Problem 1.

a) We find,

\[
v'(9) \approx \frac{v(9) - v(8)}{1} = \frac{90.744 - 79.931}{1} = 10.813
\]

\[
v'(10) \approx \frac{v(10) - v(9)}{1} = \frac{101.983 - 90.744}{1} = 11.239
\]

b) We find,

\[
v''(10) \approx \frac{v'(10) - v'(9)}{1} = \frac{11.239 - 10.813}{1} = 0.426
\]

c) A quadratic approximation of \(v(d) \) near \(d = 10 \) is,

\[
v(d) \approx v(10) + v'(10)(d - 10) + \frac{v''(10)}{2}(d - 10)^2
\]

Using our approximations of \(v'(10) \) and \(v''(10) \) from parts a) and b) gives,

\[
v(d) \approx 101.983 + 11.239(d - 10) + \frac{0.426}{2}(d - 10)^2
\]

Using equation (1), we can now estimate the value \(v(11) \):

\[
v(11) \approx 101.983 + 11.239 + \frac{0.426}{2} = 113.435
\]

Problem 2.

a) To show that \(f(E) \) is continuous at \(E = 0 \) we must show that,

\[
\lim_{E \to 0^+} \frac{\tanh^{-1}(E)}{E} = f(0) = 1
\]

Note that we are only considering the right-handed limit as \(E \geq 0 \). We proceed by evaluating the limit:

\[
\lim_{E \to 0^+} \frac{\tanh^{-1}(E)}{E} = \lim_{E \to 0^+} \frac{\tanh^{-1}(E) - \tanh^{-1}(0)}{E - 0}
\]

\[
= \frac{d}{dE} \tanh^{-1}(E) \bigg|_{E=0}
\]

\[
= \frac{1}{1 - E^2} \bigg|_{E=0}
\]

\[
= 1
\]

We have shown that equation (2) is true and so \(f(E) \) is continuous at \(E = 0 \).
b) **Method 1: Implicit Differentiation**

\[y = \tanh^{-1}(E) \]
\[\tanh(y) = E \]

Taking the derivative of both sides gives,

\[\frac{d}{dE} \tanh(y) = \frac{d}{dE} (E) \]
\[\text{sech}^2(y) \frac{dy}{dE} = 1 \]
\[\frac{dy}{dE} = \frac{1}{\text{sech}^2(y)} \]

Using the identity \(\text{sech}^2(y) = 1 - \tanh^2(y) \) we find,

\[\frac{dy}{dE} = \frac{1}{1 - \tanh^2(y)} \]
\[= \frac{1}{1 - E^2} \]

Method 2: Explicit Differentiation

First, we find an explicit expression for \(y = \tanh^{-1}(x) \):

\[\tanh(y) = E \]
\[\frac{e^y - e^{-y}}{e^y + e^{-y}} = E \]
\[(1 - E)e^y = (1 + E)e^{-y} \]
\[e^{2y} = \frac{1 + E}{1 - E} \]
\[e^y = \sqrt{\frac{1 + E}{1 - E}} \]
\[y = \frac{1}{2} \ln \left(\frac{1 + E}{1 - E} \right) \]

(3)

We now differentiate equation (3):

\[\frac{dy}{dE} = \frac{1}{2} \left(\frac{1 + E}{1 - E} \right) \left(\frac{1 - E + 1 + E}{(1 - E)^2} \right) \]
\[= \frac{1 - E}{1 + E} \left(\frac{1}{(1 - E)^2} \right) \]
\[= \frac{1}{1 - E^2} \]

c) We know that \((1 + x)^r \approx 1 + rx\). In this case, we have \(x = -E^2\) and \(r = -1\) and so,

\[\frac{1}{1 - E^2} \approx 1 + E^2 \]
d) We are told to assume that,
\[\frac{d}{dE} (B_0 + B_1 E + B_2 E^2 + B_3 E^3) = 1 + E^2 \]
\[B_1 + 2B_2 E + 3B_3 E^2 = 1 + E^2 \]
From this, we find that,
\[B_1 = 1, \quad B_2 = 0, \quad B_3 = \frac{1}{3} \]
We also know that \(B_0 = \text{tanh}^{-1}(0) = 0 \). So, our cubic approximation is,
\[\text{tanh}^{-1}(E) \approx E + \frac{E^3}{3} \] (4)

e) Using equation (4), we find that,
\[f(E) = \frac{\text{tanh}^{-1}(E)}{E} \approx E + \frac{E^3}{3} = 1 + \frac{E^2}{3} \] (5)

f) Using equation (5), we find that,
\[S(E) = 2\pi \left(1 + f(E) (1 - E^2) \right) \]
\[\approx 2\pi \left(1 + \left(1 + \frac{E^3}{3}\right) (1 - E^2) \right) \]
\[\approx 2\pi \left(1 + 1 - E^2 + \frac{E^2}{3} \right) \]
\[= 4\pi \left(1 - \frac{E^2}{3} \right) \] (6)

f) From equation (6), we see that for \(E > 0 \), \(S(E) < S(0) \). Therefore, slightly squashing the sphere causes the surface area to decrease.

Problem 3.

