
7. Structural Stability

In the previous two sections, we described how to get a rough picture of the trajectories
of a non-linear system by linearizing at each of its critical points. The basic assumption
of the method is that the linearized system will be a good approximation to the original
non-linear system if you stay near the critical point.

The method only works however if the linearized system turns out to be a node, saddle,
or spiral. What is it about these geometric types that allows the method to work, and why
won’t it work if the linearized system turns out to be one of the other possibilities (dismissed
as “borderline types” in the previous section)?

Briefly, the answer is that nodes, saddles, and spirals are structurally stable, while the
other possibilities are not. We call a system

(1)
x′ = f(x, y)

y′ = g(x, y)

structurally stable if small changes in its parameters (i.e., the constants that enter into
the functions on the right hand side) do not change the geometric type and stability of its
critical points (or its limit cycles, if there are any — see the next section, and don’t worry
about them for now.)

Theorem. The 2× 2 autonomous linear system

(2)
x′ = ax+ by

y′ = cx+ dy

is structurally stable if it is a spiral, saddle, or node (but not a degenerate or star node).

Proof. The characteristic equation is

λ2 − (a+ d)λ+ (ad− bc) = 0,

and its roots (the eigenvalues) are

(3) λ1, λ2 =
(a+ d)±

√

(a+ d)2 − 4(ad− bc)

2
.

Let’s look at the cases one-by-one; assume first that the roots λ1 and λ2 are real and
distinct. The possibilities in the theorem are given by the following (note that since the
roots are distinct, the node will not be degenerate or a star node):

λ1 > 0, λ2 > 0 unstable node

λ1 < 0, λ2 < 0 asymptotically stable node

λ1 > 0, λ2 < 0 unstable saddle.

The quadratic formula (3) shows that the roots depend continuously on the coefficients
a, b, c, d. Thus if the coefficients are changed a little, the roots λ1 and λ2 will also be
changed a little to λ′

1
and λ′

2
respectively; the new roots will still be real, and will have the
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same sign if the change is small enough. Thus the changed system will still have the same
geometric type and stability. �

If the roots of the characteristic equation are complex, the reasoning is similar. Let us
denote the complex roots by r± si; we use the root λ = r+ si, s > 0; then the possibilities
to be considered for structural stability are

r > 0, s > 0 unstable spiral

r < 0, s > 0 asymptotically stable spiral.

If a, b, c, d are changed a little, the root is changed to λ′ = r′ + s′i, where r′ and s′ are close
to r and s respectively, since the quadratic formula (3) shows r and s depend continuously
on the coefficients. If the change is small enough, r′ will have the same sign as r and s′ will
still be positive, so the geometric type of the changed system will still be a spiral, with the
same stability type. ��

8. The borderline geometric types All the other possibilities for the linear system
(2) we call borderline types. We will show now that none of them is structurally stable; we
begin with the center.

Eigenvalues pure imaginary. Once again we use the eigenvalue with the positive imag-
inary part: λ = 0 + si, s > 0. It corresponds to a center: the trajectories are a family
of concentric ellipses, centered at the origin. If the coefficients a, b, c, d are changed a little,
the eigenvalue 0 + si changes a little to r′ + s′i, where r′ ≈ 0, s′ ≈ s, and there are three
possibilities for the new eigenvalue:

0 + si → r′ + s′i : r′ > 0 r′ < 0 r′ = 0

s > 0 s′ > 0 s′ > 0 s′ > 0

center source spiral sink spiral center

Correspondingly, there are three possibilities for how the geometric picture of the trajecto-
ries can change:

Eigenvalues real; one eigenvalue zero. Here λ1 = 0, and λ2 > 0 or λ2 < 0. The general
solution to the system has the form (α1, α2 are the eigenvectors)

x = c1α1 + c2α2e
λ2t.

If λ2 < 0, the geometric picture of its trajectories shows a line of critical points (constant
solutions, corresponding to c2 = 0), with all other trajectories being parallel lines ending up
(for t = ∞) at one of the critical points, as shown below.



17

We continue to assume λ2 < 0. As the coefficients of the system change a little, the
two eigenvalues change a little also; there are three possibilities, since the 0 eigenvalue can
become positive, negative, or stay zero:

λ1 = 0 → λ′

1
: λ′

1
> 0 λ′

1
= 0 λ1 < 0

λ2 < 0 → λ′

2
: λ′

2
< 0 λ′

2
< 0 λ′

2
< 0

critical line unstable saddle critical line sink node

Here are the corresponding pictures. (The pictures would look the same if we assumed
λ2 > 0, but the arrows on the trajectories would be reversed.)

One repeated real eigenvalue. Finally, we consider the case where λ1 = λ2. Here
there are a number of possibilities, depending on whether λ1 is positive or negative, and
whether the repeated eigenvalue is complete (i.e., has two independent eigenvectors), or
defective (i.e., incomplete: only one eigenvector). Let us assume that λ1 < 0. We vary the
coefficients of the system a little. By the same reasoning as before, the eigenvalues change
a little, and by the same reasoning as before, we get as the main possibilities (omitting this
time the one where the changed eigenvalue is still repeated):

λ1 < 0 → λ′

1
< 0 r + si

λ2 < 0 → λ′

2
< 0 r − si

λ1 = λ2 λ′

1
6= λ′

2
r ≈ λ1, s ≈ 0,

sink node sink node sink spiral

Typical corresponding pictures for the complete case and the defective (incomplete) case
are (the last one is left for you to experiment with on the computer screen)

complete: star node incomplete: defective node
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Remarks. Each of these three cases—one eigenvalue zero, pure imaginary eigenvalues,
repeated real eigenvalue—has to be looked on as a borderline linear system: altering the
coefficients slightly can give it an entirely different geometric type, and in the first two cases,
possibly alter its stability as well.

Application to non-linear systems.

All the preceding analysis discussed the structural stability of a linear system. How does
it apply to non-linear systems?

Suppose our non-linear system has a critical point at P , and we want to study its trajec-
tories near P by linearizing the system at P .

This linearization is only an approximation to the original system, so if it turns out to
be a borderline case, i.e., one sensitive to the exact value of the coefficients, the trajectories
near P of the original system can look like any of the types obtainable by slightly changing
the coefficients of the linearization.

It could also look like a combination of types. For instance, if the linearized system had
a critical line (i.e., one eigenvalue zero), the original system could have a sink node on one
half of the critical line, and an unstable saddle on the other half. (This actually occurs.)

In other words, the method of linearization we used in Sections 6 and 7 to analyze a
non-linear system near a critical point doesn’t fail entirely, but we don’t end up with a
definite picture of the non-linear system near P ; we only get a list of possibilities. In general
one has to rely on computation or more powerful analytic tools to get a clearer answer. The
first thing to try is a computer picture of the non-linear system, which often will give the
answer.
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