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D. Definite Integral Solutions

You will find in your other subjects that solutions to ordinary differential equations
(ODE’s) are often written as definite integrals, rather than as indefinite integrals. This
is particularly true when initial conditions are given, i.e., an initial-value problem (IVP)
is being solved. It is important to understand the relation between the two forms for the
solution.

As a simple example, consider the IVP

(1) y′ = 6x2, y(1) = 5.

Using the usual indefinite integral to solve it, we get y = 2x3 + c, and by substituting
x = 1, y = 5, we find that c = 3. Thus the solution is

(2) y = 2x3 + 3

However, we can also write down this answer in another form, as a definite integral

(3) y = 5 +

∫
x

1

6t2dt .

Indeed, if you evaluate the definite integral, you will see right away that the solution (3) is
the same as the solution (2). But that is not the point. Even before actually integrating, you
can see that (3) solves the IVP (1). For, according to the Second Fundamental Theorem of
Calculus,

d

dx

∫
x

a

f(t) dt = f(x) .

If we use this and differentiate both sides of (3), we see that y′ = 6x2, so that the first
part of the IVP (1) is satisfied. Also the initial condition is satisfied, since

y(1) = 5 +

∫
1

1

6t2 dt = 5 .

In the above example, the explicit form (2) seems preferable to the definite integral form
(3). But if the indefinite integration that leads to (2) cannot be explicitly performed, we
must use the integral. For instance, the IVP

y′ = sin(x2), y(0) = 1

is of this type: there is no explicit elementary antiderivative (indefinite integral) for sin(x2);
the solution to the IVP can however be written in the form (3):

y = 1 +

∫
x

0

sin(t2) dt .

The most important case in which the definite integral form (3) must be used is in
scientific and engineering applications when the functions in the IVP aren’t specified, but
one still wants to write down the solution explicitly. Thus, the solution to the general IVP

(4) y′ = f(x), y(x0) = y0

may be written
1



2 18.03 NOTES

(5) y = y0 +

∫
x

x0

f(t) dt .

If we tried to write down the solution to (4) using indefinite integration, we would have to
say something like, “the solution is y =

∫
f(x) dx + c, where the constant c is determined

by the condition y(x0) = y0” — an awkward and not explicit phrase.

In short, the definite integral (5) gives us an explicit solution to the IVP; the indefinite
integral only gives us a procedure for finding a solution, and just for those cases when an
explicit antiderivative can actually be found.



G. Graphical and Numerical Methods

In studying the first-order ODE

(1)
dy

dx
= f(x, y),

the main emphasis is on learning different ways of finding explicit solutions. But you should
realize that most first-order equations cannot be solved explicitly. For such equations, one
resorts to graphical and numerical methods. Carried out by hand, the graphical methods
give rough qualitative information about how the graphs of solutions to (1) look geometri-
cally. The numerical methods then give the actual graphs to as great an accuracy as desired;
the computer does the numerical work, and plots the solutions.

1. Graphical methods.

The graphical methods are based on the construction of what is called a direction field

for the equation (1). To get this, we imagine that through each point (x, y) of the plane is
drawn a little line segment whose slope is f(x, y). In practice, the segments are drawn in
at a representative set of points in the plane; if the computer draws them, the points are
evenly spaced in both directions, forming a lattice. If drawn by hand, however, they are
not, because a different procedure is used, better adapted to people.

To construct a direction field by hand, draw in lightly, or in dashed lines, what are called
the isoclines for the equation (1). These are the one-parameter family of curves given by
the equations

(2) f(x, y) = c, c constant.

Along the isocline given by the equation (2), the line segments all have the same slope c;
this makes it easy to draw in those line segments, and you can put in as many as you want.
(Note: “iso-cline” = “equal slope”.)

The picture shows a direction field for the equation

y′ = x− y .

The isoclines are the lines x − y = c, two of which
are shown in dashed lines, corresponding to the values
c = 0,−1. (Use dashed lines for isoclines).

Once you have sketched the direction field for the equa-
tion (1) by drawing some isoclines and drawing in little
line segments along each of them, the next step is to
draw in curves which are at each point tangent to the line segment at that point. Such
curves are called integral curves or solution curves for the direction field. Their significance
is this:

(3) The integral curves are the graphs of the solutions to y′ = f(x, y) .

Proof. Suppose the integral curve C is represented near the point (x, y) by the graph of
the function y = y(x). To say that C is an integral curve is the same as saying

0



G. GRAPHICAL AND NUMERICAL METHODS 1

slope of C at (x, y) = slope of the direction field at (x, y);

from the way the direction field is defined, this is the same as saying

y′(x) = f(x, y) .

But this last equation exactly says that y(x) is a solution to (1). �

We may summarize things by saying, the direction field gives a picture of the first-order
equation (1), and its integral curves give a picture of the solutions to (1).

Two integral curves (in solid lines) have been drawn for the equation y′ = x − y. In
general, by sketching in a few integral curves, one can often get some feeling for the behavior
of the solutions. The problems will illustrate. Even when the equation can be solved exactly,
sometimes you learn more about the solutions by sketching a direction field and some integral
curves, than by putting numerical values into exact solutions and plotting them.

There is a theorem about the integral curves which often helps in sketching them.

Integral Curve Theorem.

(i) If f(x, y) is defined in a region of the xy-plane, then integral curves of y′ = f(x, y)
cannot cross at a positive angle anywhere in that region.

(ii) If fy(x, y) is continuous in the region, then integral curves cannot even be tangent
in that region.

A convenient summary of both statements is (here “smooth”= continuously differentiable):

Intersection Principle

(4) Integral curves of y′ = f(x, y) cannot intersect wherever f(x, y) is smooth.

Proof of the Theorem. The first statement (i) is easy, for at any point (x0, y0) where
they crossed, the two integral curves would have to have the same slope, namely f(x0, y0).
So they cannot cross at a positive angle.

The second statement (ii) is a consequence of the uniqueness theorem for first-order
ODE’s; it will be taken up then when we study that theorem. Essentially, the hypothesis
guarantees that through each point (x0, y0) of the region, there is a unique solution to the
ODE, which means there is a unique integral curve through that point. So two integral
curves cannot intersect — in particular, they cannot be tangent — at any point where
f(x, y) has continuous derivatives.

Exercises: Section 1C
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2. The ODE of a family. Orthogonal trajectories.

The solution to the ODE (1) is given analytically by an xy-equation containing an
arbitrary constant c; either in the explicit form (5a), or the implicit form (5b):

(5) (a) y = g(x, c) (b) h(x, y, c) = 0 .

In either form, as the parameter c takes on different numerical values, the corresponding
graphs of the equations form a one-parameter family of curves in the xy-plane.

We now want to consider the inverse problem. Starting with an ODE, we got a one-
parameter family of curves as its integral curves. Suppose instead we start with a one-
parameter family of curves defined by an equation of the form (5a) or (5b), can we find a
first-order ODE having these as its integral curves, i.e. the equations (5) as its solutions?

The answer is yes; the ODE is found by differentiating the equation of the family (5)
(using implicit differentiation if it has the form (5b)), and then using (5) to eliminate the
arbitrary constant c from the differentiated equation.

Example 1. Find a first-order ODE whose general solution is the family

(6) y =
c

x− c
(c is an arbitrary constant).

Solution. We differentiate both sides of (6) with respect to x, getting y′ = − c

(x− c)2
.

We eliminate c from this equation, in steps. By (6), x− c = c/y, so that

(7) y′ = − c

(x− c)2
= − c

(c/y)2
= −y2

c
;

To get rid of c, we solve (6) algebraically for c, getting c =
yx

y + 1
; substitute this for the

c on the right side of (7), then cancel a y from the top and bottom; you get as the ODE
having the solution (6)

(8) y′ = −y(y + 1)

x
.

Remark. The c must not appear in the ODE, since then we would not have a single ODE,
but rather a one-parameter family of ODE’s — one for each possible value of c. Instead, we
want just one ODE which has each of the curves (5) as an integral curve, regardless of the
value of c for that curve; thus the ODE cannot itself contain c.

Orthogonal trajectories.

Given a one-parameter family of plane curves, its orthogonal trajectories are another
one-parameter family of curves, each one of which is perpendicular to all the curves in the
original family. For instance, if the original family consisted of all circles having center at
the origin, its orthogonal trajectories would be all rays (half-lines) starting at the origin.

Orthogonal trajectories arise in different contexts in applications. For example, if the
original family represents the lines of force in a gravitational or electrostatic field, its or-
thogonal trajectories represent the equipotentials, the curves along which the gravitational
or electrostatic potential is constant.
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In a temperature map of the U.S., the original family would be the isotherms, the curves
along which the temperature is constant; their orthogonal trajectories would be the tem-

perature gradients, the curves along which the temperature is changing most rapidly.

More generally, if the original family is of the form h(x, y) = c, it represents the level

curves of the function h(x, y); its orthogonal trajectories will then be the gradient curves

for this function — curves which everywhere have the direction of the gradient vector ∇h.
This follows from the 18.02 theorem which says the gradient ∇h at any point (x, y) is
perpendicular to the level curve of h(x, y) passing through that point.

To find the orthogonal trajectories for a one-parameter family (5):

1. Find the ODE y′ = f(x, y) satisfied by the family.

2. The new ODE y′ = − 1

f((x, y)
will have as its integral curves the orthogonal trajec-

tories to the family (5); solve it to find the equation of these curves.

The method works because at any point (x, y), the orthogonal trajectory passing through
(x, y) is perpendicular to the curve of the family (5a) passing through (x, y). Therefore the
slopes of the two curves are negative reciprocals of each other. Since the slope of the original
curve at (x, y) is f(x, y), the slope at (x, y) of the orthogonal trajectory has to be −1/f(x, y).
The ODE for the orthogonal trajectories then gives their slope at (x, y), thus it is

(9) y′ = − 1

f(x, y)
ODE for orthogonal trajectories to (5a) .

More generally, if the equation of the original family is given implicitly by (5b), and its
ODE is also in implicit form, the procedure and its justification are essentially the same:

1. Find the ODE in implicit form F (x, y, y′) = 0 satisfied by the family (5).
2. Replace y′ by −1/y′; solve the new ODE F (x, y,−1/y′) = 0 to find the orthogonal

trajectores of the original family.

Example 2. Find the orthogonal trajectories to the family of curves y = c xn, where n
is a fixed positive integer and c an arbitrary constant.

Solution. If n = 1, the curves are the family of rays from the origin, so the orthogonal
trajectories should be the circles centered at the origin – this will help check our work.

We first find the ODE of the family. Differentiating the equation of the family gives
y′ = nc xn−1; we eliminate c by using the equation of the family to get c = y/xn and
substituting this into the differentiated equation, giving

(10) y′ =
n y

x
(ODE of family); y′ = − x

n y
(ODE of orthog. trajs.) .

Solving the latter equation by separation of variables leads first to n ydy = −xdx, then
after integrating both sides, transposing, and multiplying through by 2, to the solution

(11) x2 + n y2 = k, (k ≥ 0 is an arbitrary non-negative constant; n is fixed.)

For different k-values, the equations (11) represent the family of ellipses centered at the

origin, and having x-intercepts at ±
√
k and y-intercepts at ±

√

k/n.
If n = 1, these intercepts are equal, and the ellipses are circles centered at the origin, as

predicted.

Exercises: Section 1D-2
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3. Euler’s numerical method. The graphical method gives you a quick feel for
how the integral curves behave. But when they must be known accurately and the equation
cannot be solved exactly, numerical methods are used. The simplest method is called Euler’s

method. Here is its geometric description.

We want to calculate the solution (integral curve) to
y′ = f(x, y) passing through (x0, y0). It is shown as a
curve in the picture.

We choose a step size h. Starting at (x0, y0), over the
interval [x0, x0 + h], we approximate the integral curve by
the tangent line: the line having slope f(x0, y0). (This is
the slope of the integral curve, since y′ = f(x, y).)

This takes us as far as the point (x1, y1), which is calculated by the equations (see the
picture)

x1 = x0 + h, y1 = y0 + h f(x0, y0) .

Now we are at (x1, y1). We repeat the process, using as the new approximation to the
integral curve the line segment having slope f(x1, y1). This takes us as far as the next point
(x2, y2), where

x2 = x1 + h, y2 = y1 + h f(x1, y1) .

We continue in the same way. The general formulas telling us how to get from the (n−1)-st
point to the n-th point are

(12) xn = xn−1 + h, yn = yn−1 + h f(xn−1, yn−1) .

In this way, we get an approximation to the integral curve consisting of line segments
joining the points (x0, y0), (x1, y1), . . . .

In doing a few steps of Euler’s method by hand, as you are asked to do in some of the
exercises to get a feel for the method, it’s best to arrange the work systematically in a table.

Example 3. For the IVP: y′ = x2 − y2, y(1) = 0, use Euler’s method with step size .1
to find y(1.2).

Solution. We use f(x, y) = x2 − y2, h = .1, and (12) above to find xn and yn:

n xn yn f(xn, yn) hf(xn, yn)
0 1 0 1 .1
1 1.1 .1 1.20 .12
2 1.2 .22

Remarks. Euler’s method becomes more accurate the smaller the step-size h is taken.
But if h is too small, round-off errors can appear, particularly on a pocket calculator.

As the picture suggests, the errors in Euler’s method will accumulate
if the integral curve is convex (concave up) or concave (concave down).
Refinements of Euler’s method are aimed at using as the slope for the line
segment at (xn, yn) a value which will correct for the convexity or concavity,
and thus make the next point (xn+1, yn+1) closer to the true integral curve.
We will study some of these. The book in Chapter 6 has numerical examples
illustrating Euler’ s method and its refinements.

Exercises: Section 1C



C. Complex Numbers

1. Complex arithmetic.

Most people think that complex numbers arose from attempts to solve quadratic equa-
tions, but actually it was in connection with cubic equations they first appeared. Everyone
knew that certain quadratic equations, like

x2 + 1 = 0, or x2 + 2x+ 5 = 0,

had no solutions. The problem was with certain cubic equations, for example

x3 − 6x+ 2 = 0.

This equation was known to have three real roots, given by simple combinations of the
expressions

(1) A = 3

√

−1 +
√
−7, B = 3

√

−1−
√
−7;

one of the roots for instance is A+B: it may not look like a real number, but it turns out
to be one.

What was to be made of the expressions A and B? They were viewed as some sort
of “imaginary numbers” which had no meaning in themselves, but which were useful as
intermediate steps in calculations that would ultimately lead to the real numbers you were
looking for (such as A+B).

This point of view persisted for several hundred years. But as more and more applications
for these “imaginary numbers” were found, they gradually began to be accepted as valid
“numbers” in their own right, even though they did not measure the length of any line
segment. Nowadays we are fairly generous in the use of the word “number”: numbers of one
sort or another don’t have to measure anything, but to merit the name they must belong to a
system in which some type of addition, subtraction, multiplication, and division is possible,
and where these operations obey those laws of arithmetic one learns in elementary school
and has usually forgotten by high school — the commutative, associative, and distributive
laws.

To describe the complex numbers, we use a formal symbol i representing
√
−1; then a

complex number is an expression of the form

(2) a+ bi, a, b real numbers.

If a = 0 or b = 0, they are omitted (unless both are 0); thus we write

a+ 0i = a, 0 + bi = bi, 0 + 0i = 0 .

The definition of equality between two complex numbers is

(3) a+ bi = c+ di ⇔ a = c, b = d .

This shows that the numbers a and b are uniquely determined once the complex number
a+ bi is given; we call them respectively the real and imaginary parts of a+ bi. (It would be
more logical to call bi the imaginary part, but this would be less convenient.) In symbols,

(4) a = Re (a+ bi), b = Im (a+ bi)
1
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Addition and multiplication of complex numbers are defined in the familiar way, making
use of the fact that i2 = −1 :

Addition (a+ bi) + (c+ di) = (a+ c) + (b+ d)i(5a)

Multiplication (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i(5b)

Division is a little more complicated; what is important is not so much the final formula
but rather the procedure which produces it; assuming c+ di 6= 0, it is:

(5c) Division
a+ bi

c+ di
=

a+ bi

c+ di
· c− di

c− di
=

ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i

This division procedure made use of complex conjugation: if z = a + bi, we define the
complex conjugate of z to be the complex number

(6) z̄ = a− bi (note that zz̄ = a2 + b2 ).

The size of a complex number is measured by its absolute value, or modulus, defined by

(7) |z| = |a+ bi| =
√

a2 + b2; (thus : zz̄ = |z|2 ).

Remarks. For the sake of computers, which do not understand what a “formal expression”
is, one can define a complex number to be just an ordered pair (a, b) of real numbers, and
define the arithmetic operations accordingly; using (5b), multiplication is defined by

(a, b)(c, d) = (ac− bd, ad+ bc) .

Then if we let i represent the ordered pair (0, 1), and a the ordered pair (a, 0), it is easy
to verify using the above definition of multiplication that

i2 = (0, 1)(0, 1) = (−1, 0) = −1 and (a, b) = (a, 0) + (b, 0)(0, 1) = a+ bi ,

and we recover the human way of writing complex numbers.

Since it is easily verified from the definition that multiplication of complex numbers is
commutative: z1z2 = z2z1, it does not matter whether the i comes before or after, i.e.,
whether we write z = x + yi or z = x + iy. The former is used when x and y are simple
numbers because it looks better; the latter is more usual when x and y represent functions
(or values of functions), to make the i stand out clearly or to avoid having to use parentheses:

2 + 3i, 5− 2πi; cos π
2 + i sin π

2 , x(t) + i y(t) .

2. Polar representation.

Complex numbers are represented geometrically by points in the plane: the number a+ib
is represented by the point (a, b) in Cartesian coordinates. When the points of the plane
represent complex numbers in this way, the plane is called the complex plane.

By switching to polar coordinates, we can write any non-zero complex number in an
alternative form. Letting as usual

x = r cos θ, y = r sin θ,

we get the polar form for a non-zero complex number: assuming x+ iy 6= 0,

(8) x+ iy = r(cos θ + i sin θ) .

When the complex number is written in polar form, we see from (7) that

r = |x+ iy|. (absolute value, modulus)
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We call θ the polar angle or the argument of x+ iy. In symbols, one sometimes sees

θ = arg (x+ iy) (polar angle, argument) .

The absolute value is uniquely determined by x+ iy, but the polar angle is not, since it can
be increased by any integer multiple of 2π. (The complex number 0 has no polar angle.) To
make θ unique, one can specify

0 ≤ θ < 2π principal value of the polar angle.

This so-called principal value of the angle is sometimes indicated by writing Arg (x+ iy).
For example,

Arg (−1) = π, arg (−1) = ±π,±3π,±5π, . . . .

Changing between Cartesian and polar representation of a complex number is essentially the
same as changing between Cartesian and polar coordinates: the same equations are used.

Example 1. Give the polar form for: −i, 1 + i, 1− i, −1 + i
√
3 .

Solution.

−i = i sin 3π
2 1 + i =

√
2 (cos π

4 + i sin π
4 )

−1 + i
√
3 = 2 (cos 2π

3 + i sin 2π
3 ) 1− i =

√
2 (cos −π

4 + i sin −π
4 )

The abbreviation cis θ is sometimes used for cos θ+ i sin θ; for students of science and
engineering, however, it is important to get used to the exponential form for this expression:

(9) eiθ = cos θ + i sin θ Euler’s formula.

Equation (9) should be regarded as the definition of the exponential of an imaginary power.
A good justification for it however is found in the infinite series

et = 1 +
t

1!
+

t2

2!
+

t3

3!
+ . . . .

If we substitute iθ for t in the series, and collect the real and imaginary parts of the sum
(remembering that

i2 = −1, i3 = −i, i4 = 1, i5 = i, . . . ,

and so on, we get

eiθ =

(

1− θ2

2!
+

θ4

4!
− . . .

)

+ i

(

θ − θ3

3!
+

θ5

5!
− . . .

)

= cos θ + i sin θ ,

in view of the infinite series representations for cos θ and sin θ.

Since we only know that the series expansion for et is valid when t is a real
number, the above argument is only suggestive — it is not a proof of (9). What it
shows is that Euler’s formula (9) is formally compatible with the series expansions
for the exponential, sine, and cosine functions.

Using the complex exponential, the polar representation (8) is written

(10) x+ iy = r eiθ

The most important reason for polar representation is that multiplication and division
of complex numbers is particularly simple when they are written in polar form. Indeed, by
using Euler’s formula (9) and the trigonometric addition formulas, it is not hard to show
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(11) eiθeiθ
′

= ei(θ+θ′) .

This gives another justification for the definition (9) — it makes the complex exponential
follow the same exponential addition law as the real exponential. The law (11) leads to the
simple rules for multiplying and dividing complex numbers written in polar form:

(12a) multiplication rule r eiθ · r′eiθ′

= r r′ ei(θ+θ′) ;

to multiply two complex numbers, you multiply the absolute values and add the angles.

(12b) reciprocal rule
1

r eiθ
=

1

r
e−iθ;

(12c) division rule
r eiθ

r′eiθ′
=

r

r′
ei (θ−θ′);

to divide by a complex number, divide by its absolute value and subtract its angle.

The reciprocal rule (12b) follows from (12a), which shows that
1

r
e−iθ · reiθ = 1.

The division rule follows by writing
r eiθ

r′eiθ′
=

1

r′eiθ′
· r eiθ and using (12b) and then (12a).

Using (12a), we can raise x+ iy to a positive integer power by first using x+ iy = r eiθ;
the special case when r = 1 is called DeMoivre’s formula:

(13) (x+iy)n = rneinθ; DeMoivre’s formula: (cos θ+i sin θ)n = cosnθ+i sinnθ.

Example 2. Express a) (1 + i)6 in Cartesian form; b)
1 + i

√
3√

3 + i
in polar form.

Solution. a) Change to polar form, use (13), then change back to Cartesian form:

(1 + i)6 = (
√
2 eiπ/4)6 = (

√
2)6ei 6π/4 = 8 ei 3π/2 = −8i .

b) Changing to polar form,
1 + i

√
3√

3 + i
=

2eiπ/3

2eiπ/6
= eiπ/6 , using the division rule (12c).

You can check the answer to (a) by applying the binomial theorem to (1+ i)6 and collecting
the real and imaginary parts; to (b) by doing the division in Cartesian form (5c), then
converting the answer to polar form.

3. Complex exponentials

Because of the importance of complex exponentials in differential equations, and in science
and engineering generally, we go a little further with them.

Euler’s formula (9) defines the exponential to a pure imaginary power. The definition of
an exponential to an arbitrary complex power is:

(14) ea+ib = eaeib = ea(cos b+ i sin b).

We stress that the equation (14) is a definition, not a self-evident truth, since up to now no
meaning has been assigned to the left-hand side. From (14) we see that

(15) Re (ea+ib) = ea cos b, Im (ea+ib) = ea sin b .
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The complex exponential obeys the usual law of exponents:

(16) ez+z′

= ezez
′

,

as is easily seen by combining (14) and (11).

The complex exponential is expressed in terms of the sine and cosine by Euler’s formula
(9). Conversely, the sin and cos functions can be expressed in terms of complex exponentials.
There are two important ways of doing this, both of which you should learn:

cosx = Re (eix), sinx = Im (eix) ;(17)

cosx = 1
2 (e

ix + e−ix), sinx = 1
2i (e

ix − e−ix) .(18)

The equations in (18) follow easily from Euler’s formula (9); their derivation is left for the
exercises. Here are some examples of their use.

Example 3. Express cos3 x in terms of the functions cosnx, for suitable n.

Solution. We use (18) and the binomial theorem, then (18) again:

cos3 x = 1
8 (e

ix + e−ix)3

= 1
8 (e

3ix + 3eix + 3e−ix + e−3ix)

= 1
4 cos 3x+ 3

4 cosx . �

As a preliminary to the next example, we note that a function like

eix = cosx+ i sinx

is a complex-valued function of the real variable x. Such a function may be written as

u(x) + i v(x), u, v real-valued

and its derivative and integral with respect to x are defined to be

(19a,b) a) D(u+ iv) = Du+ iDv, b)

∫

(u+ iv) dx =

∫

u dx+ i

∫

v dx .

From this it follows by a calculation that

(20) D(e(a+ib)x = (a+ ib)e(a+ib)x, and therefore

∫

e(a+ib)xdx =
1

a+ ib
e(a+ib)x .

Example 4. Calculate

∫

ex cos 2x dx by using complex exponentials.

Solution. The usual method is a tricky use of two successive integration by parts. Using
complex exponentials instead, the calculation is straightforward. We have

ex cos 2x = Re
(

e(1+2i)x
)

, by (14) or (15); therefore
∫

ex cos 2x dx = Re

(
∫

e(1+2i)x dx

)

, by (19b).

Calculating the integral,
∫

e(1+2i)x dx =
1

1 + 2i
e(1+2i)x by (20);

=

(

1

5
− 2

5
i

)

(

ex cos 2x+ i ex sin 2x
)

,

using (14) and complex division (5c). According to the second line above, we want the real
part of this last expression. Multiply using (5b) and take the real part; you get

1
5e

x cos 2x+ 2
5e

x sin 2x. �
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In this differential equations course, we will make free use of complex exponentials in
solving differential equations, and in doing formal calculations like the ones above. This is
standard practice in science and engineering, and you need to get used to it.

4. Finding n-th roots.

To solve linear differential equations with constant coefficients, you need to be able find
the real and complex roots of polynomial equations. Though a lot of this is done today with
calculators and computers, one still has to know how to do an important special case by
hand: finding the roots of

zn = α,

where α is a complex number, i.e., finding the n-th roots of α. Polar representation will be
a big help in this.

Let’s begin with a special case: the n-th roots of unity: the solutions to

zn = 1 .

To solve this equation, we use polar representation for both sides, setting z = reiθ on the
left, and using all possible polar angles on the right; using the exponential law to multiply,
the above equation then becomes

rneinθ = 1 · e(2kπi), k = 0,±1,±2, . . . .

Equating the absolute values and the polar angles of the two sides gives

rn = 1, nθ = 2kπ , k = 0,±1,±2, . . . ,

from which we conclude that

(∗) r = 1, θ =
2kπ

n
, k = 0, 1, . . . , n− 1 .

In the above, we get only the value r = 1, since r must be real and non-negative. We don’t
need any integer values of k other than 0, . . . , n−1 since they would not produce a complex
number different from the above n numbers. That is, if we add an, an integer multiple of
n, to k, we get the same complex number:

θ′ =
2(k + an)π

n
= θ + 2aπ; and eiθ

′

= eiθ, since e2aπi = (e2πi)a = 1.

