Polar Coordinates, Area in Polar Coordinates

Polar Coordinates

In polar coordinates, we specify an object's position in terms of its distance \(r \) from the origin and the angle \(\theta \) that the ray from the origin to the point makes with respect to the \(x \) axis.

Ex: What are the polar coordinates for the point with rectangular coordinates \((1, -1)\)?

\[r = \sqrt{1^2 + (-1)^2} = \sqrt{2} \]

\[\theta = -\frac{\pi}{4} \]

The most common convention is \(r \geq 0 \) and \(0 \leq \theta < 2\pi \).

Another common convention is \(r \geq 0 \) and \(-\pi \leq \theta < \pi \).

Some conventions use additional restrictions.
No matter what the convention, the following formulas are always true:

- \(X = r \cos \theta \)
- \(Y = r \sin \theta \)

Ex: \((1, -1)\) can be represented by \(r = -\sqrt{2}, \theta = \frac{3\pi}{4} \):

\[1 = x = -\sqrt{2} \cos \left(\frac{3\pi}{4} \right), \quad -1 = y = -\sqrt{2} \sin \left(\frac{3\pi}{4} \right) \]

Ex: Consider a circle of radius \(a \) with its center at \((0, 0)\). Let's find an equation that relates \(r \) to \(\theta \).

\[\text{Circle of radius } a \text{ with center } x = a, y = 0 \]

In rectangular coordinates, the equation for the circle is

\[(x - a)^2 + y^2 = a^2 \]

We plug in \(X = r \cos \theta, Y = r \sin \theta \):

\[(r \cos \theta - a)^2 + (r \sin \theta)^2 = a^2 \]

\[r^2 \cos^2 \theta - 2ar \cos \theta + a^2 + r^2 \sin^2 \theta = a^2 \]

\[r^2 - 2ar \cos \theta = 0 \]

\[r = 2a \cos \theta \]
The range of $0 \leq \theta \leq \frac{\pi}{2}$ traces out the top half of the circle, while $-\frac{\pi}{2} \leq \theta \leq 0$ traces out the bottom half. Let's graph this.

Graph of $r = 2a \cos \theta$, $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$

- At $\theta = 0$, $r = 2a \Rightarrow x = 2a$, $y = 0$
- At $\theta = \frac{\pi}{4}$, $r = 2a \cos \frac{\pi}{4} = a\sqrt{2}$

The main issue is finding a range of θ values that traces the circle once. In this example $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ works.

- $\theta = -\frac{\pi}{2}$ (down)
- $\theta = \frac{\pi}{2}$ (up)
- Area in Polar Coordinates

\[r = f(\theta) \]

- Let's find the area of a small slice

\[\text{The small slice is approximately a right triangle.} \]

\[\text{Area of slice} \approx \text{Area of right triangle} \]

\[= \frac{1}{2} (\text{base})(\text{height}) = \frac{1}{2} r (r d\theta) \]

- Total Area = \[\int_{\theta_1}^{\theta_2} \frac{1}{2} r^2 d\theta \]
Ex: \(r = 2a \cos \theta \), \(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\) (the circle from a previous example)

\[
\text{Area} = \int_{\theta = -\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} (2a \cos \theta)^2 \, d\theta = 2a^2 \int_{\theta = -\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta
\]

used trig id: \(\cos^2 \theta = \frac{1}{2}(1 + \cos(2\theta))\)

\[
= a^2 \int_{\theta = -\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + \cos(2\theta)) \, d\theta = a^2 \int_{\theta = -\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta + a^2 \int_{\theta = -\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(2\theta) \, d\theta
\]

\[
= a^2 \left[\theta + \frac{\sin(2\theta)}{2} \right]_{\theta = -\frac{\pi}{2}}^{\frac{\pi}{2}} = \pi a^2.
\]

Ex: Circle centered at the Origin (radius = a)

\[r = a \]

\[\begin{align*}
\bullet & \quad x = r \cos \theta \quad y = r \sin \theta \\
\bullet & \quad x^2 + y^2 = r^2 \cos^2 \theta + r^2 \sin^2 \theta = r^2
\end{align*} \]

The equation of the circle is \(x^2 + y^2 = a^2 \), so \(r = a \) \(\Rightarrow \)

\[x = a \cos \theta \quad y = a \sin \theta \]

\[
\text{Area} = \int_{\theta = 0}^{\frac{2\pi}{2}} \frac{1}{2} a^2 \, d\theta = \frac{1}{2} \cdot a^2 \cdot 2\pi = \pi a^2
\]
Ex: A ray.

\[\theta = b \]

In this case, \(\theta = b \), and the range of \(r \) is \(0 \leq r < \infty \).

\[x = r \cos b \quad y = r \sin b \]

Ex: The line \(y = 1 \)

To find the polar coordinate equation, plug in \(y = r \sin \theta \), \(x = r \cos \theta \) and solve for \(r \):

\[y = 1 \]

\[r \sin \theta = 1 \]

\[\Rightarrow r = \frac{1}{\sin \theta} \text{ with } 0 < \theta < \pi \]
Ex. Finding the \((x,y)\) coordinates from \(r = f(\theta)\)

As an example, let's consider \(r = \frac{1}{1 + \frac{1}{2} \sin \theta}\)

- \(r + \frac{1}{2} \sin \theta = 1\)

- Plug in \(r = \sqrt{x^2 + y^2}\), \(\sin \theta = \frac{y}{r} = \frac{y}{\sqrt{x^2 + y^2}}\)

\[\Rightarrow \sqrt{x^2 + y^2} + \frac{y}{2} = 1\]

\[\Rightarrow \sqrt{x^2 + y^2} = 1 - \frac{y}{2} \Rightarrow x^2 + y^2 = (1 - \frac{y}{2})^2 = 1 - y + \frac{y^2}{4}\]

Finally, \(x^2 + \frac{3y^2}{4} + y = 1\).

This is the equation of an ellipse with one focus at the origin.
Ex. A rose $r = \cos(2\theta)$

The graph looks a bit like a flower.

For the first "petal," $-\frac{\pi}{4} < \theta < \frac{\pi}{4}$.