Problem 1. pg. 160 problem 85

Problem 2. Show that for any two numbers a and b, $|\sin a - \sin b| \leq |a - b|$.

Problem 3. Section 4.5: 8.

Problem 4. Use Newton’s method to estimate the zero of $f(x) = x^3 + 5x - 7$. Start with the base point $x_0 = 1$ and compute x_1, x_2.

Problem 5. Graph the function $f(x) = |x|^{5/2} - 3|x|^{3/2} + |x|^{1/2}$. Indicate all zeros, critical points, inflection points, points of discontinuity, regions where $f(x)$ is increasing/decreasing, and regions where $f(x)$ is concave up/down.

Problem 6. pg. 156 problem 50

Problem 7. Compute the following antiderivatives:

a) $\int \sin(x^2)x^2(1 + \ln x) \, dx$

b) $\int \frac{\arctan(3x)}{(1 + 9x^2)(1 + [\arctan(3x)]^2)} \, dx$

Problem 8. Consider the function $f(x) = (1 + x)^\alpha [1 + \ln(1 + \beta x)]$, where α and β are constants. Find the constants α and β that make the graph of $f(x)$ “as flat as possible” near $x = 0$. The choice $\beta = 0$ is forbidden.
Solutions

Problem 1. pg. 160 problem 85

Solution: If the woman runs the distance L along the x–axis, then she must swim the distance $\sqrt{b^2 + (L - a)^2}$. The total time she spends to reach the point (a,b) is

$$T = \frac{L}{r} + \frac{\sqrt{b^2 + (L - a)^2}}{s}.$$

The range of L values under consideration is $0 \leq L$.

To find the critical points of T, we first compute

$$\frac{dT}{dL} = \frac{1}{r} + \frac{[b^2 + (L - a)^2]^{-1/2}(L - a)}{s}.$$

Setting $\frac{dT}{dL} = 0$, we solve for the critical point L_{critical} as follows:

$$L_{\text{critical}} = a - \frac{b}{\sqrt{\frac{r^2}{s^2} - 1}}.$$

As long as the above formula leads to $L_{\text{critical}} > 0$, it is straightforward to verify that $\frac{dT}{dL} > 0$ when $L > L_{\text{critical}}$ and $\frac{dT}{dL} < 0$ when $L < L_{\text{critical}}$. Thus, as long as $L_{\text{critical}} > 0$, L_{critical} is in fact the minimum value.

Problem 2. Show that for any two numbers a and b, $|\sin a - \sin b| \leq |a - b|$.

Solution: Let $f(x) = \sin x$. By the mean value theorem, there exists a point c in between a and b such that $|\sin a - \sin b| = |f'(c)||b - a| = |\cos c||b - a| \leq |b - a|.

Problem 3. Section 4.5: 8.

Solution: Assume that the boy is standing at the origin in the x,y plane and that the kite is at the location (x,y). Let D denote the length of the string. By the pythagorean theorem, we have

$$D^2 = x^2 + y^2.$$

Using the chain rule, we differentiate each side of the equation with respect to t to deduce that

$$2D \frac{dD}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}.$$

We are told that

$$y = 80,$$
$$D = 100,$$

from which it follows that $x = 60$. We are also told that

$$\frac{dx}{dt} = 20,$$
$$\frac{dy}{dt} = 0.$$
Plugging these numbers into the above equation, we deduce that
\[
\frac{dD}{dt} = \frac{x}{D} \frac{dx}{dt} + \frac{y}{D} \frac{dy}{dt} = 60 \times \frac{20 + 0}{100} = 12.
\]

Problem 4. Use Newton’s method to estimate the zero of \(f(x) = x^3 + 5x - 7 \). Start with the base point \(x_0 = 1 \) and compute \(x_1, x_2 \).