We conclude from (∗) therefore that

(21) the n-th roots of 1 are the numbers e2kπi/n, k = 0, . . . , n− 1.

This shows there are n complex n-th roots of unity. They all lie
on the unit circle in the complex plane, since they have absolute
value 1; they are evenly spaced around the unit circle, starting with
1; the angle between two consecutive ones is 2π/n. These facts
are illustrated on the right for the case n = 6.

ππ

π π

i

i i

33

3 3

1

e

e

i2

54 e

e

1
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From (21), we get another notation for the roots of unity (ζ is the Greek letter “zeta”):

(22) the n-th roots of 1 are 1, ζ, ζ2, . . . , ζn−1, where ζ = e2πi/n.

We now generalize the above to find the n-th roots of an arbitrary complex number w.
We begin by writing w in polar form:

w = r eiθ ; θ = Arg w, 0 ≤ θ < 2π,

i.e., θ is the principal value of the polar angle of w. Then the same reasoning as we used
above shows that if z is an n-th root of w, then

(23) zn = w = r eiθ, so z = n
√
r ei(θ+2kπ)/n, k = 0, 1, . . . , n− 1.

Comparing this with (22), we see that these n roots can be written in the suggestive form

(24) n
√
w = z0, z0ζ, z0ζ

2, . . . , z0ζ
n−1, where z0 = n

√
r eiθ/n .

As a check, we see that all of the n complex numbers in (24) satisfy zn = w :

(z0ζ
i)n = zn0 ζ

ni = zn0 · 1i, since ζn = 1, by (22);

= w, by the definition (24) of z0 and (23).

Example 5. Find in Cartesian form all values of a) 3
√
1 b) 4

√
i .

Solution. a) According to (22), the cube roots of 1 are 1, ω, and ω2, where

ω = e2πi/3 = cos
2π

3
+ i sin

2π

3
= −1

2
+ i

√
3

2

ω2 = e−2πi/3 = cos
−2π

3
+ i sin

−2π

3
= −1

2
− i

√
3

2
.

The greek letter ω (“omega”) is traditionally used for this cube root. Note that
for the polar angle of ω2 we used −2π/3 rather than the equivalent angle 4π/3,
in order to take advantage of the identities

cos(−x) = cosx, sin(−x) = − sinx .

Note that ω2 = ω̄. Another way to do this problem would be to draw the position
of ω2 and ω on the unit circle, and use geometry to figure out their coordinates.

b) To find 4
√
i, we can use (24). We know that 4

√
1 = 1, i,−1,−i (either by drawing

the unit circle picture, or by using (22)). Therefore by (24), we get

4
√
i = z0, z0i, −z0, −z0i, where z0 = eπi/8 = cos

π

8
+ i sin

π

8
;

= a+ ib, −b+ ia, −a− ib, b− ia, where z0 = a+ ib = cos
π

8
+ i sin

π

8
.
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Example 6. Solve the equation x6 − 2x3 + 2 = 0.

Solution. Treating this as a quadratic equation in x3, we solve the quadratic by using
the quadratic formula, the two roots are 1 + i and 1 − i (check this!), so the roots of the
original equation satisfy either

x3 = 1 + i, or x3 = 1− i .

This reduces the problem to finding the cube roots of the two complex numbers 1 ± i.
We begin by writing them in polar form:

1 + i =
√
2 eπi/4, 1− i =

√
2 e−πi/4 .

(Once again, note the use of the negative polar angle for 1− i, which is more convenient for
calculations.) The three cube roots of the first of these are (by (23)),

6
√
2 eπi/12 = 6

√
2

(

cos
π

12
+ i sin

π

12

)

6
√
2 e3πi/4 = 6

√
2

(

cos
3π

4
+ i sin

3π

4

)

, since
π

12
+

2π

3
=

3π

4
;

6
√
2 e−7πi/12 = 6

√
2

(

cos
7π

12
− i sin

7π

12

)

, since
π

12
− 2π

3
= −7π

12
.

The second cube root can also be written as 6
√
2

(−1 + i√
2

)

=
−1 + i
3
√
2

.

This gives three of the cube roots. The other three are the cube roots of 1 − i, which
may be found by replacing i by −i everywhere above (i.e., taking the complex conjugate).

The cube roots can also according to (24) be described as

z1, z1ω, z1ω
2 and z2, z2ω, z2ω

2, where z1 = 6
√
2 eπi/12, z2 = 6

√
2 e−πi/12.

Exercises: Section 2E



IR. Input-Response Models

1. First-order linear ODE’s with positive constant coefficient. This is
probably the most important first order equation; we use t and y as the variables, and think
of the independent variable t as representing time. The IVP in standard form then is

(1) y′ + ky = q(t), k > 0; y(0) = y0 .

The integrating factor for the ODE in (1) is ekt; using it, the general solution is

(2) y = e−kt

(
∫

q(t)ektdt+ c

)

.

To get from this an explicit solution to (1), we change (cf. Notes D) the indefinite integral
in (2) to a definite integral from 0 to t, which requires us to change the t in the integrand
to a different dummy variable, u say; then the explicit solution to (1) is

(3) y = e−kt

∫ t

0

q(u)ekudu+ y0e
−kt.

In this form, note that the first term on the right is the solution to the IVP (1) corresponding
to the initial condition y0 = 0.

What we have done so far does not depend on whether k is positive or negative. However,
the terminology we will now introduce makes sense only when k > 0, which we shall assume
from now on.

Looking at (3) and assuming k > 0, we observe that as t → ∞, the second term of the
solution y0e

−kt → 0, regardless of the initial value y0. It is therefore called the transient

since its effect on the solution dies away as time increases. As it dies away, what is left of
the solution is the integral term on the right, which does not involve the initial value y0; it
is called the steady-state or long-term solution to (1).

y = e−kt

∫ t

0

q(u)ekudu + y0e
−kt, k > 0.(4)

steady-state transient

Despite the use of the definite article, the steady-state solution is not unique: since all
the solutions approach the steady-state solution as t → ∞, they all approach each other,
and thus any of them can be called the steady-state solution. In practice, it is usually the
simplest-looking solution which is given this honor.

2. Input-response; superposition of inputs. When the ODE (1) is used to
model a physical situation, the left-hand side usually is concerned with the physical set-
up — the “system” — while the right-hand side represents something external which is
driving or otherwise affecting the system from the outside. For this reason, the function
q(t) is often called the input, or in some engineering subjects, the signal; the corresponding
general solution (2) is called the response of the system to this input.

We will indicate the relation of input to response symbolically by
q(t) y(t) (input  response).

1
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Superposition principle for inputs.

For the ODE y′ + ky = q(t), let q1(t) and q2(t) be inputs, and c1, c2 constants. Then

(5) q1  y1, q2  y2 =⇒ c1q1 + c2q2  c1y1 + c2y2.

Proof. This follows in one line from the sum property of indefinite integrals; note that
the proof does not require k to be positive.

y = e−kt

∫

(q1 + q2)e
ktdt = e−kt

∫

q1e
ktdt+ e−kt

∫

q2e
ktdt = y1 + y2 .

The superposition principle allows us to break up a problem into simpler problems and
then at the end assemble the answer from its simpler pieces. Here is an easy example.

Example 1. Find the response of y′ + 2y = q(t) to q = 1 + e−2t.

Solution. The input q = 1 generates the response y = 1/2, by inspection; the input e−2t

generates the response te−2t, by solving; therefore the response to 1+ e−2t is 1/2+ te−2t. �

3. Physical inputs; system responses to linear inputs.

We continue to assume k > 0. We want to get some feeling for how the system responds
to a variety of inputs. The temperature model for (1) will be a good guide: in two notations
– suggestive and neutral, respectively – the ODE is

(6) T ′ + kT = kTe(t), y′ + ky = kqe(t) = q(t).

Note that the neutral notation writes the input in two different forms: the q(t) we have
been using, and also in the form kqe(t) with the k factored out. This last corresponds to the
way the input appears in certain physical problems (temperature and diffusion problems,
for instance) and leads to more natural formulas: for example, qe and y have the same units,
whereas q and y do not.

For this class of problems, the relation of response to input will be clearer if we relate y
with qe, rather than with q. We will use for qe the generic name physical input, or if we
have a specific model in mind, the temperature input, concentration input, and so on.

The expected behavior of the temperature model suggests general questions such as:
Is the response the same type of function as the physical input? What controls its

magnitude?
Does the graph of the response lag behind that of the physical input?
What controls the size of the lag?

Our plan will be to get some feeling for the situation by answering these questions for sev-
eral simple physical inputs. We begin with linear inputs. Throughout, keep the temperature
model in mind to guide your intuition.

Example 2. Find the response of the system (6) to the physical inputs 1 and t.

Solution. The ODE is y′ + ky = kqe.
If qe = 1, a solution by inspection is y = 1, so the response is 1.
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If qe = t, the ODE is y′ + ky = kt; using the integrating factor ekt and subsequent
integration by parts leads (cf. (2)) to the simplest steady-state solution

y = e−kt

∫

ktektdt

= k e−kt

(

tekt

k
− ekt

k2

)

= t− 1

k
.

Thus the response of (6) is identical to the physical input t, but with a time lag 1/k. This
is reasonable when one thinks of the temperature model: the internal temperature increases
linearly at the same rate as the temperature of the external water bath, but with a time lag
dependent on the conductivity: the higher the conductivity, the shorter the time lag.

Using the superposition principle for inputs, it follows from Example 2 that for the ODE
y′ + ky = kqe, its response to a general linear physical input is given by:

(7) linear input physical input: qe = a+ bt response: a+ b

(

t− 1

k

)

.

In the previous example, we paid no attention to initial values. If they are important,
one cannot just give the steady-state solution as the response, one has to take account of
them, either by using a definite integral as in (3), or by giving the value of the arbitrary
constant in (2). Examples in the next section will illustrate.

4. Response to discontinuous inputs, k > 0.

The most basic discontinuous function is the unit-step function at a point, defined by

(8) ua(t) =

{

0, t < a;

1, t > a.
unit-step function at a

(We leave its value at a undefined, though some books give it the value 0, others the value
1 there.)

Example 3. Find the response of the IVP y′ + ky = kqe, y(0) = 0, for t ≥ 0, to the
unit-step physical input ua(t), where a ≥ 0.

Solution. For t < a the input is 0, so the response is 0. For t ≥ a, the steady-state solution
for the physical input ua(t) is the constant function 1, according to Example 2 or (7).

We still need to fit the value y(a) = 0 to the response for t ≥ a. Using (2) to do this, we
get 1 + ce−ka = 0, so that c = −eka. We now assemble the results for t < a and t ≥ a into
one expression; for the latter we also put the exponent in a more suggestive form. We get
finally

unit-step input

(9) physical input: ua(t), a ≥ 0 response: y(t) =

{

0, 0 ≤ t < a;

1− e−k(t−a), t ≥ a.

Note that the response is just the translation a units to the right of the response to the
unit-step input at 0.
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Another way of getting the same answer would be to use the definite integral in (3); we
leave this as an exercise.

As another example of discontinuous input, we focus on the temperature model, and
obtain the response to the temperature input corresponding to the external bath initially
ice-water at 0 degrees, then replaced by water held at a fixed temperature for a time interval,
then replaced once more by the ice-water bath.

Example 4. Find the response of y′ + ky = kqe to the physical input

(10) uab =

{

1, a ≤ t ≤ b;

0, otherwise,
0 ≤ a < b; unit-box function on [a, b].

Solution. There are at least three ways to do this:

a) Express uab as a sum of unit step functions and use (9) together with superposition of
inputs;

b) Use the function uab directly in the definite integral expression (3) for the response;

c) Find the response in two steps: first use (9) to get the response y(t) for the physical
input ua(t); this will be valid up to the point t = b.

Then, to continue the response for values t > b, evaluate y(b) and find the response for
t > b to the input 0, with initial condition y(b).

We will follow (c), leaving the first two as exercises.

By (9), the response to the physical input ua(t) is y(t) =

{

0, 0 ≤ t < a;

1− e−k(t−a), t ≥ a.
;

this is valid up to t = b, since uab(t) = ua(t) for t ≤ b. Evaluating at b,

(11) y(b) = 1− e−k(b−a).

Using (2) to find the solution for t ≥ b, we note first that the steady-state solution will be
0, since uab = 0 for t > b; thus by (2) the solution for t > b will have the form

(12) y(t) = 0 + ce−kt

where c is determined from the initial value (11). Equating the initial values y(b) from (11)
and (12), we get

ce−kb = 1− e−kb+ka

from which
c = ekb − eka;

so by (12),

(13) y(t) = (ekb − eka)e−kt, t ≥ b.

After combining exponents in (13) to give an alternative form for the response, we assemble
the parts, getting the response to the physical unit-box input uab :

(14) y(t) =











0, 0 ≤ t ≤ a;

1− e−k(t−a), a < t < b;

e−k(t−b) − e−k(t−a), t ≥ b.
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5. Response to sinusoidal inputs.

Of great importance in the applications is the sinusoidal input, i.e., a pure oscillation
like cosωt or sinωt, or more generally, A cos(ωt − φ). (The last form includes both of the
previous two, as you can see by letting A = 1 and φ = 0 or π/2).

In the temperature model, this could represent the diurnal varying of outside tempera-
ture; in the conentration model, the diurnal varying of the level of some hormone in the
bloodstream, or the varying concentration in a sewer line of some waste product produced
periodically by a manufacturing process.

What follows assumes some familiarity with the vocabulary of pure oscillations: ampli-

tude, frequency, period, phase lag. Section 6 following this gives a brief review of these
terms plus a few other things that we will need: look at it first, or refer to it as needed when
reading this section.

Response of y′ + ky = kqe to the physical inputs cosωt, sinωt.

This calculation is a good example of how the use of complex exponentials can simplify
integrations and lead to a more compact and above all more expressive answer. You should
study it very carefully, since the ideas in it will frequently recur.

We begin by complexifying the inputs, the response, and the differential equation:

cosωt = Re (eiωt), sinωt = Im (eiωt);(15)

ỹ(t) = y1(t) + iy2(t);(16)

ỹ′ + kỹ = keiωt.(17)

If (16) is a solution to the complex ODE (17), then substituting it into the ODE and using
the rule (u+ iv)′ = u′ + iv′ for differentiating complex functions (see Notes C, (19)), gives

y′1 + iy′2 + k(y1 + iy2) = k(cosωt+ i sinωt);

equating real and imaginary parts on the two sides gives the two real ODE’s

(18) y′1 + ky1 = k cosωt, y′2 + ky2 = k sinωt;

this shows that the real and imaginary parts of our complex solution ỹ(t) give us respectively
the responses to the physical inputs cosωt and sinωt.

It seems wise at this point to illustrate the calculations with an example, before repeating
them as a derivation. If you prefer, you can skip the example and proceed directly to the
derivation, using the example as a solved exercise to test yourself afterwards.

Example 5. Find the response of y′ + y = 0 to the input cos t; in other words, find a
solution to the equation y′ + y = cos t; use complex numbers.

Solution. We follow the above plan and complexify the real ODE, getting

ỹ′ + ỹ = eit .

We made the right side eit, since cos t = Re (eit). We will find a complex solution ỹ(t) for
the complexified ODE; then Re (ỹ) will be a real solution to y′ + y = cos t, according to
(18) and what precedes it.
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The complexified ODE is linear, with the integrating factor et; multiplying both sides
by this factor, and then following the steps for solving the first order linear ODE, we get

ỹ′ + ỹ = eit ⇒ (ỹ et)′ = e(1+i)t ⇒ ỹ et =
1

1 + i
e(1+i)t ⇒ ỹ =

1

1 + i
eit .

This gives us our complex solution ỹ; the rest of the work is calculating Re (ỹ). To do this,
we can use either the polar or the Cartesian representations.

Using the polar first, conver 1 + i to polar form and then use the reciprocal rule (Notes
C, (12b)):

1 + i =
√
2 eiπ/4 ⇒ 1

1 + i
=

1√
2
e−iπ/4;

from which it follows from the multiplication rule (12a) that

ỹ =
1

1 + i
eit =

1√
2
ei(t−π/4)

and therefore our solution to y′ + y = cos t is

Re (ỹ) =
1√
2
cos(t− π/4) ,

the pure oscillation with amplitude 1/
√
2, circular frequency 1, and phase lag π/4.

Repeating the calculation, but using the Cartesian representation, we have

ỹ =
1

1 + i
eit =

(

1− i

2

)

(cos t+ i sin t)

whose real part is

Re (ỹ) =
1

2
(cos t+ sin t) =

√
2

2
cos(t− π/4),

the last equality following from the sinusoidal identity ((25), section 6).

Instead of converting the Cartesian form to the polar, we could have converted the polar
form to the Cartesian form by using the trigonometric addition formula. Since cosπ/4 =

sinπ/4 =
√
2/2, it gives

1√
2
cos(t− π/4) =

1√
2
(cos t cosπ/4 + sin t sinπ/4) =

1

2
(cos t+ sin t)

However, in applications the polar form of the answer is generally preferred, since it gives
directly important characteristics of the solution — its amplitude and phase lag, whereas
these are not immediately apparent in the Cartesian form of the answer.
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Resuming our general solving of the ODE (17) using the circular frequency ω and the
constant k, but following the same method as in the example, the integrating factor is ekt;
multiplying through by it leads to

(ỹekt)′ = ke(k+iω)t;

integrate both sides, multiply through by e−kt, and scale the coefficient to lump constants
and make it look better:

(19) ỹ =
k

k + iω
eiωt =

1

1 + i(ω/k)
eiωt.

This is our complex solution.

Writing 1 + i(ω/k) in polar form, then using the reciprocal rule (Notes C, (12b)), we
have

1 + i(ω/k) =
√

1 + (ω/k)2 eiφ ⇒ 1

1 + i(ω/k)
=

1
√

1 + (ω/k)2
e−iφ,(20)

where φ = tan−1(ω/k).

Therefore in polar form,

ỹ =
1

√

1 + (ω/k)2
ei(ωt−φ).(21)

The real and imaginary parts of this complex response give the responses of the system to
respectively the real and imaginary parts of the complex input eiωt; thus we can summarize
our work as follows:

First-order Sinusoidal Input Theorem. For the equation y′ + ky = kqe we have

physical input:

{

qe = cosωt

qe = sinωt
response:

{

y1 = A cos(ωt− φ)

y2 = A sin(ωt− φ)
,(22)

A =
1

√

1 + (ω/k)2
, φ = tan−1(ω/k).(23)

The calculation can also be done in Cartesian form as in Example 5, then converted to
polar form using the sinusoidal identity. We leave this as an exercise.

The Sinusoidal Input Theorem is more general than it looks; it actually covers any sinu-
soidal input f(t) having ω as its circular frequency. This is because any such input can be
written as a linear combination of cosωt and sinωt:

f(t) = a cosωt+ b sinωt, a, b constants

and then it is an easy exercise to show:

(22’) physical input: qe = cosωt+ b sinωt response: a y1 + b y2 .



8 18.03 NOTES

6. Sinusoidal oscillations: reference.

The work in section 5 uses terms describing a pure, or sinusoidal oscillation: analytically,
one that can be written in the form

(24) A cos(ωt− φ);

or geometrically, one whose graph can be obtained from the graph of cos t by stretching or
shrinking the t and y axes by scale factors, then translating the resulting graph along the
t-axis.

Terminology. Referring to function (24) whose graph describes the oscillation,

|A| is its amplitude: how high its graph rises over the t-axis at its maximum points;

φ is its phase lag: the smallest non-negative value of ωt for which the graph is at its
maximum

(if φ = 0, the graph has the position of cosωt; if φ = π/2, it has the position of sinωt);

φ/ω is its time delay or time lag: how far to the right on the t-axis the graph of cosωt has
been moved to make the graph of (24);

(to see this, write A cos(ωt− φ) = A cosω(t− φ/ω) );

ω is its circular or angular frequency: the number of complete oscillations it makes in a
t-interval of length 2π;

ω/2π (usually written ν) is its frequency: the number of complete oscillations the graph
makes in a time interval of length 1;

2π/ω or 1/ν is its period, the t-interval required for one complete oscillation.

The Sinusoidal Identity. For any real constants a and b,

(25) a cosωt+ b sinωt = A cos(ωt− φ),

where A, φ, a, and b are related as shown in the accompanying right
triangle:

φ
a

bA

(26) A =
√

a2 + b2, φ = tan−1 b

a
, a = A cosφ, b = A sinφ

There are at least three ways to verify the sinusoidal identity:

1. Apply the trigonometric addition formula for cos(θ1 − θ2) to the right side.
(Our good proof, uses only high-school math, but not very satisfying, since it doesn’t

show where the right side came from.)

2. Observe that the left side is the real part of (a − bi)(cosωt + i sinωt); calculate this
product using polar form instead, and take its real part.

(Our better proof, since it starts with the left side, and gives practice with complex
numbers to boot.)

3. The left side is the dot product 〈a, b〉 · 〈cosωt, sinωt〉; evaluate the dot product by
the geometric formula for it (first day of 18.02).

(Our best proof: starts with the left side, elegant and easy to remember.)
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1. Linear differential equations. The general linear ODE of order n is

(1) y(n) + p1(x)y
(n−1) + . . .+ pn(x)y = q(x).

If q(x) 6= 0, the equation is inhomogeneous. We then call

(2) y(n) + p1(x)y
(n−1) + . . .+ pn(x)y = 0.

the associated homogeneous equation or the reduced equation.

The theory of the n-th order linear ODE runs parallel to that of the second order equation.
In particular, the general solution to the associated homogeneous equation (2) is called the
complementary function or solution, and it has the form

(3) yc = c1y1 + . . .+ cnyn , ci constants,

where the yi are n solutions to (2) which are linearly independent, meaning that none of
them can be expressed as a linear combination of the others, i.e., by a relation of the form
(the left side could also be any of the other yi):

yn = a1y1 + . . .+ an−1yn−1 , ai constants.

Once the associated homogeneous equation (2) has been solved by finding n independent
solutions, the solution to the original ODE (1) can be expressed as

(4) y = yp + yc,

where yp is a particular solution to (1), and yc is as in (3).

2. Linear differential operators with constant coefficients

From now on we will consider only the case where (1) has constant coefficients. This type
of ODE can be written as

(5) y(n) + a1y
(n−1) + . . .+ any = q(x) ;

using the differentiation operator D, we can write (5) in the form

(6) (Dn + a1D
n−1 + . . .+ an) y = q(x)

or more simply,
p(D) y = q(x) ,

where

(7) p(D) = Dn + a1D
n−1 + . . .+ an .

We call p(D) a polynomial differential operator with constant coefficients. We
think of the formal polynomial p(D) as operating on a function y(x), converting
it into another function; it is like a black box, in which the function y(x) goes in,
and p(D)y (i.e., the left side of (5)) comes out.

p(D)

p(D)

y

y

1
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Our main goal in this section of the Notes is to develop methods for finding particular
solutions to the ODE (5) when q(x) has a special form: an exponential, sine or cosine, xk, or
a product of these. (The function q(x) can also be a sum of such special functions.) These
are the most important functions for the standard applications.

The reason for introducing the polynomial operator p(D) is that this allows us to use
polynomial algebra to help find the particular solutions. The rest of this chapter of the
Notes will illustrate this. Throughout, we let

(7) p(D) = Dn + a1D
n−1 + . . .+ an , ai constants.

3. Operator rules.

Our work with these differential operators will be based on several rules they satisfy.
In stating these rules, we will always assume that the functions involved are sufficiently
differentiable, so that the operators can be applied to them.

Sum rule. If p(D) and q(D) are polynomial operators, then for any (sufficiently differ-
entiable) function u,

(8) [p(D) + q(D)]u = p(D)u+ q(D)u .

Linearity rule. If u1 and u2 are functions, and ci constants,

(9) p(D) (c1u1 + c2u2) = c1p(D)u1 + c2p(D)u2 .

The linearity rule is a familiar property of the operator aDk ; it extends to sums of these
operators, using the sum rule above, thus it is true for operators which are polynomials in
D. (It is still true if the coefficients ai in (7) are not constant, but functions of x.)

Multiplication rule. If p(D) = g(D)h(D), as polynomials in D, then

(10) p(D)u = g(D)
(
h(D)u

)
.

The picture illustrates the meaning of the right side of (10). The property
is true when h(D) is the simple operator aDk, essentially because

Dm(aDku) = aDm+ku;

it extends to general polynomial operators h(D) by linearity. Note that a must be
a constant; it’s false otherwise. p(D)u

u

g(D)

h(D)u

h(D)

An important corollary of the multiplication property is that polynomial operators with

constant coefficients commute; i.e., for every function u(x),

(11) g(D)
(
h(D)u

)
= h(D)

(
g(D)u

)
.

For as polynomials, g(D)h(D) = h(D)g(D) = p(D), say; therefore by the multiplication
rule, both sides of (11) are equal to p(D)u, and therefore equal to each other.

The remaining two rules are of a different type, and more concrete: they tell us how
polynomial operators behave when applied to exponential functions and products involving
exponential functions.

Substitution rule.
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(12) p(D)eax = p(a)eax

Proof. We have, by repeated differentiation,

Deax = aeax, D2eax = a2eax, . . . , Dkeax = akeax;
therefore,

(Dn + c1D
n−1 + . . .+ cn) e

ax = (an + c1a
n−1 + . . .+ cn) e

ax,

which is the substitution rule (12). �

The exponential-shift rule This handles expressions such as xkeax and xk sin ax.

(13) p(D) eaxu = eaxp(D + a)u .

Proof. We prove it in successive stages. First, it is true when p(D) = D, since by the
product rule for differentiation,

(14) Deaxu(x) = eaxDu(x) + aeaxu(x) = eax(D + a)u(x) .

To show the rule is true for Dk, we apply (14) to D repeatedly:

D2eaxu = D(Deaxu) = D(eax(D + a)u) by (14);

= eax(D + a)
(
(D + a)u

)
, by (14);

= eax(D + a)2u , by (10).
In the same way,

D3eaxu = D(D2eaxu) = D(eax(D + a)2u) by the above;

= eax(D + a)
(
(D + a)2u

)
, by (14);

= eax(D + a)3u , by (10),
and so on. This shows that (13) is true for an operator of the form Dk. To show it is true
for a general operator

p(D) = Dn + a1D
n−1 + . . .+ an ,

we write (13) for each Dk(eaxu), multiply both sides by the coefficient ak, and add up
the resulting equations for the different values of k. �

Remark on complex numbers. By Notes C. (20), the formula

(*) D (c eax) = c a eax

remains true even when c and a are complex numbers; therefore the rules and arguments
above remain valid even when the exponents and coefficients are complex. We illustrate.