18.
First, we determine the critical points of \(y(x) \) by examining the derivative,
\[y'(x) = mx^{m-1} (1-x)^n - nx^m (1-x)^{n-1} \]
\[= x^{m-1} (1-x)^{n-1} [m (1-x) - nx] \]
\[= (m+n) x^{m-1} (1-x)^{n-1} \left[\frac{m}{m+n} - x \right] \]
We see that there are three critical points at,
\[x = 0, \frac{m}{m+n}, 1 \]
a) Consider the sign of \(y'(x) \) around \(x = 0 \):

<table>
<thead>
<tr>
<th>(x^{m-1}) (odd function)</th>
<th>(m+n)</th>
<th>(m+n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x < 0)</td>
<td>0 < (x) < (\frac{m}{m+n})</td>
<td></td>
</tr>
<tr>
<td>((1-x)^{n-1})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m+n - x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y'(x))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We see that \(x = 0 \) is a minimum if \(m \) is even.
b) Consider the sign of \(y'(x) \) around \(x = 1 \):

<table>
<thead>
<tr>
<th></th>
<th>(m/n < x < 1)</th>
<th>(1 < x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^{m-1})</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>((1-x)^{n-1}) (odd function)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(\frac{m}{m+n} - x)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(y'(x))</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

We see that \(x = 1 \) is a minimum if \(n \) is even.

c) Consider the sign of \(y'(x) \) around \(x = \frac{m}{m+n} \):

<table>
<thead>
<tr>
<th></th>
<th>(0 < x < \frac{m}{m+n})</th>
<th>(\frac{m}{m+n} < x < 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^{m-1})</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>((1-x)^{n-1})</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(\frac{m}{m+n} - x)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(y'(x))</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

We see that \(x = \frac{m}{m+n} \) is always a maximum.

22.

In order for \(f(x) \) to have critical points at \(x = -2 \) and \(x = 1 \), \(f'(x) \) must have zeros at \(x = -2 \) and \(x = 1 \). Further, in order for \(x = -2 \) to be a maximum and \(x = 1 \) to be a minimum, we need \(f'(x) > 0 \) for \(x < -2 \), \(f'(x) < 0 \) for \(-2 < x < 1 \), and \(f'(x) > 0 \) for \(x > 1 \). We can satisfy these requirements by choosing,

\[
f'(x) = (x + 2)(x - 1) = x^2 + x - 2
\]

By inspection, we find that the function \(f(x) \) that corresponds to this derivative is,

\[
f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 2x
\]

Problem 4.

12.

To identify points of inflection, we need to consider the second derivative of \(y = \frac{12}{x^2} - \frac{12}{x} \).

\[
y'(x) = 12 \left(-\frac{2}{x^3} + \frac{1}{x^2} \right)
\]

\[
y''(x) = 12 \left(\frac{6}{x^4} - \frac{2}{x^3} \right)
= \frac{24(3-x)}{x^4}
\]

We see that \(y''(x) \) has a single zero at \(x = 3 \) and that \(y''(x) > 0 \) for \(x < 3 \) and \(y''(x) < 0 \) for \(x > 3 \). Therefore, there is a single point of inflection at \(x = 3 \) and the graph is concave up for \(x < 3 \) and concave down for \(x > 3 \).
It is not possible. Assume that $f'(x) < 0$ and $f''(x) < 0$ for all x. This means that for two points $x_2 > x_1$, $f'(x_2) < f'(x_1) < 0$ (i.e. the slope of the graph gets more and more negative as x increases). Therefore, since the function f decreases at a faster and faster rate as x increases, if $f(x_0) > 0$ for some x_0, the graph $y = f(x)$ must eventually cross the x-axis at some $x > x_0$.

Using implicit differentiation we find,

\[
\frac{d^2}{dx^2} (x^2 + y^2) = \frac{d^2}{dx^2} (a^2) \\
\frac{d}{dx} \left(2x + 2y \frac{dy}{dx} \right) = 0 \\
1 + \frac{dy}{dx} \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0
\]

(7)

As the numerator of the RHS of equation (8) is always positive, the sign of y'' is always opposite to the sign of y.

Finally, we can re-express equation (8) in terms of x. From equation (7), we see that $\frac{dy}{dx} = -\frac{x}{y}$. Substituting this into equation (8) gives,

\[
\frac{d^2y}{dx^2} = -\frac{1 + \frac{x^2}{y^2}}{y} = -\frac{x^2 + y^2}{y^3}
\]

As $x^2 + y^2 = a^2$ is a multi-valued function, we have $y = \pm \sqrt{a^2 - x^2}$, and so,

\[
\frac{d^2y}{dx^2} = \begin{cases}
\frac{-a^2}{(a^2-x^2)^{3/2}} & \text{for top half of circle } (y > 0) \\
\frac{a^2}{(a^2-x^2)^{3/2}} & \text{for bottom half of circle } (y < 0)
\end{cases}
\]
24.

To identify points of inflection, we need to consider the second derivative of y:

\[
\begin{align*}
 y'(x) &= 3ax^2 + 2bx + c \\
 y''(x) &= 6ax + 2b
\end{align*}
\]

We see that there is a single inflection point at,

\[
 0 = 6ax + 2b \\
 x = -\frac{b}{3a}
\]

Next, we consider the critical points where $y'(x) = 0$:

\[
\begin{align*}
 3ax^2 + 2bx + c &= 0 \\
 x &= \frac{-2b \pm \sqrt{4b^2 - 12ac}}{6a} \\
 &= \frac{-b \pm \sqrt{b^2 - 3ac}}{3a}
\end{align*}
\]

There are three cases to consider:

1. $b^2 > 3ac$: $y(x)$ has one critical point to the left of the inflection point and one critical point to the right of the inflection point.
2. $b^2 = 3ac$: $y(x)$ has a single critical point at the point of inflection.
3. $b^2 < 3ac$: $y(x)$ no critical points.

An example of each case is shown below.

![Graphs showing inflection and critical points for different cases](image-url)

Figure 2