Linear + Quadratic Approximations

- Linear approximation

 \[
 y = f(x_0) + f'(x_0)(x - x_0)
 \]

- The tangent line approximates \(f(x) \).
 It gives a good approximation near \(x_0 \):
 \[
 f(x) \approx f(x_0) + f'(x_0)(x-x_0)
 \]
 (when \(x \approx x_0 \))

- The approximation might be very bad when \(x \) is not near \(x_0 \).

 Alternate notation: \(f(x) = f(x_0) + f'(x_0) \Delta x + O((\Delta x)^2) \), \(\Delta x = x - x_0 \)

- Ex: \(f(x) = \ln x \), \(x_0 = 1 \) (base point)
 \[
 f'(x) = \frac{1}{x}, \quad f(1) = 0, \quad f'(1) = 1.
 \]

 \(\ln x \approx f(1) + f'(1)(x-1) = 0 + 1 \cdot (x-1) = x-1 \) when \(x \) is near 1.
Building block list of linear approximations:
(we assume $x_0 = 0$ is the basepoint and $|x| < \epsilon$)

1. $\sin(x) \approx x$ when $x \approx 0$
2. $\cos(x) \approx 1$ when $x \approx 0$
3. $e^x \approx 1 + x$ when $x \approx 0$
4. $\ln(1+x) \approx x$ when $x \approx 0$
5. $(1+x)^r \approx 1 + rx$ when $x \approx 0$.

You should learn how to quickly derive these approximations.

Proof of (1):

If $f(x) = \sin(x)$, then $f'(x) = \cos(x)$.

$f(0) = 0$, $f'(0) = 1$
Therefore, $\sin(x) \approx 0 + 1 \cdot (x-0) = x$ when $x \approx 0$.

The proofs of 2-5 are similar. We already proved (4).

Proof of (5): $f(x) = (1+x)^r$, $f'(x) = r (1+x)^{r-1}$

$f(0) = 1$, $f'(0) = r$
Therefore, $f(x) = (1+x)^r \approx 1 + r(x-0) = 1 + rx$ when $x \approx 0$.
Ex: Find the linear approximation of \(f(x) = \frac{e^{-2x}}{\sqrt{1+x}} \) near \(x_0 = 0 \).

- We can use the building blocks to give a short solution (without calculating \(f'(x) \)).

\[e^{-2x} \approx 1 + (-2x) = 1 - 2x \]

\[\frac{1}{\sqrt{1+x}} = (1+x)^{-1/2} \approx 1 - \frac{1}{2} x. \]

\[\frac{e^{-2x}}{\sqrt{1+x}} \approx (1-2x)(1-\frac{1}{2}x) \approx 1 - \frac{5}{2} x \text{ when } x \approx 0. \]

- Note that we have ignored all \(x^2, x^3 \) etc. terms. When \(x \approx 0 \), these terms are very small compared to \(1 - \frac{5}{2}x \).

- Note that \(f(x) \approx 1 - \frac{5}{2}x \) means that

\[f'(x) = \frac{5}{2} \] (we didn't even have to compute a formula for \(f'(x) \) !)

Ex: Compute \(\lim_{x \to 0} \frac{(1+2x)^{10} - 1}{x} \). Use \((1+2x)^{10} \approx 1 + (10)(2x) = 1 + 20x \)

- \(\lim_{x \to 0} \frac{1}{x} \frac{C(1+2x)^{10} - 1}{x} = \lim_{x \to 0} \frac{x+20x}{x} = 20 \).
Quadratic Approximations

- Often times linear approximations are not accurate enough.

Here is the basic formula for quadratic approximations:

\[
f(x) \approx f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2}
\]

when \(x \approx x_0 \)

- Note: If \(f(x) = Ax^2 + Bx + C \), then
 \[
 f'(x) = 2Ax + B
 \]
 \[
 f''(x) = 2A
 \]
 Thus, for \(x_0 = 0 \), \(f(0) = C \), \(f'(0) = B \), \(f''(0) = 2A \),
 and the quadratic approximation to \(f(x) \)
 is \(f(x) \approx g + B \cdot x + \frac{1}{2} \cdot 2A \cdot x^2 \)
 \[
 = Ax^2 + Bx + C
 \]
 This explains the \(\frac{1}{2} \) in the formula and shows that the quadratic approximation is exact when \(f \) is a degree 2 polynomial.
\[f(x) = \cos x \quad f(0) = 1 \]
\[f'(x) = -\sin x \quad f'(0) = 0 \]
\[f''(x) = -\cos x \quad f''(0) = -1 \]

\[
 f(x) \approx f(0) + f'(0)x + \frac{f''(0)}{2}x^2
\]

\[
 = 1 + 0 \cdot x + \frac{1}{2} \cdot (-1) \cdot x^2
\]

\[
 = 1 - \frac{1}{2} x^2 \quad \text{when } x \approx 0.
\]

Building block quadratic approximations

1. \(\sin(x) \approx x \quad \text{for } x \approx 0, \ XXO \)
2. \(\cos(x) \approx 1 - \frac{1}{2} x^2 \quad \text{for } x \approx 0 \)
3. \(e^x \approx 1 + x + \frac{1}{2} x^2 \quad \text{for } x \approx 0 \)
4. \(\ln(1 + x) \approx x - \frac{1}{2} x^2 \quad \text{for } x \approx 0 \)
5. \((1 + x)^r \approx 1 + rx + \frac{r(r-1)}{2} x^2 \quad \text{for } x \approx 0 \)

Proofs: Are not that interesting.

Just compute \(f(x) \), \(f'(x) \), \(f''(x) \).
Ex: Find the quadratic approximation to \(f(x) = \frac{e^{2x}}{\sqrt{1 + x}} \) near \(x = 0 \)

We can use the quadratic approximation building blocks to give a relatively short answer:

\[
e^{2x} \approx 1 + (-2x) + \frac{1}{2} (-2x)^2 = 1 - 2x + 2x^2
\]

\[
\frac{1}{\sqrt{1 + x}} \approx (1 + x)^{-1/2} \approx 1 + \left(-\frac{1}{2}\right)x + \frac{\left(-\frac{1}{2}\right)(-\frac{1}{2} - 1)}{2} x^2
\]

\[
= 1 - \frac{1}{2}x + \frac{3}{8}x^2.
\]

\[
f(x) \approx \left(1 - 2x + 2x^2\right) \left(1 - \frac{1}{2}x + \frac{3}{8}x^2\right)
\]

\[
\approx 1 - \frac{5}{2}x + \frac{27}{8}x^2 \text{ when } x \to 0.
\]

We have ignored all cubic and higher order terms since we are "expanding only to quadratic order".