Example 1. Find D3e−x sinx .

Solution using the exponential-shift rule. Using (13) and the binomial theorem,

D3e−x sinx = e−x(D − 1)3 sinx = e−x(D3 − 3D2 + 3D − 1) sinx

= e−x(2 cosx+ 2 sinx),
since D2 sinx = − sinx, and D3 sinx = − cosx.

Solution using the substitution rule. Write e−x sinx = Im e(−1+i)x. We have

D3e(−1+i)x = (−1 + i)3e(−1+i)x, by (12) and (*);

= (2 + 2i) e−x(cosx+ i sinx),

by the binomial theorem and Euler’s formula. To get the answer we take the imaginary
part: e−x(2 cosx+ 2 sinx).
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4. Finding particular solutions to inhomogeneous equations.

We begin by using the previous operator rules to find particular solutions to inhomoge-
neous polynomial ODE’s with constant coefficients, where the right hand side is a real or
complex exponential; this includes also the case where it is a sine or cosine function.

Exponential-input Theorem. Let p(D) be a polynomial operator with onstant coefficients,
and p(s) its s-th derivative. Then

(15) p(D)y = eax, where a is real or complex

has the particular solution

(16) yp =
eax

p(a)
, if p(a) 6= 0;

(17) yp =
xseax

p(s)(a)
, if a is an s-fold zero1of p.

Note that (16) is just the special case of (17) when s = 0. Before proving the theorem,
we give two examples; the first illustrates again the usefulness of complex exponentials.

Example 2. Find a particular solution to (D2 −D + 1) y = e2x cosx .

Solution. We write e2x cosx = Re (e(2+i)x) , so the corresponding complex equation is

(D2 −D + 1) ỹ = e(2+i)x,

and our desired yp will then be Re(ỹp). Using (16), we calculate

p(2 + i) = (2 + i)2 − (2 + i) + 1 = 2 + 3i , from which

ỹp =
1

2 + 3i
e(2+i)x, by (16);

=
2− 3i

13
e2x(cosx+ i sinx) ; thus

Re(ỹp) =
2

13
e2x cosx+

3

13
e2x sinx , our desired particular solution.

Example 3. Find a particular solution to y′′ + 4y′ + 4y = e−2t.

Solution. Here p(D) = D2 + 4D + 4 = (D + 2)2, which has −2 as a double root; using
(17), we have p′′(−2) = 2, so that

yp =
t2e−2t

2
.

Proof of the Exponential-input Theorem.

That (16) is a particular solution to (15) follows immediately by using the linearity rule
(9) and the substitution rule (12):

p(D)yp = p(D)
eax

p(a)
=

1

p(a)
p(D)eax =

p(a)eax

p(a)
= eax.

1John Lewis communicated this useful formula.
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For the more general case (17), we begin by noting that to say the polynomial p(D) has the
number a as an s-fold zero is the same as saying p(D) has a factorization

(18) p(D) = q(D)(D − a)s, q(a) 6= 0.
We will first prove that (18) implies

(19) p(s)(a) = q(a) s! .

To prove this, let k be the degree of q(D), and write it in powers of (D − a):

q(D) = q(a) + c1(D − a) + . . .+ ck(D − a)k; then(20)

p(D) = q(a)(D − a)s + c1(D − a)s+1 + . . .+ ck(D − a)s+k;

p(s)(D) = q(a) s! + positive powers of D − a;

substituting a for D on both sides proves (19). �

Using (19), we can now prove (17) easily using the exponential-shift rule (13). We have

p(D)
eaxxs

p(s)(a)
=

eax

p(s)(a)
p(D + a)xs, by linearity and (13);

=
eax

p(s)(a)
q(D + a)Dsxs, by (18);

=
eax

q(a)s!
q(D + a) s!, by (19);

=
eax

q(a)s!
q(a) s! = eax,

where the last line follows from (20), since s! is a constant:

q(D + a)s! = (q(a) + c1D + . . .+ ckD
k) s! = q(a)s! .

Polynomial Input: The Method of Undetermined Coefficients.

Let r(x) be a polynomial of degree k; we assume the ODE p(D)y = q(x) has as input

(21) q(x) = r(x), p(0) 6= 0; or more generally, q(x) = eax r(x), p(a) 6= 0.

(Here a can be complex; when a = 0 in (21), we get the pure polynomial case on the left.)

The method is to assume a particular solution of the form yp = eaxh(x), where h(x) is
a polynomial of degree k with unknown (“undetermined”) coefficients, and then to find the
coefficients by substituting yp into the ODE. It’s important to do the work systematically;
follow the format given in the following example, and in the solutions to the exercises.

Example 5. Find a particular solution yp to y′′ + 3y′ + 4y = 4x2 − 2x.

Solution. Our trial solution is yp = Ax2+Bx+C; we format the work as follows. The
lines show the successive derivatives; multiply each line by the factor given in the ODE, and
add the equations, collecting like powers of x as you go. The fourth line shows the result;
the sum on the left takes into account that yp is supposed to be a particular solution to the
given ODE.

× 4 yp = Ax2 +Bx+ C

× 3 y′p = 2Ax+B

y′′p = 2A

4x2 − 2x = (4A)x2 + (4B + 6A)x+ (4C + 3B + 2A).
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Equating like powers of x in the last line gives the three equations

4A = 4, 4B + 6A = −2, 4C + 3B + 2A = 0;

solving them in order gives A = 1, B = −2, C = 1, so that yp = x2 − 2x+ 1.

Example 6. Find a particular solution yp to y′′ + y′ − 4y = e−x(1− 8x2).

Solution. Here the trial solution is yp = e−xup, where up = Ax2 +Bx+ C.

The polynomial operator in the ODE is p(D) = D2 + D − 4; note that p(−1) 6= 0,
so our choice of trial solution is justified. Substituting yp into the ODE and using the
exponential-shift rule enables us to get rid of the e−x factor:

p(D)yp = p(D)e−xup = e−xp(D − 1)up = e−x(1− 8x2),

so that after canceling the e−x on both sides, we get the ODE satisfied by up:

(22) p(D − 1)up = 1− 8x2; or (D2 −D − 4)up = 1− 8x2,

since p(D − 1) = (D − 1)2 + (D − 1)− 4 = D2 −D − 4.

From this point on, finding up as a polynomial solution to the ODE on the right of (22)
is done just as in Example 5 using the method of undetermined coefficients; the answer is

up = 2x2 − x+ 1, so that yp = e−x(2x2 − x+ 1).

In the previous examples, p(a) 6= 0; if p(a) = 0, then the trial solution must be altered
by multiplying each term in it by a suitable power of x. The book gives the details; briefly,
the terms in the trial solution should all be multiplied by the smallest power xr for which
none of the resulting products occur in the complementary solution yc, i.e., are solutions of
the associated homogeneous ODE. Your book gives examples; we won’t take this up here.

5. Higher order homogeneous linear ODE’s with constant coefficients.

As before, we write the equation in operator form:

(23) (Dn + a1D
n−1 + . . .+ an) y = 0,

and define its characteristic equation or auxiliary equation to be

(24) p(r) = rn + a1r
n−1 + . . .+ an = 0.

We investigate to see if erx is a solution to (23), for some real or complex r. According
to the substitution rule (12),

p(D) erx = 0 ⇔ p(r) erx = 0 ⇔ p(r) = 0 .

Therefore

(25) erx is a solution to (7) ⇔ r is a root of its characteristic equation (16).

Thus, to the real root ri of (16) corresponds the solution erix.
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Since the coefficients of p(r) = 0 are real, its complex roots occur in pairs which are
conjugate complex numbers. Just as for the second-order equation, to the pair of complex
conjugate roots a± ib correspond the complex solution (we use the root a+ ib)

e(a+ib)x = eax(cos bx+ i sin bx),

whose real and imaginary parts

(26) eax cos bx and eax sin bx

are solutions to the ODE (23).

If there are n distinct roots to the characteristic equation p(r) = 0, (there cannot be more
since it is an equation of degree n), we get according to the above analysis n real solutions
y1, y2, . . . , yn to the ODE (23), and they can be shown to be linearly independent. Thus
the the complete solution yh to the ODE can be written down immediately, in the form:

y = c1y1 + c2y2 + . . .+ cnyn .

Suppose now a real root r1 of the characteristic equation (24) is a k-fold root, i.e., the
characteristic polynomial p(r) can be factored as

(27) p(r) = (r − r1)
kg(r), where g(r1) 6= 0 .

We shall prove in the theorem below that corresponding to this k-fold root there are k

linearly independent solutions to the ODE (23), namely:

(28) er1x, xer1x, x2er1x, . . . , xk−1er1x .

(Note the analogy with the second order case that you have studied already.)

Theorem. If a is a k-fold root of the characteristic equation p(r) = 0 , then the k

functions in (28) are solutions to the differential equation p(D) y = 0 .

Proof. According to our hypothesis about the characteristic equation, p(r) has (r−a)k

as a factor; denoting by g(x) the other factor, we can write

p(r) = g(r)(r − a)k ,

which implies that

(29) p(D) = g(D)(D − a)k .

Therefore, for i = 0, 1, . . . , k − 1, we have

p(D)xieax = g(D)(D − a)kxieax

= g(D)
(
(D − a)kxieax

)
, by the multiplication rule,

= g(D)
(
eaxDkxi

)
, by the exponential-shift rule,

= g(D)
(
eax · 0

)
, since Dkxi = 0 if k > i;

= 0,

which shows that all the functions of (20) solve the equation. �

If r1 is real, the solutions (28) give k linearly independent real solutions to the ODE (23).
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In the same way, if a+ib and a−ib are k-fold conjugate complex roots of the characteristic
equation, then (28) gives k complex solutions, the real and imaginary parts of which give
2k linearly independent solutions to (23):

eax cos bx, eax sin bx, xeax cos bx, xeax sin bx, . . . , xk−1eax cos bx, xk−1eax sin bx .

Example 6. Write the general solution to (D + 1)(D − 2)2(D2 + 2D + 2)2y = 0.

Solution. The characteristic equation is

p(r) = (r + 1)(r − 2)2(r2 + 2r + 2)2 = 0 .

By the quadratic formula, the roots of r2 + 2r + 2 = 0 are r = −1± i, so we get

y = c1e
−x + c2e

2x + c3xe
2x + e−x(c4 cosx+ c5 sinx+ c6x cosx+ c7x sinx)

as the general solution to the differential equation. �

As you can see, if the linear homogeneous ODE has constant coefficients, then the work
of solving p(D)y = 0 is reduced to finding the roots of the characteristic equation. This is
“just” a problem in algebra, but a far from trivial one. There are formulas for the roots if
the degree n ≤ 4, but of them only the quadratic formula ( n = 2 ) is practical. Beyond
that are various methods for special equations and general techniques for approximating the
roots. Calculation of roots is mostly done by computer algebra programs nowadays.

This being said, you should still be able to do the sort of root-finding described in Notes
C, as illustrated by the next example.

Example 7. Solve: a) y(4) + 8y′′ + 16y = 0 b) y(4) − 8y′′ + 16y = 0

Solution. The factorizations of the respective characteristic equations are

(r2 + 4)2 = 0 and (r2 − 4)2 = (r − 2)2(r + 2)2 = 0 .

Thus the first equation has the double complex root 2i, whereas the second has the
double real roots 2 and −2. This leads to the respective general solutions

y = (c1 + c2x) cos 2x+ (c3 + c4x) sin 2x and y = (c1 + c2x)e
2x + (c3 + c4x)e

−2x.

6. Justification of the method of undetermined coefficients.

As a last example of the use of these operator methods, we use operators to show where
the method of undetermined coefficients comes from. This is the method which assumes the
trial particular solution will be a linear combination of certain functions, and finds what
the correct coefficients are. It only works when the inhomogeneous term in the ODE (23)
(i.e., the term on the right-hand side) is a sum of terms having a special form: each must
be the product of an exponential, sin or cos, and a power of x (some of these factors can be
missing).

Question: What’s so special about these functions?

Answer: They are the sort of functions which appear as solutions to some linear homo-
geneous ODE with constant coefficients.
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With this general principle in mind, it will be easiest to understand why the method of
undetermined coefficients works by looking at a typical example.

Example 8. Show that

(30) (D − 1)(D − 2)y = sin 2x.

has a particular solution of the form

yp = c1 cos 2x+ c2 sin 2x .

Solution. Since sin 2x, the right-hand side of (30), is a solution to (D2 +4)y = 0, i.e.,

(D2 + 4) sin 2x = 0.

we operate on both sides of (30) by the operator D2 + 4 ; using the multiplication rule for
operators with constant coefficients, we get (using yp instead of y)

(31) (D2 + 4)(D − 1)(D − 2)yp = 0.

This means that yp is one of the solutions to the homogeneous equation (31). But we
know its general solution: yp must be a function of the form

(32) yp = c1 cos 2x+ c2 sin 2x+ c3e
x + c4e

2x .

Now, in (32) we can drop the last two terms, since they contribute nothing: they are
part of the complementary solution to (30), i.e., the solution to the associated homogeneous
equation. Therefore they need not be included in the particular solution. Put another way,
when the operator (D − 1)(D − 2) is applied to (32), the last two terms give zero, and
therefore don’t help in finding a particular solution to (30).

Our conclusion therefore is that there is a particular solution to (30) of the form

yp = c1 cos 2x+ c2 sin 2x .

Here is another example, where one of the inhomogeneous terms is a solution to the
associated homogeneous equation, i.e., is part of the complementary function.

Example 9. Find the form of a particular solution to

(33) (D − 1)2yp = ex.

Solution. Since the right-hand side is a solution to (D − 1)y = 0, we just apply the
operator D − 1 to both sides of (33), getting

(D − 1)3yp = 0.

Thus yp must be of the form
yp = ex(c1 + c2x+ c3x

2).

But the first two terms can be dropped, since they are already part of the complementary
solution to (33); we conclude there must be a particular solution of the form

yp = c3x
2ex .

Exercises: Section 2F



S. Stability

1. The notion of stability.

A system is called stable if its long-term behavior does not depend significantly on the
initial conditions.

It is an important result of mechanics that any system of masses connected by springs
(damped or undamped) is a stable system. In network theory, there is a similar result: any
RLC-network gives a stable system. In these notes, we investigate for the simplest such
systems why this is so.

In terms of differential equations, the simplest spring-mass system or RLC-circuit is
represented by an ODE of the form

(1) a0y
′′ + a1y

′ + a2y = r(t), ai constants, t = time.

For the spring-mass system, y is the displacement from equilibrium position, and r(t) is
the externally applied force.

For the RLC-circuit, y represents the charge on the capacitor, and r(t) is the electromotive
force E(t) applied to the circuit (or else y is the current and r(t) = E ′).

By the theory of inhomogeneous equations, the general solution to (1) has the form

(2) y = c1y1 + c2y2 + yp, c1, c2 arbitrary constants,

where yp is a particular solution to (1), and c1y1 + c2y2 is the complementary function, i.e.,
the general solution to the associated homogeneous equation (the one having r(t) = 0).

The initial conditions determine the exact values of c1 and c2. So from (2),

(3)
the system modeled
by (1) is stable

⇐⇒
for every choice of c1, c2,
c1y1 + c2y2 → 0 as t → ∞.

Often one applies the term stable to the ODE (1) itself, as well as to the system it models.
We shall do this here.

If the ODE (1) is stable, the two parts of the solution (2) are named:

(4) yp = steady-state solution c1y1 + c2y2 = transient;

the whole solution y(t) and the right side r(t) of (1) are described by the terms

y(t) = response r(t) = input.

From this point of view, the driving force is viewed as the input to the spring-mass system,
and the resulting motion of the mass is thought of as the response of the system to the input.
So what (2) and (4) are saying is that this response is the sum of two terms: a transient
term, which depends on the initial conditions, but whose effects disappear over time; and

0
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a steady-state term, which represents more and more closely the response of the system as
time goes to ∞, no matter what the initial conditions are.

2. Conditions for stability: second-order equations.

We now ask under what circumstances the ODE (1) will be stable. In view of the
definition, together with (2) and (3), we see that stability concerns just the behavior of the
solutions to the associated homogeneous equation

(5) a0y
′′ + a1y

′ + a2y = 0 ;

the forcing term r(t) plays no role in deciding whether or not (1) is stable.

There are three cases to be considered in studying the stability of (5); they are summarized
in the table below, and based on the roots of the characteristic equation

(6) a0r
2 + a1r + a2 = 0 .

roots solution to ODE condition for stability

r1 6= r2 c1e
r1t + c2e

r2t r1 < 0, r2 < 0

r1 = r2 er1t(c1 + c2t) r1 < 0

a± ib eat(c1 cos bt+ c2 sin bt) a < 0

The first two columns of the table should be familiar, from your work in solving the linear
second-order equation (5) with constant coefficients. Let us consider the third column,
therefore. In each case, we want to show that if the condition given in the third column
holds, then the criterion (3) for stability will be satisfied.

Consider the first case. If r1 < 0 and r2 < 0, then it is immediate that the solution given
tends to 0 as t → ∞.

On the other hand, if say r1 ≥ 0, then the solution er1t tends to ∞ (or to 1 if r1 = 0).
This shows the ODE (5) is not stable, since not all solutions tend to 0 as t → ∞.

In the second case, the reasoning is the same, except that here we are using the limit

lim
t→∞

tert = 0 ⇔ r < 0

For the third case, the relevant limits are (assuming b 6= 0 for the second limit):

lim
t→∞

eat cos bt = 0 ⇔ a < 0, lim
t→∞

eat sin bt = 0 ⇔ a < 0 .

The three cases can be summarized conveniently by one statement:

Stability criterion for second-order ODE’s — root form

(7) a0y
′′ + a1y

′ + a2y = r(t) is stable ⇔
all roots of a0r

2 + a1r + a2 = 0
have negative real part.

Alternatively, one can phrase the criterion in terms of the coefficients of the ODE; this is
convenient, since it doesn’t require you to calculate the roots of the characteristic equation.

Stability criterion for second order ODE’s — coefficient form. Assume a0 > 0.

(8) a0y
′′ + a1y

′ + a2y = r(t) is stable ⇐⇒ a0, a1, a2 > 0 .

The proof is left for the exercises; it is based on the quadratic formula.
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3. Stability of higher-order ODE’s.

The stability criterion in the root form (7) also applies to higher-order ODE’s with
constant coefficients:

(9) (a0D
n + a1D

n−1 + . . .+ an−1D + an) y = f(t) .

These model more complicated spring-mass systems and multi-loop RLC circuits. The
characteristic equation of the associated homogeneous equation is

(10) a0r
n + a1r

n−1 + . . .+ an−1r + an = 0 .

The real and complex roots of the characteristic equation give rise to solutions to the
associated homogeneous equation just as they do for second order equations. (For a k-fold
repeated root, one gets additional solutions by multiplying by 1, t, t2, . . . tk−1.)

The reasoning which led to the above stability criterion for second-order equations applies
to higher-order equations just as well. The end result is the same:

Stability criterion for higher-order ODE’s — root form

(11) ODE (9) is stable ⇐⇒ all roots of (10) have negative real parts;

that is, all the real roots are negative, and all the complex roots have negative real part.

There is a stability criterion for higher-order ODE’s which uses just the coefficients of
the equation, but it is not so simple as the one (8) for second-order equations. Without loss
of generality, we may assume that a0 > 0. Then it is not hard to prove (see the Exercises)
that

(12) ODE (9) is stable ⇒ a0, . . . , an > 0 .

The converse is not true (see the exercises). For an implication ⇐, the coefficients must
satisfy a more complicated set of inequalities, which we give without proof, known as the

Routh-Hurwitz conditions for stability Assume a0 > 0; ODE (9) is stable ⇔

in the determinant below, all of the n principal minors (i.e., the subdeterminants in the
upper left corner having sizes respectively 1, 2, . . . , n) are > 0 when evaluated.

(13)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a0 0 0 0 0 . . . 0
a3 a2 a1 a0 0 0 . . . 0
a5 a4 a3 a2 a1 a0 . . . 0
...

...
...

...
...

...
...

...
a2n−1 a2n−2 a2n−3 a2n−4 . . . . . . . . . an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In the determinant, we define ak = 0 if k > n; thus for example, the last row always has
just one non-zero entry, an.

Exercises: Section 2G



I. Impulse Response and Convolution

1. Impulse response. Imagine a mass m at rest on a frictionless track, then given
a sharp kick at time t = 0. We model the kick as a constant force F applied to the mass
over a very short time interval 0 < t < ǫ. During the kick the velocity v(t) of the mass rises
rapidly from 0 to v(ǫ); after the kick, it moves with constant velocity v(ǫ), since no further
force is acting on it. We want to express v(ǫ) in terms of F, ǫ, and m.

By Newton’s law, the force F produces a constant acceleration a, and we get

(1) F = ma ⇒ v(t) = at, 0 ≤ t ≤ ǫ ⇒ v(ǫ) = aǫ =
Fǫ

m
.

If the mass is part of a spring-mass-dashpot system, modeled by the IVP

(2) my′′ + cy′ + ky = f(t), y(0) = 0, y′(0−) = 0,

to determine the motion y(t) of the mass, we should solve (2), taking the driving force f(t)
to be a constant F over the time interval [0, ǫ] and 0 afterwards. But this will take work
and the answer will need interpretation.

Instead, we can both save work and get quick insight by solving the problem approxi-
mately, as follows. Assume the time interval ǫ is negligible compared to the other parameters.
Then according to (1), the kick should impart the instantaneous velocity Fǫ/m to the mass,
after which its motion y(t) will be the appropriate solution to the homogeneous ODE asso-
ciated with (2). That is, if the time interval ǫ for the initial kick is very small, the motion
is approximately given (for t ≥ 0) by the solution y(t) to the IVP

(3) my′′ + cy′ + ky = 0, y(0) = 0, y′(0) =
Fǫ

m
.

Instead of worrying about the constants, assume for the moment that Fǫ/m = 1; then the
IVP (3) becomes

(4) my′′ + cy′ + ky = 0, y(0) = 0, y′(0) = 1 ;

its solution for t > 0 will be called w(t), and in view of the physical problem, we define
w(t) = 0 for t < 0.

Comparing (3) and (4), we see that we can write the solution to (3) in terms of w(t) as

(5) y(t) =
Fǫ

m
w(t) ,

for since the ODE (4) is linear, multiplying the initial values y(0) and y′(0) by the same
factor Fǫ/m multiplies the solution by this factor.

The solution w(t) to (4) is of fundamental importance for the system (2); it is often
called in engineering the weight function for the ODE in (4). A longer but more expressive
name for it is the unit impulse response of the system: the quantity Fǫ is called in physics
the impulse of the force, as is Fǫ/m (more properly, the impulse/unit mass), so that if
Fǫ/m = 1, the function w(t) is the response of the system to a unit impulse at time t = 0.

1
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Example 1. Find the unit impulse response to an undamped spring-mass system having
(circular) frequency ω0.

Solution. Taking m = 1, the IVP (4) is y′′ + ω2
0y = 0, y(0) = 0, y′(0) = 1, so that

yc = a cosω0t+ b sinω0t; substituting in the initial conditions, we find

w(t) =

{ 1
ω0

sinω0t, t > 0;

0, t < 0.

Example 2. Find the unit impulse response to a critically damped spring-mass-dashpot
system having e−pt in its complementary function.

Solution. Since it is critically damped, it has a repeated characteristic root −p, and
the complementary function is yc = e−pt(c1 + c2t). The function in this family satisfying
y(0) = 0, y′(0) = 1 must have c1 = 0; it is t e−pt, either by differentiation or by observing
that its power series expansion starts t(1− pt+ ...) ≈ t.

2. Superposition. We now return to the general second-order linear ODE with constant
coefficients

(6) my′′ + cy′ + ky = f(t), or L(y) = f(t), where L = mD2 + cD + k.

We shall continue to interpret (6) as modeling a spring-mass-dashpot system, this time with
an arbitrary driving force f(t).

Since we know how to solve the associated homogeneous ODE, i.e., find the complemen-
tary solution yc, our problem with (6) is to find a particular solution yp. We can do this if
f(t) is “special” — sums of products of polynomials, exponentials, and sines and cosines. If
f(t) is periodic, or we are interested in it only on a finite interval, we can try expanding it
into a Fourier series over that interval , and obtaining the particular solution yp as a Fourier
series. But what can we do for a general f(t)?

We use the linearity of the ODE (6), which allows us to make use of a

Superposition principle

If f(t) = f1(t) + . . .+ fn(t) and yi are corresponding particular solutions:

L(yi) = fi(t), i = 1, . . . , n,

then yp = y1 + . . .+ yn is a particular solution to (2).

Proof. Using the linearity of the polynomial operator L, the proof takes one line:

L(yp) = L(y1) + . . .+ L(yn) = f1(t) + . . .+ fn(t) = f(t).

Of course a general f(t) is not the sum of a finite number of simpler functions. But over
a finite interval we can approximate f(t) by a sum of such functions.

Let the time interval be 0 < t < x; we want to find the value of the particular solution
yp(t) to (6) at the time t = x. We divide the time interval [0, x] into n equal small intervals
of length ∆t:

0 = t0, t1, t2, . . . , tn = x, ti+1 − ti = ∆t.
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Over the time interval [ti, ti+1] we have approximately f(t) ≈ f(ti), and therefore if we set

fi(t) =

{

f(ti), ti ≤ t < ti+1;

0, elsewhere,
i = 0, 1, . . . , n− 1 ,

we will have approximately

(7) f(t) ≈ f0(t) + . . .+ fn−1(t), 0 < t < x .

We now apply our superposition principle. Since w(t) is the response of the system in
(6) to a unit impulse at time t = 0, then the response of (6) to the impulse given by fi(t)
(in other words, the particular solution to (6) corresponding to fi(t)) will be

(8) f(ti)w(t− ti)∆t;

we translated w(t) to the right by ti units since the impulse is delivered at time ti rather
than at t = 0; we multiplied it by the constant f(ti)∆t since this is the actual impulse: the
force fi(t) has magnitude f(ti) and is applied over a time interval ∆t.

Since (7) breaks up f(t), and (8) gives the response to each fi(t), the superposition
principle tells us that the particular solution is approximated by the sum:

yp(t) =

n−1
∑

0

f(ti)w(t− ti)∆t, 0 ≤ t ≤ x,

so that at the time t = x,

(9) yp(x) ≈

n−1
∑

0

f(ti)w(x− ti)∆t .