Solution: Newton’s iterate formula is
\[
x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.
\]
Since \(f'(x) = 3x^2 + 5 \), we have
\[
x_{k+1} = x_k - \frac{x_k^3 + 5x_k - 7}{3x_k^2 + 5}.
\]
We then set \(x_0 = 1 \) and compute
\[
x_1 = 1 - \frac{-1}{8} = \frac{9}{8},
\]
\[
x_2 = \frac{9}{8} - \frac{\frac{9^3}{8^3} + 5 \cdot \frac{9}{8} - 7}{3 \cdot \frac{9^2}{8^2} + 5} = \frac{9}{8} - \frac{9^3 + 45 \times 8^2 - 7 \times 8^3}{3 \times 9^2 \times 8 + 5 \times 8^3} = \frac{9}{8} - \frac{25}{4504}.
\]

Problem 5. Graph the function \(f(x) = |x|^{5/2} - 3|x|^{3/2} + |x|^{1/2} \). Indicate all zeros, critical points, inflection points, points of discontinuity, regions where \(f(x) \) is increasing/decreasing, and regions where \(f(x) \) is concave up/down.

Solution: The function is even, so we only need to consider \(x \geq 0 \). We first note that \(f(x) \to \infty \) as \(x \to \infty \) and \(f(x) \to 0 \) as \(x \to 0^+ \).

We then compute that for \(x > 0 \), we have
\[
f'(x) = \frac{1}{2} \frac{(5x^2 - 9x + 1)}{\sqrt{x}},
\]
\[
f''(x) = \frac{1}{4} \frac{(15x^2 - 9x - 1)}{x^{3/2}}.
\]
To find the critical points in the region \(x > 0 \), we set \(f'(x) = 0 \) and solve via the quadratic formula:
\[
x_{\text{critical}} = \frac{9 \pm \sqrt{61}}{10}.
\]
Note that both of these numbers are positive. In between 0 and \(x_{\text{critical}^-} \), \(f' > 0 \) and so \(f \) is increasing. In between \(x_{\text{critical}^-} \) and \(x_{\text{critical}^+} \), \(f' < 0 \) and so \(f \) is decreasing. In between \(x_{\text{critical}} \) and \(\infty \), \(f' > 0 \) and so \(f \) is increasing. Also, \(f'(x) \) becomes infinite as \(x \to 0^+ \).

To find the inflection points, we set \(f''(x) = 0 \) and solve via the quadratic formula:

\[
x_{\text{inflection}} = \frac{9 + \sqrt{141}}{30}.
\]

Note that we have discarded the other root since it is not positive. In between 0 and \(x_{\text{inflection}} \), \(f'' < 0 \) and so \(f \) is concave down. In between \(x_{\text{inflection}} \) and \(\infty \), \(f'' > 0 \) and so \(f \) is concave up.

The full graph is given in the figure below.

![Figure 1. Graph of \(f(x) \)](image)

Problem 6. pg. 156 problem 50

Solution: We will use the hint in the book. In particular, since the length of the base and the area are given, this implies that the height \(h = 2\text{area}/(\text{length of base}) \) is fixed. Suppose that the vertex has coordinates \((x, h)\). Without loss of generality, we can assume that \(x \geq 0 \) (otherwise, we just flip the triangle about the \(y \) axis). Assume that the two vertices of the base are at \((-a, 0)\) and \((a, 0)\), where \(a \) is a constant. Then by the the pythagorean theorem, the lengths of the other two
sides are
\[
\ell_1 = \sqrt{(x + a)^2 + h^2}, \\
\ell_2 = \sqrt{(x - a)^2 + h^2}.
\]

We therefore want to minimize the function
\[
f(x) = \ell_1 + \ell_2 = \sqrt{(x + a)^2 + h^2} + \sqrt{(x - a)^2 + h^2}
\]
over the region \(x \geq 0\). Clearly \(f(x) \to \infty\) as \(x \to \infty\), so the minimizer will not "lie at \(x = \infty\)."

