x = R\) to \(x = R + \frac{\ell}{2}\), the triangle is the region under the graph
\[y = -\sqrt{3} \left(x - R - \frac{\ell}{2} \right). \]

You can obtain these formulas by computing the slope and the \(x\)-intercept of the corresponding lines and noting that equilateral triangles have \(\frac{\pi}{3}\) as all their angles. Hence, using the shells method on each piece separately, we get that
\[V = 2\pi \sqrt{3} \int_{R-\frac{\ell}{2}}^{R} x \left(x - R + \frac{\ell}{2} \right) \, dx + 2\pi \sqrt{3} \int_{R}^{R+\frac{\ell}{2}} x \left(R + \frac{\ell}{2} - x \right) \, dx. \]

b) Compute the integral from part a) to find a formula for the volume.

Solution: One possible way to solve the problem is just to do a straightforward integration but this leads to messy algebra. Let us simplify the problem a little. First, we split the integral into two parts:

\[V_1 = 2\pi \sqrt{3} \left(\int_{R-\frac{\ell}{2}}^{R} \frac{x\ell}{2} \, dx + \int_{R}^{R+\frac{\ell}{2}} \frac{x\ell}{2} \, dx \right) \]

and
\[V_2 = 2\pi \sqrt{3} \left(\int_{R-\frac{\ell}{2}}^{R} x(x - R) \, dx + \int_{R}^{R+\frac{\ell}{2}} x(R - x) \, dx \right). \]

The sums in the first integral can be combined since we are integrating the same function and the end points much up. Hence,
\[
V_1 = 2\pi\sqrt{3} \int_{R-l}^{R+l} \frac{x}{2} \, dx = \pi\sqrt{3}l \left(R + \frac{l}{2} \right)^2 - \left(R - \frac{l}{2} \right)^2 = \pi\sqrt{3}Rl^2.
\]

To solve for \(V_2 \), we make the substitution \(u = x - R \). Then,

\[
V_2 = 2\pi\sqrt{3} \left(\int_{-\frac{l}{2}}^{0} u^2 + Ru \, du + \int_{0}^{\frac{l}{2}} -u^2 - Ru \, du \right) \, du
= 2\pi\sqrt{3} \left(0 + \frac{l^3}{24} - \frac{Rl^2}{8} - \frac{l^3}{24} - \frac{Rl^2}{8} \right)
= -\frac{\sqrt{3}\pi Rl^2}{2}
\]

Adding everything together, we get

\[
V = \frac{\sqrt{3}\pi Rl^2}{2}.
\]

c) Repeat parts a) and b), but this time using the disk method.

Solution: To use the disks method, we need to switch the roles of \(x \) and \(y \) in the formula given in the book, because we are revolving around the \(y \)-axis. Since the solid is separated from the \(y \)-axis, the volume is given by the formula

\[
V = \int \pi(x_1^2 - x_2^2) \, dy.
\]

where \(x_1(y) \) is the function that describes the line further away from the \(y \)-axis, and \(x_2(y) \) is the function describing the line closer to the \(y \)-axis. By the same method as in part (a), we can find the equation of the lines

\[
x_1 = R + \frac{l}{2} - \frac{y}{\sqrt{3}} \text{ and } x_2 = \frac{y}{\sqrt{3}} + R - \frac{l}{2}.
\]

The bounds of the integral are given by the range of the \(y \)-values. The minimum value is 0 and the maximum is the height of the triangle, which is \(\frac{\sqrt{3}l}{2} \). Hence, the volume is

\[
V = \pi \int_{0}^{\frac{\sqrt{3}l}{2}} \frac{y^2}{3} - 2\frac{y}{\sqrt{3}} \left(R + \frac{l}{2} \right)^2 - \frac{y^2}{3} - 2\frac{y}{\sqrt{3}} \left(R - \frac{l}{2} \right)^2 \, dy
= \pi \int_{0}^{\frac{\sqrt{3}l}{2}} -4\frac{y}{\sqrt{3}} R + 2Rl \, dy
= \pi R \left(l^2 \sqrt{3} - \frac{\sqrt{3}l^2}{2} \right) = \frac{\sqrt{3}\pi Rl^2}{2}.
\]
5. (Tues., Oct. 31; shell method; 3 + 7 = 10 points) 7.4: 12, 13.

Remark: Think of the “spherical ring” as a sphere that has been gored by a cylinder whose radius is smaller than the radius of the sphere, but whose length is infinite.

Solution:

12. The solid is a cone with vertex at \((0, h)\) and bottom face at \(y = 0\), with radius equal to \(r\). So the formula we expect to get is \(V = \frac{\pi r^2 h}{3}\). Let us derive this using the cylindrical shell method.

\[
V = 2\pi \int_0^r xy \, dx = 2\pi h \int_0^r x \left(1 - \frac{x}{r}\right) \, dx = 2\pi h \left(\frac{x^2}{2} \bigg|_0^r - \frac{x^3}{3r} \bigg|_0^r\right) = 2\pi h \left(\frac{r^2}{2} - \frac{r^3}{3}\right) = \frac{\pi r^2 h}{3}
\]
as expected.

13. We can obtain the spherical ring by taking a segment of a circle of radius \(a\) and length of base \(2h\) (with the base parallel to the \(y\)-axis) and revolving it around the \(y\)-axis. Since the base is parallel to the \(y\)-axis, it’s equation is just \(x = r\) for some constant \(r\). To figure out this constant, note that \(r^2 + h^2 = a^2\). Hence, \(r = \sqrt{a^2 - h^2}\). By symmetry the surface above and below the \(x\)-axis will contribute the same total volume. Hence, we simply compute the volume of the solid obtained by rotating the piece of the ring above the \(x\)-axis and then multiply by 2.

The bounds on the \(x\)-value of the region that is revolved are \(r\) and \(a\) and the equation for the graph bounds the region is \(y = \sqrt{a^2 - x^2}\). Hence, by the shells method,

\[
V = 4\pi \int_r^a x \sqrt{a^2 - x^2} \, dx.
\]

We use the substitution \(u = a^2 - x^2\). Then, \(du = -2x \, dx\). Hence,

\[
V = -2\pi \int_{a^2-r^2}^{a^2} \sqrt{u} \, du = 2\pi \int_0^{a^2-r^2} \sqrt{u} \, du = 2\pi \int_0^{h^2} \sqrt{u} \, du = 2\pi \left[\frac{2u^{\frac{3}{2}}}{3}\right]_0^{h^2} = \frac{4\pi h^3}{3}.
\]