We recognize the sum in (9) as the sum which approximates a definite integral; if we pass
to the limit as n → ∞, i.e., as ∆t → 0, in the limit the sum becomes the definite integral
and the approximation becomes an equality:

(10) yp(x) =

∫ x

0

f(t)w(x− t) dt system response to f(t)

In effect, we are imagining the driving force f(t) to be made up of an infi-
nite succession of infinitely close kicks fi(t); by the superposition principle, the
response of the system can then be obtained by adding up (via integration) the
responses of the system to each of these kicks.

Which particular solution does (10) give? The answer is:

(11) for yp as in (10), yp(0) = 0, y′(0) = 0.

The first equation is clear from (10); we will derive the second in the next section.

The formula (10) is a very remarkable one. It expresses a particular solution to a second-
order differential equation directly as a definite integral, whose integrand consists of two
parts: a factor w(x − t) depending only on the left-hand-side of (6) — that is, only on
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the spring-mass-dashpot system itself, not on how it is being driven — and a factor f(t)
depending only on the external driving force. For example, this means that once the unit
impulse response w(t) is calculated for the system, one only has to put in the different
driving forces to determine the responses of the system to each.

The formula (10) makes superposition clear: to the sum of driving forces corresponds the
sum of the corresponding particular solutions.

Still another advantage of our formula (10) is that it allows the driving force to have
discontinuities, as long as they are isolated, since such functions can always be integrated.
For instance, f(t) could be a step function or the square wave function.

Let us check out the formula (10) in some simple cases where we can find the particular
solution yp also by the method of undetermined coefficients.

Example 3. Find the particular solution given by (10) to y′′+y = A, where D = d/dx.

Solution. From Example 1, we have w(t) = sin t. Therefore for x ≥ 0, we have

yp(x) =

∫ x

0

A sin(x− t) dt = A cos(x− t)

]x

0

= A(1− cosx).

Here the method of undetermined coefficients would produce yp = A; however, A−A cosx
is also a particular solution, since −A cosx is in the complementary function yc. Note that
the above yp satisfies (11), whereas yp = A does not.

Example 4. Find the particular solution for x ≥ 0 given by (10) to y′′ + y = f(x),
where f(x) = 1 if 0 ≤ x ≤ π, and f(x) = 0 elsewhere.

Solution. Here the method of Example 3 leads to two cases: 0 ≤ x ≤ π and x ≥ π:

yp =

∫ x

0

f(t) sin(x− t) dt =















∫ x

0

sin(x− t) dt = cos(x− t)

]x

0

= 1− cosx, 0 ≤ x ≤ π;

∫ π

0

sin(x− t) dt = cos(x− t)

]π

0

= −2 cosx, x ≥ π

3. Leibniz’ Formula. To gain further confidence in our formula (10), which was
obtained as a limit of approximations of varying degrees of shadiness, we want to check that
it satisfies the ODE (6), with the initial conditions y(0) = y′(0) = 0.

To do this, we will have to differentiate the right side of (10) with respect to x. The
following theorem tells us how to do this.

Theorem. If the integrand g(x, t) and its partial derivative gx(x, t) are continuous, then

(12)
d

dx

∫ b

a

g(x, t) dt =

∫ b

a

gx(x, t) dt.

When we try to apply the theorem to differentiating the integral in (10), a difficulty arises
because x occurs not just in the integrand, but as one of the limits as well. The best way
to handle this is to give these two x’s different names: u and v, and write

F (u, v) =

∫ u

0

g(v, t) dt, u = x, v = x.
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Using the 18.02 chain rule
d

dx
F (u, v) =

∂F

∂u

du

dx
+

∂F

∂v

dv

dx
, we get

d

dx

∫ u

0

g(v, t) dt = g(v, u) +

∫ u

0

∂

∂v
g(v, t) dt ,

by the Second Fundamental Theorem of calculus and the preceding Theorem; then if we
substitute u = x and v = x, we get

(13)
d

dx

∫ x

0

g(x, t) dt = g(x, x) +

∫ x

0

∂

∂x
g(x, t) dt Leibniz’ Formula.

We can now use Leibniz’ formula to show that (10) satisfies the ODE (6); we have

yp =

∫ x

0

f(t)w(x− t) dt

y′p = f(x)w(x− x) +

∫ x

0

f(t)w′(x− t) dt;

the first term on the right is 0 since w(0) = 0 by (5); using Leibniz’ formula once more:

y′′p = f(x)w′(x− x) +

∫ x

0

f(t)w′′(x− t) dt;

again, the first term on the right is f(x) since w′(0) = 1 by (5); multipying each of the three
preceding equations by the appropriate coefficient of the ODE and then adding the three
equations gives

y′′p + ay′p + byp = f(x) +

∫ x

0

f(t) [w′′(x− t) + aw′(x− t) + bw(x− t)] dt

= f(x),

since for any independent variable, w′′(u) + aw′(u) + bw(u) = 0, and therefore the same is
true if u is replaced by x− t.

This shows that the integral in (10) satisfies the ODE; as for the initial conditions, we
have yp(0) = 0 from the definition of the integral in the equation for yp above, and y′p(0) = 0
from the equation for y′p and the fact that w(0) = 0.

4. Convolution. Integrals of the form

∫ x

0

f(t)w(x− t) dt

occur widely in applications; they are called “convolutions” and a special symbol is used for
them. Since w and f have a special meaning in these notes related to second-order ODE’s
and their associated spring-mass-dashpot systems, we give the definition of convolution
using fresh symbols.
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Definition. The convolution of u(x) and v(x) is the function of x defined by

(14) u ∗ v =

∫ x

0

u(t)v(x− t) dt.

The form of the convolution of two functions is not really predictable from the functions.
Two simple and useful ones are worth remembering:

(15) eax ∗ ebx =
eax − ebx

a− b
, a 6= b; eax ∗ eax = x eax

Proof. We do the first; the second is similar. If a 6= b,

eax∗ ebx =

∫ x

0

ea(t)eb(x−t)dt = ebx
∫ x

0

e(a−b)tdt = ebx
e(a−b)t

a− b

]x

0

= ebx
e(a−b)x − 1

a− b
=

eax − ebx

a− b
.

Properties of the convolution.

(u1 + u2) ∗ v = u1 ∗ v + u2 ∗ v, (cu) ∗ v = c(u ∗ v);(linearity)

u ∗ (v1 + v2) = u ∗ v1 + u ∗ v2, u ∗ (cv) = c(u ∗ v);

which follow immediately from the corresponding properties of the definite integral.

(commutativity) u ∗ v = v ∗ u

Since the definition (14) of convolution does not treat u and v symmetrically, the commu-
tativity is not obvious. We will prove the commutativity later using the Laplace transform.
One can also prove it directly, by making a change of variable in the convolution integral.
As an example, the formula in (15) shows that eax ∗ ebx = ebx ∗ eax.

5. Examples of using convolution.

Higher-order linear ODE’s. The formula yp(x) = f(x) ∗w(x) given in (10) also holds
for the n-th order ODE p(D)y = f(t) analogous to (6); the weight function w(t) is defined
to be the unique solution to the IVP

(16) p(D)y = 0, w(0) = w′(0) = . . . w(n−2)(0) = 0, w(n−1)(0) = 1.

As in the second-order case, w(t) is the response of the system to the driving force f(t)
given by a unit impulse at time t = 0.

Example 5. Verify yp = f(x) ∗ w(x) for the solution to the first-order IVP

(17) y′ + ay = f(x); y(0) = 0.

Solution. According to (16), the weight function w(t) should be the solution of the
associated homogeneous equation satisfying w(0) = 1; it is therefore w = e−at. Using the
standard integrating factor eax to solve (17), and a definite integral to express the solution,

(y eax)′ = f(x)eax

yp e
ax =

∫ x

0

f(t)eat dt t is a dummy variable

yp =

∫ x

0

f(t)e−a(x−t) dt

yp = f(x) ∗ e−ax.
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Example 6. Radioactive dumping. A radioactive substance decays exponentially:

(18) R = R0e
−at,

where R0 is the initial amount, R(t) the amount at time t, and a the decay constant.
A factory produces this substance as a waste by-product, and it is dumped daily on a

waste site. Let f(t) be the rate of dumping; this means that in a relatively small time period
[t0, t0 +∆t], approximately f(t0)∆t grams of the substance is dumped.

The dumping starts at time t = 0.
Find a formula for the amount of radioactive waste in the dump site at time x, and

express it as a convolution.

Solution. Divide up the time interval [0, x] into n equal intervals of length ∆t, using
the times

t0 = 0, t1, . . . , tn = x.

amount dumped in the interval [ti, ti+1] ≈ f(ti)∆t ;

By time x, it will have decayed for approximately the length of time x − ti; therefore,
according to (18), at time x the amount of waste coming from what was dumped in the
time interval [ti, ti+1] is approximately

f(ti)∆t · e−a(x−ti);

this shows that the

total amount at time x ≈

n−1
∑

0

f(ti)e
−a(x−ti)∆t .

As n → ∞ and ∆t → 0, the sum approaches the corresponding definite integral and the
approximation becomes an equality. So we conclude that

total amount at time x =

∫ x

0

f(t)e−a(x−t) dt = f(x) ∗ e−ax;

i.e., the amount of waste at time x is the convolution of the dumping rate and the decay
function.

Example 7. Bank interest. On a savings account, a bank pays the continuous
interest rate r, meaning that a sum A0 deposited at time t = 0 will by time t grow to the
amount A0e

rt.

Suppose that starting at day t = 0 a Harvard square juggler deposits every day his take,
with deposit rate d(t) — i.e., over a relatively small time interval [t0, t0 +∆t], he deposits
approximately d(t0)∆t dollars in his account. Assuming that he makes no withdrawals and
the interest rate doesn’t change, give with reasoning an approximate expression (involving
a convolution) for the amount of money in his account at time t = x.

Solution. Similar to Example 6, and left as an exercise.

Exercises: Section 2H



H. Heaviside’s Cover-up Method

The cover-up method was introduced by Oliver Heaviside as a fast way to do a decom-
position into partial fractions. This is an essential step in using the Laplace transform to
solve differential equations, and this was more or less Heaviside’s original motivation.

The cover-up method can be used to make a partial fractions decomposition of a rational

function
p(x)

q(x)
whenever the denominator can be factored into distinct linear factors.

We first show how the method works on a simple example, and then show why it works.

Example 1. Decompose
x− 7

(x− 1)(x+ 2)
into partial fractions.

Solution. We know the answer will have the form

(1)
x− 7

(x− 1)(x+ 2)
=

A

x− 1
+

B

x+ 2
.

To determine A by the cover-up method, on the left-hand side we mentally remove (or cover
up with a finger) the factor x− 1 associated with A, and substitute x = 1 into what’s left;
this gives A:

(2)
x− 7

(x+ 2)

∣

∣

∣

∣

x=1

=
1− 7

1 + 2
= −2 = A .

Similarly, B is found by covering up the factor x + 2 on the left, and substituting x = −2
into what’s left. This gives

x− 7

(x− 1)

∣

∣

∣

∣

x=−2

=
−2− 7

−2− 1
= 3 = B .

Thus, our answer is

(3)
x− 7

(x− 1)(x+ 2)
=

−2

x− 1
+

3

x+ 2
.

Why does the method work? The reason is simple. The “right” way to determine A from
equation (1) would be to multiply both sides by (x− 1); this would give

(4)
x− 7

(x+ 2)
= A +

B

x+ 2
(x− 1) .

Now if we substitute x = 1, what we get is exactly equation (2), since the term on the right
disappears. The cover-up method therefore is just any easy way of doing the calculation
without going to the fuss of writing (4) — it’s unnecessary to write the term containing B
since it will become 0 .

0
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In general, if the denominator of the rational function factors into the product of distinct
linear factors:

p(x)

(x− a1)(x− a2) · · · (x− ar)
=

A1

x− a1
+ . . .+

Ar

x− ar
, ai 6= aj ,

then Ai is found by covering up the factor x− ai on the left, and setting x = ai in the rest
of the expression.

Example 2. Decompose
1

x3 − x
into partial fractions.

Solution. Factoring, x3 − x = x(x2 − 1) = x(x− 1)(x+ 1). By the cover-up method,

1

x(x− 1)(x+ 1)
=

−1

x
+

1/2

x− 1
+

1/2

x+ 1
.

To be honest, the real difficulty in all of the partial fractions methods (the cover-up
method being no exception) is in factoring the denominator. Even the programs which do
symbolic integration, like Macsyma, or Maple, can only factor polynomials whose factors
have integer coefficients, or “easy coefficients” like

√
2. and therefore they can only integrate

rational functions with “easily-factored” denominators.

Heaviside’s cover-up method also can be used even when the denominator doesn’t factor
into distinct linear factors. To be sure, it gives only partial results, but these can often be
a big help. We illustrate.

Example 3. Decompose
5x+ 6

(x2 + 4)(x− 2)
.

Solution. We write

(5)
5x+ 6

(x2 + 4)(x− 2)
=

Ax+B

x2 + 4
+

C

x− 2
.

We first determine C by the cover-up method, getting C = 2 . Then A and B can be found
by the method of undetermined coefficients; the work is greatly reduced since we need to
solve only two simultaneous equations to find A and B, not three.

Following this plan, using C = 2, we combine terms on the right of (5) so that both sides
have the same denominator. The numerators must then also be equal, which gives us

(6) 5x+ 6 = (Ax+B)(x− 2) + 2(x2 + 4) .

Comparing the coefficients say of x2 and of the constant terms on both sides of (6) then
gives respectively the two equations

0 = A+ 2 and 6 = −2B + 8,

from which A = −2 and B = 1 .

In using (6), one could have instead compared the coefficients of x, getting 5 = −2A+B;
this provides a valuable check on the correctness of our values for A and B.
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In Example 3, an alternative to undetermined coefficients would be to substitute two
numerical values for x into the original equation (5), say x = 0 and x = 1 (any values
other than x = 2 are usable). Again one gets two simultaneous equations for A and B.
This method requires addition of fractions, and is usually better when only one coefficient
remains to be determined (as in Example 4 below).

Still another method would be to factor the denominator completely into linear factors,
using complex coefficients, and then use the cover-up method, but with complex numbers. At
the end, conjugate complex terms have to be combined in pairs to produce real summands.
The calculations are sometimes longer, and require skill with complex numbers.

The cover-up method can also be used if a linear factor is repeated, but there too it gives
just partial results. It applies only to the highest power of the linear factor. Once again, we
illustrate.

Example 4. Decompose
1

(x− 1)2(x+ 2)
.

Solution. We write

(7)
1

(x− 1)2(x+ 2)
=

A

(x− 1)2
+

B

x− 1
+

C

x+ 2
.

To find A cover up (x− 1)2 and set x = 1; you get A = 1/3. To find C, cover up x+2, and
set x = −2; you get C = 1/9.

This leaves B which cannot be found by the cover-up method. But since A and C are
already known in (7), B can be found by substituting any numerical value (other than 1 or
−2) for x in equation (7). For instance, if we put x = 0 and remember that A = 1/3 and
C = 1/9, we get

1

2
=

1/3

1
+

B

−1
+

1/9

2
,

from which we see that B = −1/9.

B could also be found by applying the method of undetermined coefficients to the equation
(7); note that since A and C are known, it is enough to get a single linear equation in order
to determine B — simultaneous equations are no longer needed.

The fact that the cover-up method works for just the highest power of the repeated linear
factor can be seen just as before. In the above example for instance, the cover-up method
for finding A is just a short way of multiplying equation (5) through by (x − 1)2 and then
substituting x = 1 into the resulting equation.



LT. Laplace Transform

1. Translation formula. The usual L.T. formula for translation on the t-axis is

(1) L
(

u(t− a)f(t− a)
)

= e−asF (s), where F (s) = L
(

f(t)
)

, a > 0.

This formula is useful for computing the inverse Laplace transform of e−asF (s), for example.
On the other hand, as written above it is not immediately applicable to computing the L.T.
of functions having the form u(t− a)f(t). For this you should use instead this form of (1):

(2) L
(

u(t− a)f(t)
)

= e−as
L
(

f(t+ a)
)

, a > 0.

Example 1. Calculate the Laplace transform of u(t− 1)(t2 + 2t).

Solution. Here f(t) = t2 + 2t, so (check this!) f(t+ 1) = t2 + 4t+ 3. So by (2),

L
(

u(t− 1)(t2 + 2t)
)

= e−s
L(t2 + 4t+ 3) = e−s

(

2

s3
+

4

s2
+

3

s

)

.

Example 2. Find L
(

u(t− π
2
) sin t

)

.

Solution. L
(

u(t− π
2
) sin t

)

= e−πs/2
L
(

sin(t+ π
2

)

= e−πs/2
L(cos t) = e−πs/2 s

s2 + 1
.

Proof of formula (2). According to (1), for any g(t) we have

L
(

u(t− a)g(t− a)
)

= e−as
L
(

g(t)
)

;

this says that to get the factor on the right side involving g, we should replace t− a by t in
the function g(t− a) on the left, and then take its Laplace transform.

Apply this procedure to the function f(t), written in the form f(t) = f((t− a) + a); we
get (“replacing t− a by t and then taking the Laplace Transform”)

L
(

u(t− a)f((t− a) + a)
)

= e−as
L
(

f(t+ a)
)

,

exactly the formula (2) that we wanted to prove. �

Exercises. Find: a) L
(

u(t− a)et
)

b) L
(

u(t− π) cos t
)

c) L
(

u(t− 2)te−t
)

Solutions. a) e−as ea

s− 1
b) −e−πs s

s2 + 1
c) e−2s e

−2(2s+ 3)

(s+ 1)2

1
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1. Convolution. A peculiar-looking integral involving two functions f(t) and g(t)
occurs widely in applications; it has a special name and a special symbol is used for it.

Definition. The convolution of f(t) and g(t) is the function f ∗ g of t defined by

(1) [f ∗ g](t) =

∫ t

0

f(u)g(t− u) du.

Example 1 below calculates two useful convolutions from the definition (1). As you can
see, the form of f ∗ g is not very predictable from the form of f and g.

Example 1. Show that

(2) eat ∗ ebt =
eat − ebt

a− b
, a 6= b; eat ∗ eat = t eat

Solution. We do the first; the second is similar. If a 6= b,

eat ∗ ebt =

∫ t

0

eaueb(t−u)du = ebt
∫ t

0

e(a−b)udu = ebt
e(a−b)u

a− b

]t

0

= ebt
e(a−b)t − 1

a− b
=

eat − ebt

a− b
.

The convolution gives us an expressive formula for a particular solution yp to an inho-
mogeneous linear ODE. The next example illustrates this for the first-order equation.

Example 2. Express as a convolution the solution to the first-order constant-coefficient
linear IVP (cf. Notes IR (3))

(3) y′ + ky = q(t); y(0) = 0.

Solution. The integrating factor is ekt; multiplying both sides by it gives

(y ekt)′ = q(t)ekt.

Integrate both sides from 0 to t, and apply the Fundamental Theorem of Calculus to the
left side; since the particular solution yp we want satisfies y(0) = 0, we get

yp e
kt =

∫ t

0

q(u)eku du ; (u is a dummy variable.)

Moving the ekt to the right side and placing it under the integral sign gives

yp =

∫ t

0

q(u)e−k(t−u) du

yp = q(t) ∗ e−kt.
0
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We see that the solution is the convolution of the input q(t) with the solution to the IVP (3)
where q = 0 and the initial value is y(0) = 1. This is the simplest case of Green’s formula,
which does the same thing for higher-order linear ODE’s. We will describe it in section 3.

2. Physical applications of the convolution. The convolution comes up natu-
rally in a variety of physical sitations. Here are two typical examples.

Example 3. Radioactive dumping. A radioactive substance decays exponentially:

(4) R = R0e
−kt,

where R0 is the initial amount, R(t) the amount at time t, and k the decay constant.
A factory produces this substance as a waste by-product, and it is dumped daily on a

waste site. Let f(t) be the rate of dumping; this means that in a relatively small time period
[t0, t0 +∆t], approximately f(t0)∆t grams of the substance is dumped.

Find a formula for the amount of radioactive waste in the dump site at time t, and express
it as a convolution. Assume the dumping starts at time t = 0.

Solution. Divide up the time interval [0, t] into n equal intervals of length ∆u, using the
times

u0 = 0, u1, u2, . . . , un = t.

amount dumped in the interval [ui, ui+1] ≈ f(ui)∆u ;

by time t, this amount will have decayed for approximately the length of time t − ui;
therefore, according to (4), at time t the amount of waste coming from what was dumped
in the time interval [ui, ui+1] is approximately

f(ui)∆u · e−k(t−ui).

Adding up the radioactive material in the pile coming from the dumping over each time
interval, we get

total amount at time t ≈

n−1
∑

0

f(ui)e
−k(t−ui)∆u .

As n → ∞ and ∆u → 0, the sum approaches the corresponding definite integral and the
approximation becomes an equality. So we conclude that

total amount at time t =

∫ t

0

f(u)e−k(t−u) du = f(t) ∗ e−kt;

i.e., the amount of waste still radioactive at time t is the convolution of the dumping rate
and the decay function.

Example 4. Bank interest. On a savings account, a bank pays the continuous interest
rate r, meaning that a sum A0 deposited at time u = 0 will by time u = t grow to the amount
A0e

rt.

Suppose that starting at day t = 0 a Harvard square juggler deposits every day his take,
with deposit rate d(t) — i.e., over a relatively small time interval [u0, u0+∆u], he deposits
approximately d(u0)∆u dollars in his account. Assuming that he makes no withdrawals and
the interest rate doesn’t change, give with reasoning an approximate expression (involving
a convolution) for the amount of money in his account at time u = t.
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Solution. Similar to Example 3, and left as an exercise.

3. Weight and transfer functions and Green’s formula.

In Example 2 we expressed the solution to the IVP y′ + ky = q(t), y(0) = 0 as a
convolution. We can do the same with higher order ODE’s which are linear with constant
coefficients. We will illustrate using the second order equation,

(5) y′′ + ay′ + by = f(t), y(0) = 0, y′(0) = 0.

The Laplace transform of this IVP, with the usual notation, is

s2Y + asY + bY = F (s) ;

solving as usual for Y = L(y), we get

Y = F (s)
1

s2 + as+ b
;

using the convolution operator to take the inverse transform, we get the solution in the form
called Green’s formula ( the function w(t) is defined below):

(6) y = f(t) ∗ w(t) =

∫ t

0

f(u)w(t− u) du .

In connection with this form of the solution, the following terminology is often used. Let
p(D) = D2 + aD + b be the differential operator; then we write

W (s) =
1

s2 + as+ b
the transfer function for p(D),

w(t) = L−1
(

W (s)
)

the weight function for p(D),

G(t, u) = w(t− u) the Green’s function for p(D).

The important thing to note is that each of these functions depends only on the operator,
not on the input f(t); once they are calculated, the solution (6) to the IVP can be written
down immediately by Green’s formula, and used for a variety of different inputs f(t).

The weight w(t) is the unique solution to either of the IVP’s

y′′ + ay′ + by = 0; y(0) = 0, y′(0) = 1;(7)

y′′ + ay′ + by = δ(t); y(0) = 0, y′(0−) = 0;(8)

in (8), the δ(t) is the Dirac delta function. It is an easy Laplace transform exercise to
show that w(t) is the solution to (7) and to (8). In the next section, we will give a physical
interpretation for the weight function and Green’s formula.

Let us check out Green’s formula (6) in some simple cases where we can find the particular
solution yp also by another method.

Example 5. Find the particular solution given by (6) to y′′ + y = A, y(0) = 0.

Solution. From (7), we see that w(t) = sin t. Therefore for t ≥ 0, we have

yp(t) =

∫ t

0

A sin(t− u) du = A cos(t− u)

]t

0

= A(1− cos t).
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Here the exponential response formula or the method of undetermined coefficients would
produce the particular solution yp = A; however, A − A cos t is also a particular solution,
since −A cos t is in the complementary function yc; the extra cosine term is required to
satisfy y(0) = 0.

Example 6. Find the particular solution for t ≥ 0 given by (6) to y′′ + y = f(t), where
f(t) = 1 if 0 ≤ t ≤ π, and f(t) = 0 elsewhere.

Solution. Here the method of Example 5 leads to two cases: 0 ≤ t ≤ π and t ≥ π:

yp =

∫ t

0

f(u) sin(t− u) du =



















∫ t

0

sin(t− u) du = cos(t− u)

]t

0

= 1− cos t, 0 ≤ t ≤ π;

∫ π

0

sin(t− u) du = cos(t− u)

]π

0

= −2 cos t, t ≥ π .

Terminology and results analogous to (6) hold for the higher-order linear IVP’s with
constant coefficients (here p(D) is any polynomial in D)

p(D)y = f(t), y(0) = y′(0) = . . . = y(n−1)(0) = 0;

Green’s formula for the solution is once again (6), where the weight function w(t) is defined
to be the unique solution to the IVP

(9) p(D)y = 0, w(0) = w′(0) = . . . w(n−2)(0) = 0, w(n−1)(0) = 1.

Equivalently, it can be defined as the unique solution to the analogue of (8).

4. Impulse-response; interpretation of Green’s formula.

We obtained Green’s formula (6) by using the Laplace transform; our aim now is to
interpret it physically, to see the “why” of it. This will give us further insight into the
weight function and the convolution operation.

We know the weight function w(t) is the solution to the IVP

(7) y′′ + ay′ + by = 0, y(0) = 0, y′(0) = 1.

We think of this as modeling the motion of the mass in a spring-mass-dashpot system (we
will take the mass m = 1, for simplicity). The system is initially at rest, but at time t = 0
the mass is given a kick in the positive direction, which imparts to it unit velocity:

y′(0+) = 1.

According to physical mechanics, to impart this unit velocity to a unit mass, the kick
must have unit impulse, which is defined for a constant force F to be

(10) Impulse = (force F )(length of time F is applied) .

A kick is modeled as a constant force F applied over a very short time interval 0 ≤ t ≤ ∆u;
according to (10), for the force to impart a unit impulse over this time interval, it must have
magnitude 1/∆u:

1 = (1/∆u)(∆u) .
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Input: force (1/∆u) applied over time interval [0,∆u] Response: w(t)

If the kick is applied instead over the time interval u ≤ t ≤ u+∆u, the response is the same
as before, except that it starts at time u:

Input: force (1/∆u) applied over time interval [u, u+∆u] Response: w(t− u)

Finally, if the force is not a constant (1/∆u), but varies with time: F = f(u), by (10) the
impulse it imparts over the time interval [u, u+∆u] is approximately f(u)∆u, instead of 1,
so the response must be multiplied by this factor; our final result therefore is

(11) Input: force f(u) applied over [u, u+∆u] Response: f(u)∆u · w(t− u).