To locate the critical points of \(f(x)\), we first compute
\[
f'(x) = \frac{x + a}{\sqrt{(x + a)^2 + h^2}} + \frac{x - a}{\sqrt{(x - a)^2 + h^2}}.
\]
We then set \(f'(x) = 0\) to deduce the equation
\[
\frac{x + a}{\sqrt{(x + a)^2 + h^2}} = -\frac{x - a}{\sqrt{(x - a)^2 + h^2}}.
\]

Squaring the equation to make life easier, we deduce
\[
\frac{(x + a)^2}{(x + a)^2 + h^2} = \frac{(x - a)^2}{(x - a)^2 + h^2},
\]
which is equivalent to
\[
\frac{1}{1 + \frac{h^2}{(x + a)^2}} = \frac{1}{1 + \frac{h^2}{(x - a)^2}}.
\]
We then see that
\[
(x + a)^2 = (x - a)^2.
\]

The above equation has only the solution \(x = 0\). Thus, the only critical point is also an endpoint. Therefore, \(x = 0\) must be the minimum. Since \(x = 0\) implies that the triangle is isosceles, we have proved the desired result.

Problem 7. Compute the following antiderivatives:

a) \[\int \sin(x^x)x^x(1 + \ln x) \, dx\]

b) \[\int \frac{\arctan(3x)}{(1 + 9x^2)\sqrt{1 + [\arctan(3x)]^2}} \, dx\]

Solution: a) We set \(u = x^x\). This implies (by logarithmic differentiation) that \(du = x^x(1 + \ln x) \, dx\). After these substitutions, the integral becomes
\[
\int \sin u \, du = -\cos u + c = -\cos(x^x) + c.
\]

b) We first make the substitution \(u = \arctan(3x), du = 3(1 + 9x^2)^{-1} \, dx\), which leads to the integral
\[
\frac{1}{3} \int \frac{u}{\sqrt{1 + u^2}} \, du.
\]
We then make the second substitution \(v = u^2 \), \(dv = 2u \, du \), and the integral becomes
\[
\frac{1}{6} \int \frac{dv}{\sqrt{1 + v}} \, dv = \frac{1}{6} \int (1 + v)^{-1/2} (1 + u^2)^{1/2} + c
\]
\[
= \frac{1}{3}(1 + u^2)^{1/2} + c
\]
\[
= \frac{1}{3}(1 + [\text{arctan}(3x)]^2)^{1/2} + c.
\]

Problem 8. Consider the function \(f(x) = (1 + x)\alpha [1 + \ln(1 + \beta x)] \), where \(\alpha \) and \(\beta \) are constants.
Find the constants \(\alpha \) and \(\beta \) that make the graph of \(f(x) \) “as flat as possible” near \(x = 0 \). The choice \((\alpha, \beta) = (0, 0) \) is forbidden.

Solution: We first compute the quadratic approximation to \(f(x) \):
\[
f(x) = \left(1 + \alpha x + \frac{\alpha(\alpha - 1)x^2}{2} + O(x^3)\right) \left(1 + \beta x - \frac{\beta^2 x^2}{2} + O(x^3)\right)
\]
\[
= 1 + (\alpha + \beta)x + \left(\alpha\beta + \frac{\alpha(\alpha - 1)}{2} - \frac{\beta^2}{2}\right)x^2 + O(x^3).
\]
To make the graph of \(f(x) \) as flat as possible, we set the coefficients of \(x \) and \(x^2 \) equal to 0:
\[
\alpha + \beta = 0,
\]
\[
\alpha\beta + \frac{\alpha(\alpha - 1)}{2} - \frac{\beta^2}{2} = 0.
\]
The first equation implies that \(\alpha = -\beta \). Inserting this information into the second equation, we deduce
\[
-\alpha^2 - \frac{1}{2}\alpha = 0.
\]
This equation has the forbidden solution \(\alpha = 0 \) (forbidden because it leads to \(\beta = 0 \)) and also the solution \(\alpha = -1/2 \). Thus,
\[
(\alpha, \beta) = (-1/2, 1/2),
\]
and \(f(x) = (1 + x)^{-1/2} \left[1 + \ln(1 + \frac{1}{2}x)\right] \).