From this last it is but a couple of steps to the physical interpretation of Green’s formula.
We use the

Superposition principle for the IVP (5): if f(t) = f1(t) + . . . fn(t), and yi(t) is the solution

corresponding to fi(t), then y1 + . . . yn is the solution corresponding to f(t).

In other words, the response to a sum of inputs is the sum of the corresponding responses
to each separate input.

Of course, the input force f(t) to our spring-mass-dashpot system is not the sum of
simpler functions, but it can be approximated by such a sum. To do this, divide the time
interval from u = 0 to u = t into n equal subintervals, of length ∆u:

0 = u0, u1, . . . , un = t, ui+1 − ui = ∆u .

Assuming f(t) is continuous,

f(t) ≈ f(ui) over the time interval [ui, ui+1]

Therefore if we set

(12) fi(t) =

{

f(ui), ui ≤ t < ui+1;

0, elsewhere,
i = 0, 1, . . . , n− 1 ,

we will have approximately

(13) f(t) ≈ f0(t) + . . .+ fn−1(t), 0 < u < t .

We now apply our superposition principle. According to (10), the response of the system
to the input fi(t) described in (12) will be approximately

(14) f(ui)w(t− ui)∆u;

Applying the superposition principle to (13), we find the response yp(t) of the system to the
input f(t) =

∑

fi(t) is given approximately by

(15) yp(t) ≈

n−1
∑

0

f(ui)w(t− ui)∆u .
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We recognize the sum in (15) as the sum which approximates a definite integral; if we pass
to the limit as n → ∞, i.e., as ∆u → 0, in the limit the sum becomes the definite integral
and the approximation becomes an equality and we get Green’s formula:

(16) yp(t) =

∫ t

0

f(u)w(t− u) du system response to f(t)

In effect, we are imagining the driving force f(t) to be made up of an infi-
nite succession of infinitely close kicks fi(t); by the superposition principle, the
response of the system can then be obtained by adding up (via integration) the
responses of the system to each of these kicks.

Green’s formula is a very remarkable one. It expresses a particular solution to a second-
order differential equation directly as a definite integral, whose integrand consists of two
parts: a factor w(t − u) depending only on the left-hand-side of (5) — that is, only on
the spring-mass-dashpot system itself, not on how it is being driven — and a factor f(t)
depending only on the external driving force. For example, this means that once the unit
impulse response w(t) is calculated for the system, one only has to put in the different
driving forces to determine the responses of the system to each.

Green’s formula makes the superposition principle clear: to the sum of input forces
corresponds the sum of the corresponding particular solutions.

Still another advantage of Green’s formula is that it allows the input force to have dis-
continuities, as long as they are isolated, since such functions can always be integrated. For
instance, f(t) could be a step function or the square wave function.

Exercises: Section 2H



LS. LINEAR SYSTEMS

LS.1 Review of Linear Algebra

In these notes, we will investigate a way of handling a linear system of ODE’s directly,
instead of using elimination to reduce it to a single higher-order equation. This gives im-
portant new insights into such systems, and it is usually a more convenient and faster way
of solving them.

The method makes use of some elementary ideas about linear algebra and matrices, which
we will assume you know from your work in multivariable calculus. Your textbook contains
a section (5.3) reviewing most of these facts, with numerical examples. Another source is the
18.02 Supplementary Notes, which contains a beginning section on linear algebra covering
approximately the right material.

For your convenience, what you need to know is summarized briefly in this section.
Consult the above references for more details and for numerical examples.

1. Vectors. A vector (or n-vector) is an n-tuple of numbers; they are usually real
numbers, but we will sometimes allow them to be complex numbers, and all the rules and
operations below apply just as well to n-tuples of complex numbers. (In the context of
vectors, a single real or complex number, i.e., a constant, is called a scalar.)

The n-tuple can be written horizontally as a row vector or vertically as a column vector.
In these notes it will almost always be a column. To save space, we will sometimes write
the column vector as shown below; the small T stands for transpose, and means: change
the row to a column.

a = (a1, . . . , an) row vector a = (a1, . . . , an)
T column vector

These notes use boldface for vectors; in handwriting, place an arrow ~a over the letter.

Vector operations. The three standard operations on n-vectors are:

addition: (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) .

multiplication by a scalar: c (a1, . . . , an) = (ca1, . . . , can)

scalar product: (a1, . . . , an) · (b1, . . . , bn) = a1b1 + . . .+ anbn .

2. Matrices and Determinants. An m × n matrix A is a rectangular array of
numbers (real or complex) having m rows and n columns. The element in the i-th row and
j-th column is called the ij-th entry and written aij . The matrix itself is sometimes written
(aij), i.e., by giving its generic entry, inside the matrix parentheses.

A 1× n matrix is a row vector; an n× 1 matrix is a column vector.

Matrix operations. These are

addition: if A and B are bothm×nmatrices, they are added by adding the corresponding
entries; i.e., if A = (aij) and B = (bij), then A+B = (aij + bij).

multiplication by a scalar: to get cA, multiply every entry of A by the scalar c; i.e., if
A = (aij), then cA = (caij).

1



2 18.03 NOTES: LS. LINEAR SYSTEMS

matrix multiplication: if A is an m× n matrix and B is an n× k matrix, their product
AB is an m× k matrix, defined by using the scalar product operation:

ij-th entry of AB = (i-th row of A) · (j-th column of B)T .

The definition makes sense since both vectors on the right are n-vectors. In what follows,
the most important cases of matrix multiplication will be

(i) A and B are square matrices of the same size, i.e., both A and B are n×n
matrices. In this case, multiplication is always possible, and the product AB is
again an n× n matrix.

(ii) A is an n × n matrix and B = b, a column n-vector. In this case, the
matrix product Ab is again a column n-vector.

Laws satisfied by the matrix operations.

For any matrices for which the products and sums below are defined, we have

(AB)C = A (BC) (associative law)

A (B + C) = AB +AC, (A+B)C = AB +AC (distributive laws)

AB 6= BA (commutative law fails in general)

Identity matrix. We denote by In the n × n matrix with 1’s on the main diagonal
(upper left to bottom right), and 0’s elsewhere. If A is an arbitrary n× n matrix, it is easy
to check from the definition of matrix multiplication that

AIn = A and InA = A .

In is called the identity matrix of order n; the subscript n is often omitted.

Determinants. Associated with every square matrix A is a number, written |A| or
detA, and called the determinant of A. For these notes, it will be enough if you can calculate
the determinant of 2× 2 and 3× 3 matrices, by any method you like.

Theoretically, the determinant should not be confused with the matrix itself;
the determinant is a number, the matrix is the square array. But everyone puts
vertical lines on either side of the matrix to indicate its determinant, and then
uses phrases like “the first row of the determinant”, meaning the first row of the
corresponding matrix.

An important formula which everyone uses and no one can prove is

(1) det(AB) = detA · detB .

Inverse matrix. A square matrix A is called nonsingular or invertible if detA 6= 0.

If A is nonsingular, there is a unique square matrix B of the same size, called the inverse
to A, having the property that

BA = I, and AB = I .

This matrix B is denoted by A−1. To confirm that a given matrix B is the inverse to A,
you only have to check one of the above equations; the other is then automatically true.

Different ways of calculating A−1 are given in the references. However, if A is a 2 × 2
matrix, as it usually will be in the notes, it is easiest simply to use the formula for it:
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(2) A =

(

a b
c d

)

A−1 =
1

|A|

(

d −b
−c a

)

.

Remember this as a procedure, rather than as a formula: switch the entries on the main
diagonal, change the sign of the other two entries, and divide every entry by the determinant.
(Often it is better for subsequent calculations to leave the determinant factor outside, rather
than to divide all the terms in the matrix by detA.) As an example of (2),

(

1 −2
−1 4

)

−1

= 1

2

(

4 2
1 1

)

=

(

2 1
1

2

1

2

)

.

To calculate the inverse of a nonsingular 3× 3 matrix, see for example the 18.02 notes.

3. Square systems of linear equations. Matrices and determinants were origi-
nally invented to handle in an efficient way the solution of a system of simultaneous linear
equations. This is still one of their most important uses. We give a brief account of what
you need to know. This is not in your textbook, but can be found in the 18.02 Notes. We
will restrict ourselves to square systems — those having as many equations as they have
variables (or “unknowns”, as they are frequently called). Our notation will be:

A = (aij), a square n× n matrix of constants,

x = (x1, . . . , xn)
T , a column vector of unknowns,

b = (b1, . . . , bn)
T , a column vector of constants;

then the square system
a11x1 + . . .+ a1nxn = b1

a21x1 + . . .+ a2nxn = b2

· · ·

an1x1 + . . .+ annxn = bn

can be abbreviated by the matrix equation

(3) Ax = b .

If b = 0 = (0, . . . , 0)T , the system (3) is called homogeneous; if this is not assumed,
it is called inhomogeneous. The distinction between the two kinds of system is signifi-
cant. There are two important theorems about solving square systems: an easy one about
inhomogeneous systems, and a more subtle one about homogeneous systems.

Theorem about square inhomogeneous systems.

If A is nonsingular, the system (3) has a unique solution, given by

(4) x = A−1b .

Proof. Suppose x represents a solution to (3). We have

Ax = b ⇒ A−1(Ax) = A−1b,

⇒ (A−1A)x = A−1b, by associativity;

⇒ I x = A−1b, definition of inverse;

⇒ x = A−1b, definition of I.



4 18.03 NOTES: LS. LINEAR SYSTEMS

This gives a formula for the solution, and therefore shows it is unique if it exists. It does
exist, since it is easy to check that A−1b is a solution to (3). �

The situation with respect to a homogeneous square system Ax = 0 is different. This
always has the solution x = 0, which we call the trivial solution; the question is: when
does it have a nontrivial solution?

Theorem about square homogeneous systems. Let A be a square matrix.

(5) Ax = 0 has a nontrivial solution ⇔ detA = 0 (i.e., A is singular).

Proof. The direction ⇒ follows from (4), since if A is nonsingular, (4) tells us that
Ax = 0 can have only the trivial solution x = 0.

The direction ⇐ follows from the criterion for linear independence below, which we are
not going to prove. But in 18.03, you will always be able to show by calculation that the
system has a nontrivial solution if A is singular.

4. Linear independence of vectors.

Let x1,x2, . . . , xk be a set of n-vectors. We say they are linearly dependent (or simply,
dependent) if there is a non-zero relation connecting them:

(6) c1x1 + . . .+ ckxk = 0, (ci constants, not all 0).

If there is no such relation, they are called linearly independent (or simply, independent).
This is usually phrased in a positive way: the vectors are linearly independent if the only
relation among them is the zero relation, i.e.,

(7) c1x1 + . . .+ ckxk = 0 ⇒ ci = 0 for all i.

We will use this definition mostly for just two or three vectors, so it is useful to see what
it says in these low-dimensional cases. For k = 2, it says

(8) x1 and x2 are dependent ⇔ one is a constant multiple of the other.

For if say x2 = cx1, then cx1 − x2 = 0 is a non-zero relation; while conversely, if we have
non-zero relation c1x1 + c2x2 = 0, with say c2 6= 0, then x2 = −(c1/c2)x1.

By similar reasoning, one can show that

(9) x1,x2,x3 are dependent ⇔ one of them is a linear combination of the other two.

Here by a linear combination of vectors we mean a sum of scalar multiples of them, i.e., an
expression like that on the left side of (6). If we think of the three vectors as origin vectors
in three space, the geometric interpretation of (9) is

(10) three origin vectors in 3-space are dependent ⇔ they lie in the same plane.

For if they are dependent, say x3 = d1x1 + d2x2, then (thinking of them as
origin vectors) the parallelogram law for vector addition shows that x3 lies in the
plane of x1 and x2 — see the figure.

Conversely, the same figure shows that if the vectors lie in the same plane and
say x1 and x2 span the plane (i.e., don’t lie on a line), then by completing the
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parallelogram, x3 can be expressed as a linear combination of x1 and x2. (If they
all lie on a line, they are scalar multiples of each other and therefore dependent.)

x2

1x
d

d2 2x

1 1x

3x

Linear independence and determinants. We can use (10) to see that

(11) the rows of a 3× 3 matrix A are dependent ⇔ detA = 0.

Proof. If we denote the rows by a1,a2, and a3, then from 18.02,

volume of the parallelepiped
spanned by a1, a2, a3

= a1 · (a2 × a3) = detA,

so that
a1, a2, a3 lie in a plane ⇔ detA = 0.

The above statement (11) generalizes to an n × n matrix A ; we rephrase it in the
statement below by changing both sides to their negatives. (We will not prove it, however.)

Determinantal criterion for linear independence

Let a1, . . . ,an be n-vectors, and A the square matrix having these vectors for its rows
(or columns). Then

(12) a1, . . . ,an are linearly independent ⇔ detA 6= 0.

Remark. The theorem on square homogeneous systems (5) follows from the criterion (12),
for if we let x be the column vector of n variables, and A the matrix whose columns are
a1, . . . ,an, then

(13) Ax = (a1 . . . an)





x1

...
xn



 = a1x1 + . . .+ anxn

and therefore

Ax = 0 has only the solution x = 0

⇔ a1x1 + . . .+ anxn = 0 has only the solution x = 0, by (13);

⇔ a1, . . . ,an are linearly independent, by (7);

⇔ detA 6= 0, by the criterion (12).

Exercises: Section 4A



LS.2 Homogeneous Linear
Systems with Constant Coefficients

1. Using matrices to solve linear systems.

The naive way to solve a linear system of ODE’s with constant coefficients is by elimi-
nating variables, so as to change it into a single higher-order equation. For instance, if

(1)
x′ = x+ 3y

y′ = x− y

we can eliminate x by solving the second equation for x, getting x = y+ y′, then replacing
x everywhere by y + y′ in the first equation. This gives

y′′ − 4y = 0 ;

the characteristic equation is (r − 2)(r + 2) = 0, so the general solution for y is

y = c1e
2t + c2e

−2t .

From this we get x from the equation x = y + y′ originally used to eliminate x; the whole
solution to the system is then

(2)
x = 3c1e

2t − c2e
−2t

y = c1e
2t + c2e

−2t .

We now want to introduce linear algebra and matrices into the study of systems like the
one above. Our first task is to see how the above equations look when written using matrices
and matrix multiplication.

When we do this, the system (1) and its general solution (2) take the forms

(4)

(

x′

y′

)

=

(

1 3
1 −1

)(

x

y

)

,

(5)

(

x

y

)

=

(

3c1e
2t − c2e

−2t

c1e
2t + c2e

−2t

)

= c1

(

3
1

)

e2t + c2

(

−1
1

)

e−2t .

Study the above until it is clear to you how the matrices and column vectors are being
used to write the system (1) and its solution (2). Note that when we multiply the column
vectors by scalars or scalar functions, it does not matter whether we write them behind or
in front of the column vector; the way it is written above on the right of (5) is the one
usually used, since it is easiest to read and interpret.

We are now going to show a new method of solving the system (1), which makes use of
the matrix form (4) for writing it. We begin by noting from (5) that two particular solutions
to the system (4) are

(6)

(

3
1

)

e2t and

(

−1
1

)

e−2t .

Based on this, our new method is to look for solutions to (4) of the form
6
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(7)

(

x

y

)

=

(

a1
a2

)

eλt ,

where a1, a2 and λ are unknown constants. We substitute (7) into the system (4) to deter-
mine what these unknown constants should be. This gives

(8)

(

a1
a2

)

λ eλt =

(

1 3
1 −1

)(

a1
a2

)

eλt .

We can cancel the factor eλt from both sides, getting

(9) λ

(

a1
a2

)

=

(

1 3
1 −1

)(

a1
a2

)

.

We have to solve the matrix equation (9) for the three constants. It is not very clear how
to do this. When faced with equations in unfamiliar notation, a reasonable strategy is to
rewrite them in more familiar notation. If we try this, (9) becomes the pair of equations

(10)
λa1 = a1 + 3a2

λa2 = a1 − a2 .

Technically speaking, these are a pair of non-linear equations in three variables. The trick
in solving them is to look at them as a pair of linear equations in the unknowns ai, with λ

viewed as a parameter. If we think of them this way, it immediately suggests writing them
in standard form

(11)
(1− λ)a1 + 3a2 = 0

a1 + (−1− λ)a2 = 0 .

In this form, we recognize them as forming a square system of homogeneous linear equations.
According to the theorem on square systems (LS.1, (5)), they have a non-zero solution for
the a’s if and only if the determinant of coefficients is zero:

(12)

∣

∣

∣

∣

1− λ 3
1 −1− λ

∣

∣

∣

∣

= 0 ,

which after calculation of the determinant becomes the equation

(13) λ2 − 4 = 0 .

The roots of this equation are 2 and −2; what the argument shows is that the equations
(10) or (11) (and therefore also (8)) have non-trivial solutions for the a’s exactly when λ = 2
or λ = −2.

To complete the work, we see that for these values of the parameter λ, the system (11)
becomes respectively

−a1 + 3a2 = 0 3a1 + 3a2 = 0

a1 − 3a2 = 0 a1 + a2 = 0(14)

(for λ =2) (for λ =− 2)

It is of course no accident that in each case the two equations of the system become
dependent, i.e., one is a constant multiple of the other. If this were not so, the two equations
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would have only the trivial solution (0, 0). All of our effort has been to locate the two values
of λ for which this will not be so. The dependency of the two equations is thus a check on
the correctness of the value of λ.

To conclude, we solve the two systems in (14). This is best done by assigning the value
1 to one of the unknowns, and solving for the other. We get

(15)

(

a1
a2

)

=

(

3
1

)

for λ = 2 ;

(

a1
a2

)

=

(

1
−1

)

for λ = −2 ,

which thus gives us, in view of (7), essentially the two solutions (6) we had found previously
by the method of elimination. Note that the solutions (6) could be multiplied by an arbitrary
non-zero constant without changing the validity of the general solution (5); this corresponds
in the new method to selecting an arbitrary value of one of the a’s, and then solving for the
other value.

One final point before we discuss this method in general. Is there some way of passing
from (9) (the point at which we were temporarily stuck) to (11) or (12) by using matrices,
without writing out the equations separately? The temptation in (9) is to try to combine the
two column vectors a by subtraction, but this is impossible as the matrix equation stands.
If we rewrite it however as

(9′)

(

λ 0
0 λ

)(

a1
a2

)

=

(

1 3
1 −1

)(

a1
a2

)

,

it now makes sense to subtract the left side from the right; using the distributive law for
matrix multiplication, the matrix equation (9′) then becomes

(11′)

(

1− λ 3
1 −1− λ

)(

a1
a2

)

=

(

0
0

)

,

which is just the matrix form for (11). Now if we apply the theorem on square homogeneous
systems, we see that (11′) has a nontrivial solution for the a if and only if its coefficient
determinant is zero, and this is precisely (12). The trick therefore was in (9) to replace the
scalar λ by the diagonal matrix λ I .

2. Eigenvalues and eigenvectors.

With the experience of the preceding example behind us, we are now ready to consider
the general case of a homogeneous linear 2× 2 system of ODE’s with constant coefficients:

(16)
x′ = ax+ by

y′ = cx+ dy ,

where the a, b, c, d are constants. We write this system in matrix form as

(17)

(

x′

y′

)

=

(

a b

c d

)(

x

y

)

.

We look for solutions to (17) having the form

(18)

(

x

y

)

=

(

a1
a2

)

eλt =

(

a1e
λt

a2e
λt

)

,
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where a1, a2, and λ are unkinown constants. We substitute (18) into the system (17) to
determine these unknown constants. Since D(aeλt) = λaeλt, we arrive at

(19) λ

(

a1
a2

)

eλt =

(

a b

c d

)(

a1
a2

)

eλt .

We can cancel the factor eλt from both sides, getting

(20) λ

(

a1
a2

)

=

(

a b

c d

)(

a1
a2

)

.

As the equation (20) stands, we cannot combine the two sides by subtraction, since the
scalar λ cannot be subtracted from the square matrix on the right. As in the previously
worked example however (9′), the trick is to replace the scalar λ by the diagonal matrix λI;
then (20) becomes

(21)

(

λ 0
0 λ

)(

a1
a2

)

=

(

a b

c d

)(

a1
a2

)

.

If we now proceed as we did in the example, subtracting the left side of (6) from the right
side and using the distributive law for matrix addition and multiplication, we get a 2 × 2
homogeneous linear system of equations:

(22)

(

a− λ b

c d− λ

)(

a1
a2

)

=

(

0
0

)

.

Written out without using matrices, the equations are

(23)
(a− λ)a1 + ba2 = 0

ca1 + (d− λ)a2 = 0 .

According to the theorem on square homogeneous systems, this system has a non-zero
solution for the a’s if and only if the determinant of the coefficients is zero:

(24)

∣

∣

∣

∣

a− λ b

c d− λ

∣

∣

∣

∣

= 0 .

The equation (24) is a quadratic equation in λ, evaluating the determinant, we see that it
can be written

(25) λ2 − (a+ d)λ+ (ad− bc) = 0 .

Definition. The equation (24) or (25) is called the characteristic equation of the matrix

(26) A =

(

a b

c d

)

.

Its roots λ1 and λ2 are called the eigenvalues or characteristic values of the matrix A.

There are now various cases to consider, according to whether the eigenvalues of the
matrix A are two distinct real numbers, a single repeated real number, or a pair of conjugate
complex numbers. We begin with the first case: we assume for the rest of this chapter that

the eigenvalues are two distinct real numbers λ1 and λ2.
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To complete our work, we have to find the solutions to the system (23) corresponding to
the eigenvalues λ1 and λ2. Formally, the systems become

(27)
(a− λ1)a1 + ba2 = 0

ca1 + (d− λ1)a2 = 0

(a− λ2)a1 + ba2 = 0

ca1 + (d− λ2)a2 = 0

The solutions to these two systems are column vectors, for which we will use Greek letters
rather than boldface.

Definition. The respective solutions a = ~α1 and a = ~α2 to the systems (27) are called the
eigenvectors (or characteristic vectors) corresponding to the eigenvalues λ1 and λ2.

If the work has been done correctly, in each of the two systems in (27), the two equations
will be dependent, i.e., one will be a constant multiple of the other. Namely, the two values
of λ have been selected so that in each case the coefficient determinant of the system will be
zero, which means the equations will be dependent. The solution ~α is determined only up
to an arbitrary non-zero constant factor. A convenient way of finding the eigenvector ~α is
to assign the value 1 to one of the ai, then use the equation to solve for the corresponding
value of the other ai.

Once the eigenvalues and their corresponding eigenvectors have been found, we have two
independent solutions to the system (16); According to (19), they are

(28) x1 = ~α1e
λ1t, x2 = ~α2e

λ2t, where xi =

(

xi

yi

)

.

Then the general solution to the system (16) is

(29) x = c1x1 + c2x2 = c1~α1e
λ1t + c2~α2e

λ2t .

At this point, you should stop and work another example, like the one we did earlier.
Try 5.4 Example 1 in your book; work it out yourself, using the book’s solution to check
your work. Note that the book uses v instead of ~α for an eigenvector, and vi or a, b instead
of ai for its components.

We are still not done with the general case; without changing any of the preceding work,
you still need to see how it appears when written out using an even more abridged notation.
Once you get used to it (and it is important to do so), the compact notation makes the
essential ideas stand out very clearly.

As before, we let A denote the matrix of constants, as in (26). Below, on the left side of
each line, we will give the compact matrix notation, and on the right, the expanded version.
The equation numbers are the same as the ones above.

We start with the system (16), written in matrix form, with A as in (26):

x′ = Ax

(

x′

y′

)

=

(

a b

c d

)(

x

y

)

.(17′)

We use as the trial solution

x = a eλt
(

x

y

)

=

(

a1
a2

)

eλt.(18′)
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We substitute this expression for x into the system (17′), using x′ = λaeλt:

λa eλt = Aa eλt λ

(

a1
a2

)

eλt =

(

a b

c d

)(

a1
a2

)

eλt .(19′)

Cancel the exponential factor from both sides, and replace λ by λI, where I is the identity
matrix:

λIa = Aa

(

λ 0
0 λ

)(

a1
a2

)

=

(

a b

c d

)(

a1
a2

)

.(21′)

Subtract the left side from the right and combine terms, getting

(A− λI)a = 0

(

a− λ b

c d− λ

)(

a1
a2

)

=

(

0
0

)

.(22′)

This square homogeneous system has a non-trivial solution if and only if the coefficient
determinant is zero:

|A− λI| = 0

∣

∣

∣

∣

a− λ b

c d− λ

∣

∣

∣

∣

= 0 .(24′)

Definition. Let A be a square matrix of constants, Then by definition

(i) |A− λ I| = 0 is the characteristic equation of A ;

(ii) its roots λi are the eigenvalues (or characteristic values) of A ;

(iii) for each eigenvalue λi, the corresonding solution ~αi to (22′) is the eigenvector (or
characteristic vector) associated with λi .

If the eigenvalues are distinct and real, as we are assuming in this chapter, we obtain in
this way two independent solutions to the system (17′):

(28) x1 = ~α1e
λ1t, x2 = ~α2e

λ2t, where xi =

(

xi

yi

)

.

Then the general solution to the system (16) is

(29) x = c1x1 + c2x2 = c1~α1e
λ1t + c2~α2e

λ2t .

The matrix notation on the left above in (17′) to (24′) is compact to write, makes the
derivation look simpler. Moreover, when written in matrix notation, the derivation applies

to square systems of any size: n × n just as well as 2 × 2. This goes for the subsequent
definition as well: it defines characteristic equation, eigenvalue and associated eigenvector

for a square matrix of any size.

The chief disadvantage of the matrix notation on the left is that for beginners it is very
abridged. Practice writing the sequence of matrix equations so you get some skill in using
the notation. Until you acquire some confidence, keep referring to the written-out form on
the right above, so you are sure you understand what the abridged form is actually saying.

Since in the compact notation, the definitions and derivations are valid for square systems
of any size, you now know for example how to solve a 3 × 3 system, if its eigenvalues turn
out to be real and distinct; 5.4 Example 2 in your book is such a system. First however
read the following remarks which are meant to be helpful in doing calculations: remember
and use them.
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Remark 1. Calculating the characteristic equation.

If A =

(

a b

c d

)

, its characteristic equation is given by (cf. (24) and (25)):

(30)

∣

∣

∣

∣

a− λ b

c d− λ

∣

∣

∣

∣

= 0, or λ2 − (a+ d)λ+ (ad− bc) = 0 .

Since you will be calculating the characteristic equation frequently, learn to do it using the
second form given in (30). The two coefficients have analogs for any square matrix:

ad− bc = detA a+ d = tr A (trace A)

where the trace of a square matrix A is the sum of the elements on the main diagonal.
Using this, the characteristic equation (30) for a 2× 2 matrix A can be written

(31) λ2 − (trA)λ+ detA = 0 .

In this form, the characteristic equation of A can be written down by inspection; you
don’t need the intermediate step of writing down |A− λI| = 0. For an n× n matrix, the
characteristic equation reads in part (watch the signs!)

(32) |A− λI| = (−λ)n + trA(−λ)n−1 + . . .+ detA = 0 .

In one of the exercises you are asked to derive the two coefficients specified.

Equation (32) shows that the characteristic polynomial |A − λ I| of an n × n matrix
A is a polynomial of degree n, so that such a matrix has at most n real eigenvalues. The
trace and determinant of A give two of the coefficients of the polynomial. Even for n = 3
however this is not enough, and you will have to calculate the characteristic equation by
expanding out |A− λ I|. Nonetheless, (32) is still very valuable, as it enables you to get an
independent check on your work. Use it whenever n > 2.

Remark 2. Calculating the eigenvectors.

This is a matter of solving a homogeneous system of linear equations (22′).

For n = 2, there will be just one equation (the other will be a multiple of it); give one of
the ai’s the value 1 (or any other convenient non-zero value), and solve for the other ai.

For n = 3, two of the equations will usually be independent (i.e., neither a multiple of
the other). Using just these two equations, give one of the a’s a convenient value (say 1),
and solve for the other two a’s. (The case where the three equations are all multiples of a
single one occurs less often and will be dealt with later.)

Remark 3. Normal modes.

When the eigenvalues of A are all real and distinct, the corresponding solutions (28)

xi = ~αie
λit, i = 1, . . . , n,

are usually called the normal modes in science and engineering applications. They often have
physical interpretations, which sometimes makes it possible to find them just by inspection
of the physical problem. The exercises will illustrate this.

Exercises: Section 4C



LS.3 Complex and Repeated Eigenvalues

1. Complex eigenvalues.

In the previous chapter, we obtained the solutions to a homogeneous linear system with
constant coefficients

Ax = 0

under the assumption that the roots of its characteristic equation |A− λI| = 0 — i.e., the
eigenvalues of A — were real and distinct.

In this section we consider what to do if there are complex eigenvalues. Since the chan-
racteristic equation has real coefficients, its complex roots must occur in conjugate pairs:

λ = a+ bi, λ̄ = a− bi .

Let’s start with the eigenvalue a + bi. According to the solution method described in
Chapter LS.2, the next step would be to find the corresponding eigenvector ~α, by solving
the equations (LS.2, (27))

(a− λ)a1 + ba2 = 0

ca1 + (d− λ)a2 = 0

for its components a1 and a2. Since λ is complex, the ai will also be complex, and therefore
the eigenvector ~α corresponding to λ will have complex components.

Putting together the eigenvalue and eigenvector gives us formally the complex solution

(1) x = ~α e(a+bi)t .

Naturally, we want real solutions to the system, since it was real to start with. To get
them, the following theorem tells us to just take the real and imaginary parts of (1).

Theorem 3.1 Given a system x′ = Ax, where A is a real matrix. If x = x1 + ix2 is a

complex solution, then its real and imaginary parts x1,x2 are also solutions to the system.

Proof. Since x1 + ix2 is a solution, we have

(x+ ix2)
′ = A (x+ ix2) ;

equating real and imaginary parts of this equation,

x′

1 = Ax1 , x′

2 = Ax2 ,

which shows that the real vectors x1 and x2 are solutions to x′ = Ax . �

Example 1. Find the corresponding two real solutions to x′ = Ax if a complex eigenvalue
and corresponding eigenvector are

λ = −1 + 2i , ~α =

(

i

2− 2i

)

.

Solution. First write ~α in terms of its real and imaginary parts:

~α =

(

0
2

)

+ i

(

1
−2

)

.

13
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The corresponding complex solution x = ~α eλt to the system can then be written

x =

((

0
2

)

+ i

(

1
−2

))

e−t
(

cos 2t+ i sin 2t
)

,

so that we get respectively for the real and imaginary parts of x

x1 = e−t

((

0
2

)

cos 2t− i

(

1
−2

)

sin 2t

)

= e−t

(

− sin 2t
2 cos 2t+ 2 sin 2t

)

,

x2 = e−t

((

1
−2

)

cos 2t− i

(

0
2

)

sin 2t

)

= e−t

(

− cos 2t
−2 cos 2t+ 2 sin 2t

)

;

these are the two real solutions to the system. �

In general, if the complex eigenvalue is a+ bi, to get the real solutions to the system, we
write the corresponding complex eigenvector ~α in terms of its real and imaginary part:

~α = ~α1 + i ~α2, ~αi real vectors;

(study carefully in the above example how this is done in practice). Then we substitute into
(1) and calculate as in the example:

x = (~α1 + i~α2) e
at(cos bt+ i sin bt),

so that the real and imaginary parts of x give respectively the two real solutions

(3)
x1 = eat(~α1 cos bt− ~α2 sin bt) ,

x2 = eat(~α1 sin bt+ ~α2 cos bt) .

These solutions are linearly independent if n = 2. If n > 2, that portion of the general
solution corresonding to the eigenvalues a± bi will be

c1x1 + c2x2 .

Note that, as for second-order ODE’s, the complex conjugate eigenvalue a− bi

gives up to sign the same two solutions x1 and x2.
The expression (3) was not written down for you to memorize, learn, or even

use; the point was just for you to get some practice in seeing how a calculation
like that in Example 1 looks when written out in general. To actually solve ODE
systems having complex eigenvalues, imitate the procedure in Example 1.

Stop at this point, and practice on an example (try Example 3, p. 377).

2. Repeated eigenvalues. Again we start with the real n× n system

(4) x′ = Ax .

We say an eigenvalue λ1 of A is repeated if it is a multiple root of the characteristic
equation of A—in other words, the characteristic polynomial |A− λI| has (λ− λ1)

2 as a
factor. Let’s suppose that λ1 is a double root; then we need to find two linearly independent
solutions to the system (4) corresponding to λ1.

One solution we can get: we find in the usual way an eigenvector ~α1 corresponding to
λ1 by solving the system

(5) (A− λ1I)a = 0 .

This gives the solution x1 = ~α1e
λ1t to the system (4). Our problem is to find a second

solution. To do this we have to distinguish two cases. The first one is easy.
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A. The complete case.

Still assuming λ1 is a real double root of the characteristic equation of A, we say λ1

is a complete eigenvalue if there are two linearly independent eigenvectors ~α1 and ~α2

corresponding to λ1; i.e., if these two vectors are two linearly independent solutions to the
system (5). Using them we get two independent solutions to (4), namely

(6) x1 = ~α1e
λ1t, and x2 = ~α2e

λ1t .

Naturally we would like to see an example of this for n = 2, but the following theorem
explains why there aren’t any good examples: if the matrix A has a repeated eigenvalue, it
is so simple that no one would solve the system (4) by fussing with eigenvectors!

Theorem 3.2 Let A be a 2× 2 matrix and λ1 an eigenvalue. Then

λ1 is repeated and complete ⇔ A =

(

λ1 0
0 λ1

)

Proof. Let ~α1 and ~α2 be two independent solutions to (5). Then any 2-vector ~α is a
solution to (5), for by using the parallelogram law of addition, ~α can be written in the form

~α = c1~α1 + c2~α2 ,

and this shows it is a solution to (5), since ~α1 and ~α2 are:

(A− λ1I)~α = c1(A− λ1I)~α1 + c2(A− λ1I)~α2 = 0 + 0 .

In particular, the vectors

(

1
0

)

and

(

0
1

)

satisfy (5); letting A =

(

a b

c d

)

,

(

a− λ1 b

c d− λ1

)(

1
0

)

=

(

0
0

)

⇒

{

a = λ1

c = 0
;

(

a− λ1 b

c d− λ1

)(

0
1

)

=

(

0
0

)

⇒

{

b = 0

d = λ1
.

This proves the theorem in the direction ⇒; in the other direction, one sees immediately
that the characteristic polynomial is (λ − λ1)

2, so that λ1 is a repeated eigenvalue; it is
complete since the matrix A− λ1I has 0 for all its entries, and therefore every 2-vector ~α is
a solution to (5).

For n = 3 the situation is more interesting. Still assuming λ1 is a double root of the
characteristic equation, it will be a complete eigenvalue when the system (5) has two inde-
pendent solutions; this will happen when the system (5) has essentially only one equation:
the other two equations are constant multiples of it (or identically 0). You can then find
two independent solutions to the system just by inspection.

Example 2. If the system (5) turns out to be three equations, each of which is a constant
multiple of say

2a1 − a2 + a3 = 0 ,

we can give a1 and a2 arbitrary values, and then a3 will be determined by the above equation.
Hence two independent solutions (eigenvectors) would be the column 3-vectors

(1, 0, 2)T and (0, 1, 1)T .

In general, if an eigenvalue λ1 of A is k-tuply repeated, meaning the polynomial A−λI has
the power (λ− λ1)

k as a factor, but no higher power, the eigenvalue is called complete if it
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has k independent associated eigenvectors, i.e., if the system (5) has k linearly independent
solutions. These then produce k solutions to the ODE system (4).

There is an important theorem in linear algebra (it usually comes at the very end of
a linear algebra course) which guarantees that all the eigenvalues of A will be complete,
regardless of what their multiplicity is:

Theorem 3.3 If the real square matrix A is symmetric, meaning AT = A, then all its

eigenvalues are real and complete.

B. The defective case.

If the eigenvalue λ is a double root of the characteristic equation, but the system (5)
has only one non-zero solution ~α1 (up to constant multiples), then the eigenvalue is said
to be incomplete or defective, and no second eigenvector exists. In this case, the second
solution to the system (4) has a different form. It is

(7) x = (~β + ~α1t)e
λ1t ,

where ~β is an unknown vector which must be found. This may be done by substituting
(7) into the system (4), and using the fact that ~α1 is an eigenvector, i.e., a solution to (5)

when λ = λ1. When this is done, we find that ~β must be a solution to the system

(8) (A− λ1I) ~β = ~α1 .

This is an inhomogeneous system of equations for determining β. It is guaranteed to have
a solution, provided that the eigenvalue λ1 really is defective.

Notice that (8) doesn’t look very solvable, because the matrix of coefficients
has determinant zero! So you won’t solve it by finding the inverse matrix or by
using Cramer’s rule. It has to be solved by elimination.

Some people do not bother with (7) or (8); when they encounter the defective case (at
least when n = 2), they give up on eigenvalues, and simply solve the original system (4) by
elimination.

Example. Try Example 2 (section 5.6) in your book; do it by using (7) and (8) above
to find β, then check your answer by instead using elimination to solve the ODE system.

Proof of (7) for n = 2. Let A be a 2× 2 matrix.

Since λ1 is to be a double root of the characteristic equation, that equation must be

(λ− λ1)
2 = 0, i.e., λ2 − 2λ1λ+ λ2

1 = 0.

From the known form of the characteristic equation (LS.2, (25)), we see that

trace A = 2λ1, detA = λ2
1.

A convenient way to write two numbers whose sum is 2λ1 is: λ1 ± a; doing this, we see
that our matrix A takes the form

(9) A =

(

λ1 + a b

c λ1 − a

)

, where bc = −a2, (since detA = λ2
1).
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Now calculate the eigenvectors of such a matrix A. Note that b and c are not both zero,
for if they were, a = 0 by (9), and the eigenvalue would be complete. If say b 6= 0, we may
choose as the eigenvector

~α1 =

(

b

−a

)

,

and then by (8), we get

β =

(

0
1

)

.

Exercises: Section 4D



LS.4 Decoupling Systems

1. Changing variables.

A common way of handling mathematical models of scientific or engineering problems is
to look for a change of coordinates or a change of variables which simplifies the problem. We
handled some types of first-order ODE’s — the Bernouilli equation and the homogeneous
equation, for instance — by making a change of dependent variable which converted them
into equations we already knew how to solve. Another example would be the use of polar
or spherical coordinates when a problem has a center of symmetry.

An example from physics is the description of the acceleration of a particle moving in
the plane: to get insight into the acceleration vector, a new coordinate system is introduced
whose basis vectors are t and n (the unit tangent and normal to the motion), with the result
that F = ma becomes simpler to handle.

We are going to do something like that here. Starting with a homogeneous linear system
with constant coefficients, we want to make a linear change of coordinates which simplifies
the system. We will work with n = 2, though what we say will be true for n > 2 also.

How would a simple system look? The simplest system is one with a diagonal matrix:
written first in matrix form and then in equation form, it is

(1)

(

u

v

)

′

=

(

λ1 0
0 λ2

)(

u

v

)

, or
u′ = λ1u

v′ = λ2v
.

As you can see, if the coefficient matrix has only diagonal entries, the resulting “system”
really consists of a set of first-order ODE’s, side-by-side as it were, each involving only its
own variable. Such a system is said to be decoupled since the variables do not interact with
each other; each variable can be solved for independently, without knowing anything about
the others. Thus, solving the system on the right of (1) gives

(2)
u = c1e

λ1t

v = c2e
λ2t

, or u = c1

(

1
0

)

eλ1t + c2

(

0
1

)

eλ2t.

So we start with a 2× 2 homogeneous system with constant coefficients,

(3) x′ = Ax ,

and we want to introduce new dependent variables u and v, related to x and y by a linear
change of coordinates, i.e., one of the form (we write it three ways):

(4) u = D x ,

(

u

v

)

=

(

a b

c d

)(

x

y

)

,
u = ax+ by

v = cx+ dy
.

We call D the decoupling matrix. After the change of variables, we want the system to
be decoupled, i.e., to look like the system (1). What should we choose as D?

The matrix D will define the new variables u and v in terms of the old ones x and y.
But in order to substitute into the system (3), it is really the inverse to D that we need;
we shall denote it by E :

17
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(5) u = D x, x = E u , E = D−1 .

In the decoupling, we first produce E ; then D is calculated as its inverse. We need
both matrices: D to define the new variables, E to do the substitutions.

We are now going to assume that the ODE system x′ = Ax has two real and distinct

eigenvalues; with their associated eigenvectors, they are denoted as usual in these notes by

(6) λ1, ~α1 =

(

a1
b1

)

; λ2, ~α2 =

(

a2
b2

)

.

The idea now is the following. Since these eigenvectors are somehow “special” to the
system, let us choose the new coordinates so that the eigenvectors become the unit vectors
i and j in the uv-system. To do this, we make the eigenvectors the two columns of the
matrix E ; that is, we make the change of coordinates

(7)

(

x

y

)

=

(

a1 a2
b1 b2

)(

u

v

)

, E =

(

a1 a2
b1 b2

)

.

With this choice for the matrix E,

i =

(

1
0

)

and j =

(

0
1

)

in the uv-system correspond in the xy-system respectively to the first and second columns
of E, as you can see from (7).

We now have to show that this change to the uv-system decouples the ODE system
x′ = Ax . This rests on the following very important equation connecting a matrix A, one
of its eigenvalues λ, and a corresponding eigenvector ~α:

(8) A ~α = λ ~α ,

which follows immediately from the equation used to calculate the eigenvector:

(A− λI) ~α = 0 ⇒ A ~α = (λI) ~α = λ(I ~α) = λ ~α .

The equation (8) is often used as the definition of eigenvector and eigenvalue: an
eigenvector of A is a vector which changes by some scalar factor λ when multiplied
by A; the factor λ is the eigenvalue associated with the vector.

As it stands, (8) deals with only one eigenvector at a time. We recast it into the standard
form in which it deals with both eigenvectors simultaneously. Namely, (8) says that

A

(

a1
b1

)

= λ1

(

a1
b1

)

, A

(

a2
b2

)

= λ2

(

a2
b2

)

.

These two equations can be combined into the single matrix equation

(9) A

(

a1 a2
b1 b2

)

=

(

a1 a2
b1 b2

)(

λ1 0
0 λ2

)

, or AE = E

(

λ1 0
0 λ2

)

,

as is easily checked. Note that the diagonal matrix of λ’s must be placed on the right in
order to multiply the columns by the λ’s; if we had placed it on the left, it would have
multiplied the rows by the λ’s, which is not what we wanted.
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From this point on, the rest is easy. We want to show that the change of variables
x = E u decouples the system x′ = Ax, where E is defined by (7). We have,
substituting x = E u into the system, the successive equations

x′ = Ax

E u′ = AE u

E u′ = E

(

λ1 0
0 λ2

)

u, by (9);

multiplying both sides on the left by D = E−1 then shows the system is decoupled:

u′ =

(

λ1 0
0 λ2

)

u .

Definition. For a matrix A with two real and distinct eigenvalues, the matrix E in (7)
whose columns are the eigenvectors of A is called an eigenvector matrix for A , and the
matrix D = E−1 is called the decoupling matrix for the system x′ = Ax; the new
variables u, v in (7) are called the canonical variables.

One can alter the matrices by switching the columns, or multiplying a column
by a non-zero scalar, with a corresponding alteration in the new variables; apart
from that, they are unique.

Example 1. For the system

x′ = x− y

y′ = 2x+ 4y

make a linear change of coordinates which decouples the system; verify by direct substitution
that the system becomes decoupled.

Solution. In matrix form the system is x′ = Ax, where A =

(

1 −1
2 4

)

.

We calculate first E, as defined by (7); for this we need the eigenvectors. The charac-
teristic polynomial of A is

λ2
− 5λ+ 6 = (λ− 2)(λ− 3) ;

the eigenvalues and corresponding eigenvectors are, by the usual calculation,

λ1 = 2, ~α1 =

(

1
−1

)

; λ2 = 3, ~α2 =

(

1
−2

)

.

The matrix E has the eigenvectors as its columns; then D = E−1. We get (cf. LS.1, (2)
to calculate the inverse matrix to E)

E =

(

1 1
−1 −2

)

, D =

(

2 1
−1 −1

)

.

By (4), the new variables are defined by

u = D x ,
u = 2x+ y

v = −x− y .
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To substitute these into the system and check they they decouple we use

x = E u ,
x = u+ v

y = −u− 2v
.

Substituting these into the original system (on the left below) gives us the pair of equations
on the right:

x′ = x− y

y′ = 2x+ 4y

u′ + v′ = 2u+ 3v

−u′
− 2v′ = −2u− 6v

;

adding the equations eliminates u; multiplying the top equation by 2 and adding eliminates
v, giving the system

u′ = 2u

v′ = 3v

which shows that in the new coordinates the system is decoupled.

The work up to this point assumes that n = 2 and the eigenvalues are real and distinct.
What if this is not so?

If the eigenvalues are complex, the corresponding eigenvectors will also be complex, i.e.,
have complex components. All of the above remains formally true, provided we allow all the
matrices to have complex entries. This means the new variables u and v will be expressed
in terms of x and y using complex coefficients, and the decoupled system will have complex
coefficients.

In some branches of science and engineering, this is all perfectly acceptable, and one gets
in this way a complex decoupling. If one insists on using real variables only, a decoupling is
not possible.

If there is only one (repeated) eigenvalue, there are two cases, as discussed in LS.3 . In the
complete case, there are two independent eigenvalues, but as pointed out there (Theorem
3.2), the system will be be automatically decoupled, i.e. A will be a diagonal matrix. In
the incomplete case, there is only one eigenvector, and decoupling is impossible (since in
the decoupled system, both i and j would be eigenvectors).

For n ≥ 3, real decoupling requires us to find n linearly independent real eigenvectors, to
form the columns of the nonsingular matrix E. This is possible if

a) all the eigenvalues are real and distinct, or

b) all the eigenvalues are real, and each repeated eigenvalue is complete.

Repeating the end of LS.3, we note again the important theorem in linear algebra which
guarantees decoupling is possible:

Theorem. If the matrix A is real and symmetric, i.e., AT = A, all its eigenvalues will be
real and complete, so that the system x′ = Ax can always be decoupled.

Exercises: Section 4E



LS.5 Theory of Linear Systems

1. General linear ODE systems and independent solutions.

We have studied the homogeneous system of ODE’s with constant coefficients,

(1) x′ = Ax ,

where A is an n × n matrix of constants (n = 2, 3). We described how to calculate the
eigenvalues and corresponding eigenvectors for the matrix A, and how to use them to find
n independent solutions to the system (1).

With this concrete experience solving low-order systems with constant coefficients, what
can be said in general when the coefficients are not constant, but functions of the independent
variable t? We can still write the linear system in the matrix form (1), but now the matrix
entries will be functions of t:

(2)
x′ = a(t)x+ b(t)y

y′ = c(t)x+ d(t)y
,

(

x

y

)

′

=

(

a(t) b(t)
c(t) d(t)

)(

x

y

)

,

or in more abridged notation, valid for n× n linear homogeneous systems,

(3) x′ = A(t)x .

Note how the matrix becomes a function of t — we call it a “matrix-valued func-
tion” of t, since to each value of t the function rule assigns a matrix:

t0 → A(t0) =

(

a(t0) b(t0)
c(t0) d(t0)

)

In the rest of this chapter we will often not write the variable t explicitly, but it
is always understood that the matrix entries are functions of t.

We will sometimes use n = 2 or 3 in the statements and examples in order
to simplify the exposition, but the definitions, results, and the arguments which
prove them are essentially the same for higher values of n.

Definition 5.1 Solutions x1(t), . . . ,xn(t) to (3) are called linearly dependent if there
are constants ci, not all of which are 0, such that

(4) c1x1(t) + . . .+ cnxn(t) = 0, for all t.

If there is no such relation, i.e., if

(5) c1x1(t) + . . .+ cnxn(t) = 0 for all t ⇒ all ci = 0,

the solutions are called linearly independent, or simply independent.

The phrase “for all t” is often in practice omitted, as being understood. This
can lead to ambiguity; to avoid it, we will use the symbol ≡ 0 for identically 0,
meaning: “zero for all t”; the symbol 6≡ 0 means “not identically 0”, i.e., there is
some t-value for which it is not zero. For example, (4) would be written

21
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c1x1(t) + . . .+ cnxn(t) ≡ 0 .

Theorem 5.1 If x1, . . . ,xn is a linearly independent set of solutions to the n×n system

x′ = A(t)x, then the general solution to the system is

(6) x = c1x1 + . . .+ cnxn

Such a linearly independent set is called a fundamental set of solutions.

This theorem is the reason for expending so much effort in LS.2 and LS.3 on
finding two independent solutions, when n = 2 and A is a constant matrix. In
this chapter, the matrix A is not constant; nevertheless, (6) is still true.

Proof. There are two things to prove:

(a) All vector functions of the form (6) really are solutions to x′ = Ax.

This is the superposition principle for solutions of the system; it’s true because the system
is linear. The matrix notation makes it really easy to prove. We have

(c1x1 + . . .+ cnxn)
′ = c1x

′

1
+ . . .+ cnx

′

n

= c1Ax1 + . . .+ cnAxn, since x′

i
= Axi ;

= A (c1x1 + . . .+ cnxn), by the distributive law (see LS.1).

(b) All solutions to the system are of the form (6).

This is harder to prove, and will be the main result of the next section.

2. The existence and uniqueness theorem for linear systems.

For simplicity, we stick with n = 2, but the results here are true for all n. There are two
questions that need answering about the general linear system

(2)
x′ = a(t)x+ b(t)y

y′ = c(t)x+ d(t)y
; in matrix form,

(

x

y

)

′

=

(

a(t) b(t)
c(t) d(t)

)(

x

y

)

.

The first is from the previous section: to show that all solutions are of the form

x = c1x1 + x2x2,

where the xi form a fundamental set (i.e., neither is a constant multiple of the other). (The
fact that we can write down all solutions to a linear system in this way is one of the main
reasons why such systems are so important.)

An even more basic question for the system (2) is, how do we know that has two linearly
independent solutions? For systems with a constant coefficient matrix A, we showed in the
previous chapters how to solve them explicitly to get two independent solutions. But the
general non-constant linear system (2) does not have solutions given by explicit formulas or
procedures.

The answers to these questions are based on following theorem.

Theorem 5.2 Existence and uniqueness theorem for linear systems.
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If the entries of the square matrix A(t) are continuous on an open interval I containing
t0, then the initial value problem

(7) x′ = A(t)x, x(t0) = x0

has one and only one solution x(t) on the interval I.

The proof is difficult, and we shall not attempt it. More important is to see how it is
used. The three theorems following answer the questions posed, for the 2 × 2 system (2).
They are true for n > 2 as well, and the proofs are analogous.

In the theorems, we assume the entries of A(t) are continuous on an open interval I;
then the conclusions are valid on the interval I. (For example, I could be the whole t-axis.)

Theorem 5.2A Linear independence theorem.

Let x1(t) and x2(t) be two solutions to (2) on the interval I, such that at some point t0
in I, the vectors x1(t0) and x2(t0) are linearly independent. Then

a) the solutions x1(t) and x2(t) are linearly independent on I, and

b) the vectors x1(t1) and x2(t1) are linearly independent at every point t1 of I.

Proof. a) By contradiction. If they were dependent on I, one would be a constant multiple
of the other, say x2(t) = c1x1(t); then x2(t0) = c1x1(t0), showing them dependent at t0. �

b) By contradiction. If there were a point t1 on I where they were dependent, say
x2(t1) = c1x1(t1), then x2(t) and c1x1(t) would be solutions to (2) which agreed at t1,
hence by the uniqueness statement in Theorem 5.2, x2(t) = c1x1(t) on all of I, showing
them linearly dependent on I. �

Theorem 5.2B General solution theorem.

a) The system (2) has two linearly independent solutions.

b) If x1(t) and x2(t) are any two linearly independent solutions, then every solution x

can be written in the form (8), for some choice of c1 and c2:

(8) x = c1x1 + c2x2;

Proof. Choose a point t = t0 in the interval I.

a) According to Theorem 5.2, there are two solutions x1, x2 to (3), satisfying respec-
tively the initial conditions

(9) x1(t0) = i , x2(t0) = j ,

where i and j are the usual unit vectors in the xy-plane. Since the two solutions are linearly
independent when t = t0, they are linearly independent on I, by Theorem 5.2A.

b) Let u(t) be a solution to (2) on I. Since x1 and x2 are independent at t0 by Theorem
5.2, using the parallelogram law of addition we can find constants c′

1
and c′

2
such that

(10) u(t0) = c′
1
x1(t0) + c′

2
x2(t0).

The vector equation (10) shows that the solutions u(t) and c′
1
x1(t) + c′

2
x2(t) agree at t0;

therefore by the uniqueness statement in Theorem 5.2, they are equal on all of I, that is,

u(t) = c′
1
x1(t) + c′

2
x2(t) on I.
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3. The Wronskian

We saw in chapter LS.1 that a standard way of testing whether a set of n n-vectors are
linearly independent is to see if the n× n determinant having them as its rows or columns
is non-zero. This is also an important method when the n-vectors are solutions to a system;
the determinant is given a special name. (Again, we will assume n = 2, but the definitions
and results generalize to any n.)

Definition 5.3 Let x1(t) and x2(t) be two 2-vector functions. We define their Wronskian

to be the determinant

(11) W (x1,x2)(t) =

∣

∣

∣

∣

x1(t) x2(t)
y1(t) y2(t)

∣

∣

∣

∣

whose columns are the two vector functions.

The independence of the two vector functions should be connected with their Wronskian
not being zero. At least for points, the relationship is clear; using the result mentioned
above, we can say

(12) W (x1,x2)(t0) =

∣

∣

∣

∣

x1(t0) x2(t0)
y1(t0) y2(t0)

∣

∣

∣

∣

= 0 ⇔ x1(t0) and x2(t0) are dependent.

However for vector functions, the relationship is clear-cut only when x1 and x2 are solutions
to a well-behaved ODE sysem (2). The theorem is:

Theorem 5.3 Wronskian vanishing theorem.

On an interval I where the entries of A(t) are continuous, let x1 and x2 be two
solutions to (2), and W (t) their Wronskian (11). Then either

a) W (t) ≡ 0 on I, and x1 and x2 are linearly dependent on I, or

b) W (t) is never 0 on I, and x1 and x2 are linearly independent on I.

Proof. Using (12), there are just two possibilities.

a) x1 and x2 are linearly dependent on I; say x2 = c1x1. In this case they are dependent
at each point of I, and W (t) ≡ 0 on I, by (12);

b) x1 and x2 are linearly independent on I, in which case by Theorem 5.2A they are
linearly independent at each point of I, and so W (t) is never zero on I, by (12). �

Exercises: Section 4E



LS.6 Solution Matrices

In the literature, solutions to linear systems often are expressed using square matrices
rather than vectors. You need to get used to the terminology. As before, we state the
definitions and results for a 2× 2 system, but they generalize immediately to n×n systems.

1. Fundamental matrices. We return to the system

(1) x′ = A(t)x ,

with the general solution

(2) x = c1x1(t) + c2x2(t) ,

where x1 and x2 are two independent solutions to (1), and c1 and c2 are arbitrary constants.

We form the matrix whose columns are the solutions x1 and x2:

(3) X(t) = (x1 x2 ) =

(
x1 x2

y1 y2

)
.

Since the solutions are linearly independent, we called them in LS.5 a fundamental set of
solutions, and therefore we call the matrix in (3) a fundamental matrix for the system (1).

Writing the general solution using X(t). As a first application of X(t), we can use it
to write the general solution (2) efficiently. For according to (2), it is

x = c1

(
x1

y1

)
+ c2

(
x2

y2

)
=

(
x1 x2

y1 y2

)(
c1
c2

)
,

which becomes using the fundamental matrix

(4) x = X(t) c where c =

(
c1
c2

)
, (general solution to (1)).

Note that the vector c must be written on the right, even though the c’s are usually
written on the left when they are the coefficients of the solutions xi.

Solving the IVP using X(t). We can now write down the solution to the IVP

(5) x′ = A(t)x , x(t0) = x0.

Starting from the general solution (4), we have to choose the c so that the initial condition
in (6) is satisfied. Substituting t0 into (5) gives us the matrix equation for c :

X(t0) c = x0 .

Since the determinant |X(t0)| is the value at t0 of the Wronskian of x1 amd x2, it is
non-zero since the two solutions are linearly independent (Theorem 5.2C). Therefore the
inverse matrix exists (by LS.1), and the matrix equation above can be solved for c:

c = X(t0)
−1x0 ;

using the above value of c in (4), the solution to the IVP (1) can now be written

(6) x = X(t)X(t0)
−1x0 .

25



26 18.03 NOTES: LS. LINEAR SYSTEMS

Note that when the solution is written in this form, it’s “obvious” that x(t0) = x0, i.e.,
that the initial condition in (5) is satisfied.

An equation for fundamental matrices We have been saying “a” rather than “the”
fundamental matrix since the system (1) doesn’t have a unique fundamental matrix: thare
are many different ways to pick two independent solutions of x′ = Ax to form the columns
of X. It is therefore useful to have a way of recognizing a fundamental matrix when you see
one. The following theorem is good for this; we’ll need it shortly.

Theorem 6.1 X(t) is a fundamental matrix for the system (1) if its determinant |X(t)|
is non-zero and it satisfies the matrix equation

(7) X ′ = AX ,

where X ′ means that each entry of X has been differentiated.

Proof. Since |X| 6≡ 0, its columns x1 and x2 are linearly independent, by section LS.5.
And writing X = (x1 x2 ) , (7) becomes, according to the rules for matrix multiplication,

(x′

1 x′

2 ) = A (x1 x2 ) = (Ax1 Ax2 ) ,

which shows that

x′

1 = Ax1 and x′

2 = Ax2 ;

this last line says that x1 and x2 are solutions to the system (1). �

2. The normalized fundamental matrix.

Is there a “best” choice for fundamental matrix?

There are two common choices, each with its advantages. If the ODE system has con-
stant coefficients, and its eigenvalues are real and distinct, then a natural choice for the
fundamental matrix would be the one whose columns are the normal modes — the solutions
of the form

xi = ~αie
λit , i = 1, 2.

There is another choice however which is suggested by (6) and which is particularly useful
in showing how the solution depends on the initial conditions. Suppose we pick X(t) so that

(8) X(t0) = I =

(
1 0
0 1

)
.

Referring to the definition (3), this means the solutions x1 and x2 are picked so

(8′) x1(t0) =

(
1
0

)
, x2(t0) =

(
0
1

)
.

Since the xi(t) are uniquely determined by these initial conditions, the fundamental matrix
X(t) satisfying (8) is also unique; we give it a name.

Definition 6.2 The unique matrix X̃t0(t) satisfying

(9) X̃ ′

t0
= AX̃t0 , X̃t0(t0) = I
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is called the normalized fundamental matrix at t0 for A.

For convenience in use, the definition uses Theorem 6.1 to guarantee X̃t0 will actually

be a fundamental matrix; the condition |X̃t0(t)| 6= 0 in Theorem 6.1 is satisfied, since the

definition implies |X̃t0(t0)| = 1.

To keep the notation simple, we will assume in the rest of this section that t0 = 0, as it

almost always is; then X̃0 is the normalized fundamental matrix. Since X̃0(0) = I, we get
from (6) the matrix form for the solution to an IVP:

(10) The solution to the IVP x′ = A(t)x, x(0) = x0 is x(t) = X̃0(t)x0.

Calculating X̃0. One way is to find the two solutions in (8′), and use them as the

columns of X̃0. This is fine if the two solutions can be determined by inspection.
If not, a simpler method is this: find any fundamental matrix X(t); then

(11) X̃0(t) = X(t)X(0)−1.

To verify this, we have to see that the matrix on the right of (11) satisfies the two con-
ditions in Definition 6.2. The second is trivial; the first is easy using the rule for matrix
differentiation:

If M = M(t) and B, C are constant matrices, then (BM)′ = BM ′, (MC)′ = M ′C,

from which we see that since X is a fundamental matrix,

(X(t)X(0)−1)′ = X(t)′X(0)−1 = AX(t)X(0)−1 = A(X(t)X(0)−1),

showing that X(t)X(0)−1 also satisfies the first condition in Definition 6.2. �

Example 6.2A Find the solution to the IVP: x′ =

(
0 1

−1 0

)
x , x(0) = x0 .

Solution Since the system is x′ = y, y′ = −x, we can find by inspection the fundamental
set of solutions satisfying (8′) :

x = cos t

y = − sin t
and

x = sin t

y = cos t
.

Thus by (10) the normalized fundamental matrix at 0 and solution to the IVP is

x = X̃ x0 =

(
cos t sin t

− sin t cos t

)(
x0

y0

)
= x0

(
cos t

− sin t

)
+ y0

(
sin t
cos t

)
.

Example 6.2B Give the normalized fundamental matrix at 0 for x′ =

(
1 3
1 −1

)
x .

Solution. This time the solutions (8′) cannot be obtained by inspection, so we use the
second method. We calculated the normal modes for this sytem at the beginning of LS.2;
using them as the columns of a fundamental matrix gives us

X(t) =

(
3e2t −e−2t

e2t e−2t

)
.
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Using (11) and the formula for calculating the inverse matrix given in LS.1, we get

X(0) =

(
3 −1
1 1

)
, X(0)−1 = 1

4

(
1 1

−1 3

)
,

so that

X̃(t) = 1
4

(
3e2t −e−2t

e2t e−2t

)(
1 1

−1 3

)
= 1

4

(
3e2t + e2t 3e2t − 3e−2t

e2t − e−2t e2t + 3e−2t

)
.

6.3 The Exponential matrix.

The work in the preceding section with fundamental matrices was valid for any linear
homogeneous square system of ODE’s,

x′ = A(t)x .

However, if the system has constant coefficients, i.e., the matrix A is a constant matrix,
the results are usually expressed by using the exponential matrix, which we now define.

Recall that if x is any real number, then

(12) ex = 1 + x+
x2

2!
+ . . .+

xn

n!
+ . . . .

Definition 6.3 Given an n× n constant matrix A , the exponential matrix eA is the
n× n matrix defined by

(13) eA = I +A+
A2

2!
+ . . .+

An

n!
+ . . . .

Each term on the right side of (13) is an n × n matrix; adding up the ij-th
entry of each of these matrices gives you an infinite series whose sum is the ij-th
entry of eA . (The series always converges.)

In the applications, an independent variable t is usually included:

(14) eAt = I +At+A2 t2

2!
+ . . .+An

tn

n!
+ . . . .

This is not a new definition, it’s just (13) above applied to the matrix At in which every
element of A has been multiplied by t, since for example

(At)2 = At ·At = A ·A · t2 = A2t2.

Try out (13) and (14) on these two examples; the first is worked out in your book
(Example 2, p. 417); the second is easy, since it is not an infinite series.

Example 6.3A Let A =

(
a 0
0 b

)
, show: eA =

(
ea 0
0 eb

)
; eAt =

(
eat 0
0 ebt

)

Example 6.3B Let A =

(
0 1
0 0

)
, show: eA =

(
1 1
0 1

)
; eAt =

(
1 t

0 1

)

What’s the point of the exponential matrix? The answer is given by the theorem below,
which says that the exponential matrix provides a royal road to the solution of a square
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system with constant coefficients: no eigenvectors, no eigenvalues, you just write down the
answer!

Theorem 6.3 Let A be a square constant matrix. Then

(15) (a) eAt = X̃0(t), the normalized fundamental matrix at 0;

(16) (b) the unique solution to the IVP x′ = Ax, x(0) = x0 is x = eAtx0.

Proof. Statement (16) follows immediately from (15), in view of (10).

We prove (15) is true, by using the description of a normalized fundamental matrix given
in Definition 6.2: letting X = eAt, we must show X ′ = AX and X(0) = I .

The second of these follows from substituting t = 0 into the infinite series definition (14)
for eAt.

To show X ′ = AX, we assume that we can differentiate the series (14) term-by-term;
then we have for the individual terms

d

dt
An

tn

n!
= An ·

tn−1

(n− 1)!
,

since An is a constant matrix. Differentiating (14) term-by-term then gives

(18)

dX

dt
=

d

dt
eAt = A+A2t+ . . .+An

tn−1

(n− 1)!
+ . . .

= AeAt = AX .

Calculation of eAt.

The main use of the exponential matrix is in (16) — writing down explicitly the solution
to an IVP. If eAt has to be actually calculated for a specific system, several techniques are
available.

a) In simple cases, it can be calculated directly as an infinite series of matrices.

b) It can always be calculated, according to Theorem 6.3, as the normalized fundamental

matrix X̃0(t), using (11): X̃0(t) = X(t)X(0)−1.

c) A third technique uses the exponential law

(19) e(B+C)t = eBteCt, valid if BC = CB.

To use it, one looks for constant matrices B and C such that

(20) A = B + C, BC = CB, eBt and eCt are computable;

then

(21) eAt = eB teC t.

Example 6.3C Let A =

(
2 1
0 2

)
. Solve x′ = Ax, x(0) =

(
1
2

)
, using eAt.

Solution. We set B =

(
2 0
0 2

)
and C =

(
0 1
0 0

)
; then (20) is satisfied, and
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eAt =

(
e2t 0
0 e2t

)(
1 t

0 1

)
= e2t

(
1 t

0 1

)
,

by (21) and Examples 6.3A and 6.3B. Therefore, by (16), we get

x = eAt x0 = e2t
(
1 t

0 1

)(
1
2

)
= e2t

(
1 + 2t

2

)
.

Exercises: Sections 4G,H



GS. Graphing ODE Systems

1. The phase plane.

Up to now we have handled systems analytically, concentrating on a procedure for solving
linear systems with constant coefficients. In this chapter, we consider methods for sketching
graphs of the solutions. The emphasis is on the workd sketching. Computers do the work
of drawing reasonably accurate graphs. Here we want to see how to get quick qualitative
information about the graph, without having to actually calculate points on it.

First some terminology. The sort of system for which we will be trying to sketch the
solutions is one which can be written in the form

(1)
x′ = f(x, y)

y′ = g(x, y)
.

Such a system is called autonomous, meaning the independent variable (which we under-
stand to be t) does not appear explicitly on the right, though of course it lurks in the
derivatives on the left. The system (1) is a first-order autonomous system; it is in standard
form — the derivatives on the left, the functions on the right.

A solution of such a system has the form (we write it two ways):

(2) x(t) =

(

x(t)
y(t)

)

,
x = x(t)

y = y(t)
.

It is a vector function of t, whose components satisfy the system (1) when they are substi-
tuted in for x and y. In general, you learned in 18.02 and physics that such a vector function
describes a motion in the xy-plane; the equations in (2) tell how the point (x, y) moves in
the xy-plane as the time t varies. The moving point traces out a curve called the trajectory
of the solution (2). The xy-plane itself is called the phase plane for the system (1), when
used in this way to picture the trajectories of its solutions.

That is how we can picture the solutions (2) to the system; how can we picture the system
(1) itself? We can think of the derivative of a solution

(3) x′(t) =

(

x′(t)
y′(t)

)

as representing the velocity vector of the point (x, y) as it moves according to (2). From
this viewpoint, we can interpret geometrically the system (1) as prescribing for each point
(x0, y0) in the xy-plane a velocity vector having its tail at (x0, y0):

(4) x′ =

(

f(x0, y0)
g(x0, y0)

)

= f(x0, y0) i + g(x0, y0) j . .

The system (1) is thus represented geometrically as a vector field,
the velocity field. A solution (2) of the system is a point moving
in the xy-plane so that at each point of its trajectory, it has the
velocity prescribed by the field. The trajectory itself will be a curve which at each point has

1
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the direction of the velocity vector at that point. (An arrowhead is put on the trajectory to
show the sense in which t is increasing.)

Sketching trajectories ought to remind you a lot of the work you did drawing integral
curves for direction fields to first-order ODE’s. What is the relation?

2. First-order autonomous ODE systems and first-order ODE’s.

We can eliminate t from the first-order system (1) by dividing one equation by the other.
Since by the chain rule

dy

dt
=

dy

dx

dx

dt
,

we get after the division a single first-order ODE in x and y :

(5)
x′ = f(x, y)

y′ = g(x, y)
−→ dy

dx
=

g(x, y)

f(x, y)
.

If the first order equation on the right is solvable, this is an important way of getting
information about the solutions to the system on the left. Indeed, in the older literature,
little distinction was made between the system and the single equation — “solving” meant
to solve either one.

There is however a difference between them: the system involves time, whereas the single
ODE does not. Consider how their respective solutions are related:

(6)
x = x(t)

y = y(t)
−→ F (x, y) = 0 ,

where the equation on the right is the result of eliminating t from the pair of equations
on the left. Geometrically, F (x, y) = 0 is the equation for the trajectory of the solution
x(t) on the left. The trajectory in other words is the path traced out by the moving point
(

x(t), y(t)
)

; it doesn’t contain any record of how fast the point was moving; it is only the
track (or trace, as one sometimes says) of its motion.

In the same way, we have the difference between the velocity field, which represents the left
side of (5), and the direction field, which represents the right side. The velocity vectors have
magnitude and sense, whereas the line segments that make up the direction field only have
slope. The passage from the left side of (5) to the right side is represented geometrically
by changing each of the velocity vectors to a line segment of standard length. Even the
arrowhead is dropped, since it represents the direction of increasing time, and time has
been eliminated; only the slope of the vector is retained.
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In considering how to sketch trajectories of the system (1), the first thing to consider are
the critical points (sometimes called stationary points.

Definition 2.1 A point (x0, y0) is a critical point of the system (1) if

(7a) f(x0, y0) = 0, and g(x0, y0) = 0

or equivalently, if

(7b) x = x0, y = y0 is a solution to (1).

The equations of the system (1) show that (7a) and (7b) are equivalent — either
implies the other.

If we adopt the geometric viewpoint, thinking of the system as represented by a velocity
vector field, then a critical point is one where the velocity vector is zero. Such a point is a
trajectory all by itself, since by not moving it satisfies the equations (1) of the system (this
explains the alternative designation “stationary point”).

The critical points represent the simplest possible solutions to (1), so you begin by finding
them; by (7a), this is done by solving the pair of simultaneous equations

(8)
f(x, y) = 0

g(x, y) = 0

Next, you can try the strategy indicated in (5) of passing to the associated first-order
ODE and trying to solve that and sketch the solutions; or you can try to locate some
sketchable solutions to (1) and draw them in. None of this is likely to work if the functions
f(x, y) and g(x, y) on the right side of the system (1) aren’t simple, but for linear equations
with constant coefficients, both procedures are helpful as we shall see in the next section.

A principle that was important in sketching integral curves for direction fields applies
also to sketching trajectories of the system (1): assuming the functions f(x, y) and g(x, y)
are smooth (i.e., have continuous partial derivatives), we have the

(9) Sketching principle. Two trajectories of (1) cannot intersect.

The sketching principle is a consequence of the existence and uniqueness theorem for systems
of the form (1), which implies that in a region where where the partial derivatives of f and
g are continuous, through any point passes one and only one trajectory.

3. Sketching some basic linear systems. We use the above ideas to sketch
a few of the simplest linear systems, so as to get an idea of the various possibilities for
their trajectories, and introduce the terminology used to describe the resulting geometric
pictures.

Example 3.1 Let’s consider the linear system on the left below. Its characteristic equation
is λ2 − 1 = 0, so the eigenvalues are ±1, and it is easy to see its general solution is the one
on the right below:

(10)

{

x′ = y

y′ = x
; x = c1

(

1
1

)

et + c2

(

1
−1

)

e−t .
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(10)

{

x′ = y

y′ = x
; x = c1

(

1
1

)

et + c2

(

1
−1

)

e−t .

By (8), the only critical point of the system is (0, 0). We try the strategy in (5); this
converts the system to the first-order ODE below, whose general solution (on the right) is
found by separation of variables:

(11)
dy

dx
=

x

y
; general solution: y2 − x2 = c .

Plotted, these are the family of hyperbolas having the diagonal lines y = ±x as asymptotes;
in addition there are the two lines themselves, corresponding to c = 0; see fig. 1.

This shows us what the trajectories of (7) must look like, though it does not tell us what
the direction of motion is. A further difficulty is that the two lines cross at the origin, which
seems to violate the sketching principle (9) above.

We turn therefore to another strategy: plotting simple trajectories that we know. Looking
at the general solution in (10), we see that by giving one of the c’s the value 0 and the other
one the value 1 or −1, we get four easy solutions:

(

1
1

)

et , −
(

1
1

)

et ,

(

1
−1

)

e−t , −
(

1
−1

)

e−t .

These four solutions give four trajectories which are easy to plot. Consider the first, for
example. When t = 0, the point is at (1, 1). As t increases, the point moves outward along
the line y = x; as t decreases through negative values, the point moves inwards along the
line, toward (0, 0). Since t is always understood to be increasing on the trajectory, the whole
trajectory consists of the ray y = x in the first quadrant, excluding the origin (which is not
reached in finite negative time), the direction of motion being outward.

A similar analysis can be made for the other three solutions; see fig. 2 below.

As you can see, each of the four solutions has as its trajectory one of the four rays, with
the indicated direction of motion, outward or inward according to whether the exponential
factor increases or decreases as t increases. There is even a fifth trajectory: the origin itself,
which is a stationary point, i.e., a solution all by itself. So the paradox of the intersecting
diagonal trajectories is resolved: the two lines are actually five trajectories, no two of which
intersect.

Once we know the motion along the four rays, we can put arrowheads on them to indicate
the direction of motion along the hyperbolas as t increases, since it must be compatible with
the motion along the rays — for by continuity, nearby trajectories must have arrowheads
pointing in similar directions. The only possibility therefore is the one shown in fig. 2.

A linear system whose trajectories show the general features of those in fig. 2 is said to
be an unstable saddle. It is called unstable because the trajectories go off to infinity as t
increases (there are three exceptions: what are they?); it is called a saddle because of its
general resemblance to the level curves of a saddle-shaped surface in 3-space.
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Example 3.2 This time we consider the linear system below — since it is decoupled, its
general solution (on the right) can be obtained easily by inspection:

(12)

{

x′ = −x

y′ = −2y
x = c1

(

1
0

)

e−t + c2

(

0
1

)

e−2t .

Converting it as in (5) to a single first order ODE and solving it by separating variables
gives as the general solutions (on the right below) a family of parabolas:

dy

dx
=

2y

x
; y = cx2 .

Following the same plan as in Example 3.1, we single out the four solutions

(13)

(

1
0

)

e−t , −
(

1
0

)

e−t ,

(

0
1

)

e−2t , −
(

0
1

)

e−2t .

Their trajectories are the four rays along the coordinate axes, the motion being always
inward as t increases. Put compatible arrowheads on the parabolas and you get fig. 3.

A linear system whose trajectories have the general shape of those in fig. 3 is called an
asymptotically stable node or a sink node. The word node is used when the trajectories
have a roughly parabolic shape (or exceptionally, they are rays); asymptotically stable or
sink means that all the trajectories approach the critical point as t increases.

Example 3.3 This is the same as Example 3.2, except that the signs are reversed:

(12)

{

x′ = x

y′ = 2y
x = c1

(

1
0

)

et + c2

(

0
1

)

e2t .

The first-order differential equation remains the same; we get the same parabolas. The only
difference in the work is that the exponentials now have positive exponents; the picture
remains exactly the same except that now the trajectories are all traversed in the opposite
direction — away from the origin — as t increases. The resulting picture is fig. 4, which we
call an unstable node or source node.
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Example 3.4 A different type of simple system (eigenvalues ±i) and its solution is

(14)

{

x′ = y

y′ = −x
; x = c1

(

sin t
cos t

)

+ c2

(

cos t
− sin t

)

.

Converting to a first-order ODE by (5) and solving by separation of variables gives

dy

dx
= −x

y
, x2 + y2 = c ;

the trajectories are the family of circles centered at the origin. To determine the direction of
motion, look at the solution in (14) for which c1 = 0, c2 = 1; it is the reflection in the y-axis
of the usual (counterclockwise) parametrization of the circle; hence the motion is clockwise
around the circle. An even simpler procedure is to determine a single vector in the velocity
field — that’s enough to determine all of the directions. For example, the velocity vector at
(1, 0) is < 0,−1 >= − j , again showing the motion is clockwise. (The vector is drawn in on
fig. 5, which illustrates the trajectories.)

This type of linear system is called a stable center . The word stable signifies that
any trajectory stays within a bounded region of the phase plane as t increases or decreases
indefinitely. ( We cannot use “asymptotically stable,” since the trajectories do not approach
the critical point (0, 0) as t increases. The word center describes the geometric configuration:
it would be used also if the curves were ellipses having the origin as center.

Example 3.5 As a last example, a system having a complex eigenvalue λ = −1 + i is,
with its general solution,

(15)

{

x′ = −x+ y

y′ = −x− y
x = c1e

−t

(

sin t
cos t

)

+ c2e
−t

(

cos t
− sin t

)

.

The two fundamental solutions (using c1 = 0 and c1 = 1, and vice-versa) are typical. They
are like the solutions in Example 3.4, but multiplied by e−t. Their trajectories are therefore
traced out by the tip of an origin vector that rotates clockwise at a constant rate, while
its magnitude shrinks exponentially to 0: the trajectories spiral in toward the origin as t
increases. We call this pattern an asymptotically stable spiral or a sink spiral; see fig. 6.
(An older terminology uses focus instead of spiral.)

To determine the direction of motion, it is simplest to do what we did in the previous
example: determine from the ODE system a single vector of the velocity field: for instance,
the system (15) has at (1, 0) the velocity vector − i− j , which shows the motion is clockwise.

For the system

{

x′ = x+ y

y′ = −x+ y
, an eigenvalue is λ = 1 + i, and in (15) et replaces e−t;

the magnitude of the rotating vector increases as t increases, giving as pattern an unstable

spiral, or source spiral, as in fig. 7.
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4. Sketching more general linear systems.

In the preceding section we sketched trajectories for some particular linear systems; they
were chosen to illustrate the different possible geometric pictures. Based on that experience,
we can now describe how to sketch the general system

x′ = Ax, A = 2× 2 constant matrix.

The geometric picture is largely determined by the eigenvalues and eigenvectors of A, so
there are several cases.

For the first group of cases, we suppose the eigenvalues λ1 and λ2 are real and distinct.

Case 1. The λi have opposite signs: λ1 > 0. λ2 < 0 ; unstable saddle.

Suppose the corresponding eigenvectors are ~α1 and ~α2, respectively. Then four solutions
to the system are

(16) x = ±~α1e
λ1t, x = ±~α2e

λ2t .

How do the trajectories of these four solutions look?

In fig. 8 below, the four vectors ±~α1 and ±~α2 are drawn as origin vectors; in fig. 9, the
corresponding four trajectories are shown as solid lines, with the direction of motion as t
increases shown by arrows on the lines. The reasoning behind this is the following.

Look first at x = ~α1e
λ1t. We think of eλ1t as a scalar factor changing the length of x;

as t increases from −∞ to ∞, this scalar factor increases from 0 to ∞, since λ1 > 0. The
tip of this lengthening vector represents the trajectory of the solution x = ~α1e

λ1t, which is
therefore a ray going out from the origin in the direction of the vector ~α1.

Similarly, the trajectory of x = −~α1e
λ1t is a ray going out from the origin in the opposite

direction: that of the vector −~α1.

The trajectories of the other two solutions x = ±~α2e
λ2t will be similar, except that

since λ2 < 0, the scalar factor eλ2t decreases as t increases; thus the solution vector will
be shrinking as t increases, so the trajectory traced out by its tip will be a ray having the
direction of ~α2 or −~α2, but traversed toward the origin as t increases, getting arbitrarily
close but never reaching it in finite time.

To complete the picture, we sketch in some nearby trajectories; these will be smooth
curves generally following the directions of the four rays described above. In Example 3.1
they were hyperbolas; in general they are not, but they look something like hyperbolas, and
they do have the rays as asymptotes. They are the trajectories of the solutions

(17) x = c1~α1e
λ1t + c2~α2e

λ2t,

for different values of the constants c1 and c2.
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Case 2. λ1 and λ2 are distinct and negative: say λ1 < λ2 < 0;
asymptotically stable (sink) node

Formally, the solutions (16) are written the same way, and we draw their trajectories
just as before. The only difference is that now all four trajectories are represented by rays
coming in towards the origin as t increases, because both of the λi are negative. The four
trajectories are represented as solid lines in figure 10, on the next page.

The trajectories of the other solutions (17) will be smooth curves which generally follow
the four rays. In the corresponding Example 3.2, they were parabolas; here too they will
be parabola-like, but this does not tell us how to draw them, and a little more thought is
needed. The parabolic curves will certainly come in to the origin as t increases, but tangent
to which of the rays? Briefly, the answer is this:

Node-sketching principle. Near the origin, the trajectories follow the ray attached to
the λi nearer to zero; far from the origin, they follow (i.e. are roughly parallel to) the ray
attached to the λi further from zero.

You need not memorize the above; instead learn the reasoning on which it is based, since
this type of argument will be used over and over in science and engineering work having
nothing to do with differential equations.

Since we are assuming λ1 < λ2 < 0, it is λ2 which is closer to 0. We want to know
the behavior of the solutions near the origin and far from the origin. Since all solutions are
approaching the origin,

near the origin corresponds to large positive t (we write t ≫ 1):
far from the origin corresponds to large negative t (written t ≪ −1).

As before, the general solution has the form

(18) x = c1~α1e
λ1t + c2~α2e

λ2t, λ1 < λ2 < 0.

If t ≫ 1, then x is near the origin, since both terms in (18) are small; however, the first
term is negligible compared with the second: for since λ1 − λ2 < 0, we have

(19)
eλ1t

eλ2t
= e(λ1−λ2)t ≈ 0, t ≫ 1 .

Thus if λ1 < λ2 < 0 and t ≫ 1, we can neglect the first term of (18), getting

x ∼ c2~α2e
λ2t. for t ≫ 1 (x near the origin),

which shows that x(t) follows the ray corresponding to the the eigenvalue λ2 closer to zero.

Similarly, if t ≪ −1, then x is far from the origin since both terms in (18) are large.
This time the ratio in (19) is large, so that it is the first term in (18) that dominates the
expression, which tells us that

x ∼ c1~α1e
λ1t. for t ≪ −1 (x far from the origin).

This explains the reasoning behind the node-sketching principle in this case.

Some of the trajectories of the solutions (18) are sketched in dashed lines in figure 10,
using the node-sketching principle, and assuming λ1 < λ2 < 0.
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Case 3. λ1 and λ2 are distinct and positive: say λ1 > λ2 > 0 unstable (source) node

The analysis is like the one we gave above. The direction of motion on the four rays
coming from the origin is outwards, since the λi > 0. The node-sketching principle is still
valid, and the reasoning for it is like the reasoning in case 2. The resulting sketch looks like
the one in fig. 11.

Case 4. Eigenvalues pure imaginary: λ = ±bi, b > 0 stable center

Here the solutions to the linear system have the form

(20) x = c1 cos bt+ c2 sin bt, c1, c2 constant vectors .

(There is no exponential factor since the real part of λ is zero.) Since every solution (20) is
periodic, with period 2π/b, the moving point representing it retraces its path at intervals of
2π/b. The trajectories therefore are closed curves; ellipses, in fact; see fig. 12.

Sketching the ellipse is a little troublesome, since the vectors ci do not have any simple
relation to the major and minor axes of the ellipse. For this course, it will be enough if you
determine whether the motion is clockwise or counterclockwise. As in Example 3.4, this can
be done by using the system x′ = Ax to calculate a single velocity vector x′ of the velocity
field; from this the sense of motion can be determined by inspection.

The word stable means that each trajectory stays for all time within some circle
centered at the critical point; asymptotically stable is a stronger requirement: each
trajectory must approache the critical point (here, the origin) as t → ∞.

Case 5. The eigenvalues are complex, but not purely imaginary; there are two cases:

a± bi, a < 0, b > 0; asymptotically stable (sink) spiral;

a± bi, a > 0, b > 0; unstable (source) spiral;

Here the solutions to the linear system have the form

(21) x = eat(c1 cos bt+ c2 sin bt), c1, c2 constant vectors .

They look like the solutions (20), except for a scalar factor eat which either

decreases towards 0 as t → ∞ (a < 0), or

increases towards ∞ as t → ∞ (a > 0) .

Thus the point x travels in a trajectory which is like an ellipse, except that the distance
from the origin keeps steadily shrinking or expanding. The result is a trajectory which does
one of the following:
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spirals steadily towards the origin, (asymptotically stable spiral) : a < 0

spirals steadily away from the origin. (unstable spiral); a > 0

The exact shape of the spiral, is not obvious and perhaps best left to computers; but you
should determine the direction of motion, by calculating from the linear system x′ = Ax a
single velocity vector x′ near the origin. Typical spirals are pictured (figs. 12, 13).

Other cases.

Repeated real eigenvalue λ 6= 0, defective (incomplete: one independent eigenvector)
defective node; unstable if λ > 0; asymptotically stable if λ < 0 (fig. 14)

Repeated real eigenvalue λ 6= 0, complete (two independent eigenvectors)
star node; unstable if λ > 0; asymptotically stable if λ > 0. (fig. 15)

One eigenvalue λ = 0. (Picture left for exercises and problem sets.)

5. Summary

To sum up, the procedure of sketching trajectories of the 2×2 linear homogeneous system
x′ = Ax, where A is a constant matrix, is this. Begin by finding the eigenvalues of A.

1. If they are real, distinct, and non-zero:

a) find the corresponding eigenvectors;
b) draw in the corresponding solutions whose trajectories are rays; use the sign of the

eigenvalue to determine the direction of motion as t increases; indicate it with an arrowhead
on the ray;

c) draw in some nearby smooth curves, with arrowheads indicating the direction of
motion:

(i) if the eigenvalues have opposite signs, this is easy;
(ii) if the eigenvalues have the same sign, determine which is the dominant term in

the solution for t ≫ 1 and t ≪ −1, and use this to to determine which rays the trajectories
are tangent to, near the origin, and which rays they are parallel to, away from the origin.
(Or use the node-sketching principle.)

2. If the eigenvalues are complex: a± bi, the trajectories will be
ellipses if a = 0,
spirals if a 6= 0: inward if a < 0, outward if a > 0;

in all cases, determine the direction of motion by using the system x′ = Ax to find one
velocity vector.
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3. The details in the other cases (eigenvalues repeated, or zero) will be left as exercises
using the reasoning in this section.

6. Sketching non-linear systems

In sections 3, 4, and 5, we described how to sketch the trajectories of a linear system

x′ = ax+ by

y′ = cx+ dy
a, b, c, d constants.

We now return to the general (i.e., non-linear) 2 × 2 autonomous system discussed at the
beginning of this chapter, in sections 1 and 2:

(22)
x′ = f(x, y)

y′ = g(x, y)
;

it is represented geometrically as a vector field, and its trajectories — the solution curves —
are the curves which at each point have the direction prescribed by the vector field. Our goal
is to see how one can get information about the trajectories of (22), without determining
them analytically or using a computer to plot them numerically.

Linearizing at the origin. To illustrate the general idea, let’s suppose that (0, 0) is a
critical point of the system (22), i.e.,

(23) f(0, 0) = 0, g(0, 0) = 0,

Then if f and g are sufficiently differentiable, we can approximate them near (0, 0) (the
approximation will have no constant term by (23)):

f(x, y) = a1x+ b1y + higher order terms in x and y

g(x, y) = a2x+ b2y + higher order terms in x and y.

If (x, y) is close to (0, 0), then x and y will be small and we can neglect the higher order
terms. Then the non-linear system (23) is approximated near (0, 0) by a linear system, the
linearization of (23) at (0,0):

(24)
x′ = a1x+ b1y

y′ = a2x+ b2y
,

and near (0,0), the solutions of (22) — about which we know nothing — will be like the
solutions to (24), about which we know a great deal from our work in the previous sections.

Example 6.1 Linearize the system

{

x′ = y cosx

y′ = x(1 + y)2
at the critical point (0, 0).
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Solution We have

{

x′ ≈ y(1− 1
2x

2)

y′ = x(1 + 2y + y2)
so the linearization is

{

x′ = y

y′ = x
.

Linearising at a general point More generally, suppose now the critical point of (22) is
(x0, y0), so that

f(x0, y0) = 0, g(x0, y0) = 0.

One way this can be handled is to make the change of variable

(24) x1 = x− x0, y1 = y − y0;

in the x1y1-coordinate system, the critical point is (0, 0), and we can proceed as before.

Example 6.2 Linearize







x′ = x− x2 − 2xy

y′ = y − y2 − 3

2
xy

at its critical points on the x-axis.

Solution. When y = 0, the functions on the right are zero when x = 0 and x = 1, so the
critical points on the x-axis are (0, 0) and (1, 0).

The linearization at (0, 0) is x′ = x, y′ = y.

To find the linearization at (1, 0) we change of variable as in (24): x1 = x−1, y1 =
y ; substituting for x and y in the system and keeping just the linear terms on the right
gives us as the linearization:

x′

1 = (x1 + 1)− (x1 + 1)2 − 2(x1 + 1)y1 ≈ −x1 − 2y1

y′1 = y1 − y21 − 3
2 (x1 + 1)y1 ≈ − 1

2y1 .

Linearization using the Jacobian matrix

Though the above techniques are usable if the right sides are very simple, it is generally
faster to find the linearization by using the Jacobian matrix, especially if there are several
critical points, or the functions on the right are not simple polynomials. We derive the
procedure.

We need to approximate f and g near (x0, y0). While this can sometimes be done by
changing variable, a more basic method is to use the main approximation theorem of mul-
tivariable calculus. For this we use the notation

(25) ∆x = x− x0, ∆y = y − y0, ∆f = f(x, y)− f(x0, y0)

and we have then the basic approximation formula

∆f ≈
(

∂f

∂x

)

0

∆x+

(

∂f

∂y

)

0

∆y, or

f(x, y) ≈
(

∂f

∂x

)

0

∆x+

(

∂f

∂y

)

0

∆y ,(26)

since by hypothesis f(x0, y0) = 0. We now make the change of variables (24)

x1 = x− x0 = ∆x, y1 = y − y0 = ∆y,
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and use (26) to approximate f and g by their linearizations at (x0, y0). The result is that
in the neighborhood of the critical point (x0, y0), the linearization of the system (22) is

(27)

x′

1 =

(

∂f

∂x

)

0

x1 +

(

∂f

∂y

)

0

y1,

y′1 =

(

∂g

∂x

)

0

x1 +

(

∂g

∂y

)

0

y1.

In matrix notation, the linearization is therefore

(28) x′

1 = Ax1, where x1 =

(

x1

y1

)

and A =

(

fx fy
gx gy

)

(x0,y0)

;

the matrix A is the Jacobian matrix, evaluated at the critical point (x0, y0).

General procedure for sketching the trajectories of non-linear systems.

We can now outline how to sketch in a qualitative way the solution curves of a 2 × 2
non-linear autonomous system,

(29)
x′ = f(x, y)

y′ = g(x, y).

1. Find all the critical points (i.e., the constant solutions), by solving the system of
simultaneous equations

f(x, y) = 0

g(x, y) = 0 .

2. For each critical point (x0, y0), find the matrix A of the linearized system at that
point, by evaluating the Jacobian matrix at (x0, y0):

(

fx fy
gx gy

)

(x0,y0)

.

(Alternatively, make the change of variables x1 = x− x0, y1 = y − y0, and drop
all terms having order higher than one; then A is the matrix of coefficients for
the linear terms.)

3. Find the geometric type and stability of the linearized system at the critical point
point (x0, y0), by carrying out the analysis in sections 4 and 5.

The subsequent steps require that the eigenvalues be non-zero, real, and dis-

tinct, or complex, with a non-zero real part. The remaining cases: eigenval-
ues which are zero, repeated, or pure imaginary are classified as borderline,
and the subsequent steps don’t apply, or have limited application. See the next
section.

4. According to the above, the acceptable geometric types are a saddle, node (not a star
or a defective node, however), and a spiral. Assuming that this is what you have, for each
critical point determine enough additional information (eigenvectors, direction of motion)
to allow a sketch of the trajectories near the critical point.

5. In the xy-plane, mark the critical points. Around each, sketch the trajectories in
its immediate neighborhood, as determined in the previous step, including the direction of
motion.
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6. Finally, sketch in some other trajectories to fill out the picture, making them compat-
ible with the behavior of the trajectories you have already sketched near the critical points.
Mark with an arrowhead the direction of motion on each trajectory.

If you have made a mistake in analyzing any of the critical points, it will
often show up here — it will turn out to be impossible to draw in any plausible
trajectories that complete the picture.

Remarks about the steps.

1. In the homework problems, the simultaneous equations whose solutions are the
critical points will be reasonably easy to solve. In the real world, they may not be; a
simultaneous-equation solver will have to be used (the standard programs—MatLab, Maple,
Mathematica, Macsyma — all have them, but they are not always effective.)

2. If there are several critical points, one almost always uses the Jacobian matrix; if
there is only one, use your judgment.

3. This method of analyzing non-linear systems rests on the assumption that in the
neighborhood of a critical point, the non-linear system will look like its linearization at that
point. For the borderline cases this may not be so — that is why they are rejected. The
next two sections explain this more fully.

If one or more of the critical points turn out to be borderline cases, one usually resorts
to numerical computation on the non-linear system. Occasionally one can use the reduction
(section 2) to a first-order equation:

dy

dx
=

g(x, y)

f(x, y)

to get information about the system.

Example 6.3 Sketch some trajectories of the system

{

x′ = −x+ xy

y′ = −2y + xy
.

Solution. We first find the critical points, by solving

{

−x+ xy = x(−1 + y) = 0

−2y + xy = y(−2 + x) = 0
.

From the first equation, either x = 0 or y = 1. From the second equation,

x = 0 ⇒ y = 0; y = 1 ⇒ x = 2; critical points : (0, 0), (2, 1).

To linearize at the critical points, we compute the Jacobian matrices

J =

(

−1 + y x
y −2 + x

)

; J(0,0) =

(

−1 0
0 −2

)

J(2,1) =

(

0 2
1 0

)

.

Analyzing the geometric type and stability of each critical point:

(0, 0): eigenvalues: λ1 = −1, λ2 = −2 sink node

eigenvectors: ~α1 =

(

1
0

)

; ~α2 =

(

0
1

)

By the node-sketching principle, trajectories follow ~α1 near the origin, are parallel to ~α2

away from the origin.
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(2, 1): eigenvalues: λ1 =
√
2, λ2 = −

√
2 unstable saddle

eigenvectors: ~α1 =

(√
2
1

)

; ~α2 =

(

−
√
2

1

)

Draw in these eigenvectors at the respective points (0, 0) and (2, 1), with arrowhead
indicating direction of motion (into the critical point if λ < 0, away from critical point if
λ > 0.) Draw in some nearby trajectories.

Then guess at some other trajectories compatible
with these. See the figure for one attempt at this.
Further information could be gotten by considering
the associated first-order ODE in x and y.



7. Structural Stability

In the previous two sections, we described how to get a rough picture of the trajectories
of a non-linear system by linearizing at each of its critical points. The basic assumption
of the method is that the linearized system will be a good approximation to the original
non-linear system if you stay near the critical point.

The method only works however if the linearized system turns out to be a node, saddle,
or spiral. What is it about these geometric types that allows the method to work, and why
won’t it work if the linearized system turns out to be one of the other possibilities (dismissed
as “borderline types” in the previous section)?

Briefly, the answer is that nodes, saddles, and spirals are structurally stable, while the
other possibilities are not. We call a system

(1)
x′ = f(x, y)

y′ = g(x, y)

structurally stable if small changes in its parameters (i.e., the constants that enter into
the functions on the right hand side) do not change the geometric type and stability of its
critical points (or its limit cycles, if there are any — see the next section, and don’t worry
about them for now.)

Theorem. The 2× 2 autonomous linear system

(2)
x′ = ax+ by

y′ = cx+ dy

is structurally stable if it is a spiral, saddle, or node (but not a degenerate or star node).

Proof. The characteristic equation is

λ2 − (a+ d)λ+ (ad− bc) = 0,

and its roots (the eigenvalues) are

(3) λ1, λ2 =
(a+ d)±

√

(a+ d)2 − 4(ad− bc)

2
.

Let’s look at the cases one-by-one; assume first that the roots λ1 and λ2 are real and
distinct. The possibilities in the theorem are given by the following (note that since the
roots are distinct, the node will not be degenerate or a star node):

λ1 > 0, λ2 > 0 unstable node

λ1 < 0, λ2 < 0 asymptotically stable node

λ1 > 0, λ2 < 0 unstable saddle.

The quadratic formula (3) shows that the roots depend continuously on the coefficients
a, b, c, d. Thus if the coefficients are changed a little, the roots λ1 and λ2 will also be
changed a little to λ′

1
and λ′

2
respectively; the new roots will still be real, and will have the

15
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same sign if the change is small enough. Thus the changed system will still have the same
geometric type and stability. �

If the roots of the characteristic equation are complex, the reasoning is similar. Let us
denote the complex roots by r± si; we use the root λ = r+ si, s > 0; then the possibilities
to be considered for structural stability are

r > 0, s > 0 unstable spiral

r < 0, s > 0 asymptotically stable spiral.

If a, b, c, d are changed a little, the root is changed to λ′ = r′ + s′i, where r′ and s′ are close
to r and s respectively, since the quadratic formula (3) shows r and s depend continuously
on the coefficients. If the change is small enough, r′ will have the same sign as r and s′ will
still be positive, so the geometric type of the changed system will still be a spiral, with the
same stability type. ��

8. The borderline geometric types All the other possibilities for the linear system
(2) we call borderline types. We will show now that none of them is structurally stable; we
begin with the center.

Eigenvalues pure imaginary. Once again we use the eigenvalue with the positive imag-
inary part: λ = 0 + si, s > 0. It corresponds to a center: the trajectories are a family
of concentric ellipses, centered at the origin. If the coefficients a, b, c, d are changed a little,
the eigenvalue 0 + si changes a little to r′ + s′i, where r′ ≈ 0, s′ ≈ s, and there are three
possibilities for the new eigenvalue:

0 + si → r′ + s′i : r′ > 0 r′ < 0 r′ = 0

s > 0 s′ > 0 s′ > 0 s′ > 0

center source spiral sink spiral center

Correspondingly, there are three possibilities for how the geometric picture of the trajecto-
ries can change:

Eigenvalues real; one eigenvalue zero. Here λ1 = 0, and λ2 > 0 or λ2 < 0. The general
solution to the system has the form (α1, α2 are the eigenvectors)

x = c1α1 + c2α2e
λ2t.

If λ2 < 0, the geometric picture of its trajectories shows a line of critical points (constant
solutions, corresponding to c2 = 0), with all other trajectories being parallel lines ending up
(for t = ∞) at one of the critical points, as shown below.
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We continue to assume λ2 < 0. As the coefficients of the system change a little, the
two eigenvalues change a little also; there are three possibilities, since the 0 eigenvalue can
become positive, negative, or stay zero:

λ1 = 0 → λ′

1
: λ′

1
> 0 λ′

1
= 0 λ1 < 0

λ2 < 0 → λ′

2
: λ′

2
< 0 λ′

2
< 0 λ′

2
< 0

critical line unstable saddle critical line sink node

Here are the corresponding pictures. (The pictures would look the same if we assumed
λ2 > 0, but the arrows on the trajectories would be reversed.)

One repeated real eigenvalue. Finally, we consider the case where λ1 = λ2. Here
there are a number of possibilities, depending on whether λ1 is positive or negative, and
whether the repeated eigenvalue is complete (i.e., has two independent eigenvectors), or
defective (i.e., incomplete: only one eigenvector). Let us assume that λ1 < 0. We vary the
coefficients of the system a little. By the same reasoning as before, the eigenvalues change
a little, and by the same reasoning as before, we get as the main possibilities (omitting this
time the one where the changed eigenvalue is still repeated):

λ1 < 0 → λ′

1
< 0 r + si

λ2 < 0 → λ′

2
< 0 r − si

λ1 = λ2 λ′

1
6= λ′

2
r ≈ λ1, s ≈ 0,

sink node sink node sink spiral

Typical corresponding pictures for the complete case and the defective (incomplete) case
are (the last one is left for you to experiment with on the computer screen)

complete: star node incomplete: defective node
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Remarks. Each of these three cases—one eigenvalue zero, pure imaginary eigenvalues,
repeated real eigenvalue—has to be looked on as a borderline linear system: altering the
coefficients slightly can give it an entirely different geometric type, and in the first two cases,
possibly alter its stability as well.

Application to non-linear systems.

All the preceding analysis discussed the structural stability of a linear system. How does
it apply to non-linear systems?

Suppose our non-linear system has a critical point at P , and we want to study its trajec-
tories near P by linearizing the system at P .

This linearization is only an approximation to the original system, so if it turns out to
be a borderline case, i.e., one sensitive to the exact value of the coefficients, the trajectories
near P of the original system can look like any of the types obtainable by slightly changing
the coefficients of the linearization.

It could also look like a combination of types. For instance, if the linearized system had
a critical line (i.e., one eigenvalue zero), the original system could have a sink node on one
half of the critical line, and an unstable saddle on the other half. (This actually occurs.)

In other words, the method of linearization we used in Sections 6 and 7 to analyze a
non-linear system near a critical point doesn’t fail entirely, but we don’t end up with a
definite picture of the non-linear system near P ; we only get a list of possibilities. In general
one has to rely on computation or more powerful analytic tools to get a clearer answer. The
first thing to try is a computer picture of the non-linear system, which often will give the
answer.



LC. Limit Cycles

1. Introduction.

In analyzing non-linear systems in the xy-plane, we have so far concentrated on finding
the critical points and analysing how the trajectories of the system look in the neighborhood
of each critical point. This gives some feeling for how the other trajectories can behave, at
least those which pass near anough to critical points.

Another important possibility which can influence how the trajectories look is if one of
the trajectories traces out a closed curve C. If this happens, the associated solution x(t)
will be geometrically realized by a point which goes round and round the curve C with a
certain period T . That is, the solution vector

x(t) = (x(t), y(t))

will be a pair of periodic functions with period T :

x(t+ T ) = x(t), y(t+ T ) = y(t) for all t.

If there is such a closed curve, the nearby trajectories must behave something like C.
The possibilities are illustrated below. The nearby trajectories can either spiral in toward
C, they can spiral away from C, or they can themselves be closed curves. If the latter case
does not hold — in other words, if C is an isolated closed curve — then C is called a limit

cycle: stable, unstable, or semi-stable according to whether the nearby curves spiral towards
C, away from C, or both.

The most important kind of limit cycle is the stable limit cycle, where nearby curves
spiral towards C on both sides. Periodic processes in nature can often be represented as
stable limit cycles, so that great interest is attached to finding such trajectories if they
exist. Unfortunately, surprisingly little is known about how to do this, or how to show that
a system has no limit cycles. There is active research in this subject today. We will present
a few of the things that are known.

1
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2. Showing limit cycles exist.

The main tool which historically has been used to show that the system

(1)
x′ = f(x, y)

y′ = g(x, y)

has a stable limit cycle is the

Poincare-Bendixson Theorem Suppose R is the finite region of the plane lying between
two simple closed curves D1 and D2, and Fis the velocity vector field for the system (1). If

(i) at each point of D1 and D2, the field Fpoints toward the interior of R, and

(ii) R contains no critical points,

then the system (1) has a closed trajectory lying inside R.

The hypotheses of the theorem are illustrated by fig. 1. We will not give the proof of the
theorem, which requires a background in Mathematical Analysis. Fortunately, the theorem
strongly appeals to intuition. If we start on one of the boundary curves, the solution will
enter R, since the velocity vector points into the interior of R. As time goes on, the solution
can never leave R, since as it approaches a boundary curve, trying to escape from R, the
velocity vectors are always pointing inwards, forcing it to stay inside R. Since the solution
can never leave R, the only thing it can do as t → ∞ is either approach a critical point —
but there are none, by hypothesis — or spiral in towards a closed trajectory. Thus there is
a closed trajectory inside R. (It cannot be an unstable limit cycle—it must be one of the
other three cases shown above.)

To use the Poincare-Bendixson theorem, one has to search the vector field for closed
curves D along which the velocity vectors all point towards the same side. Here is an
example where they can be found.

Example 1. Consider the system

(2)
x′ = −y + x(1− x2 − y2)

y′ = x+ y(1− x2 − y2)

Figure 2 shows how the associated velocity vector field looks on two circles. On a circle of
radius 2 centered at the origin, the vector field points inwards, while on a circle of radius
1/2, the vector field points outwards. To prove this, we write the vector field along a circle
of radius r as

(3) x′ = (−y i + x j ) + (1− r2)(x i + y j ) .
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The first vector on the right side of (3) is tangent to the circle; the second vector points
radially in for the big circle (r = 2), and radially out for the small circle (r = 1/2). Thus
the sum of the two vectors given in (3) points inwards along the big circle and outwards
along the small one.

We would like to conclude that the Poincare-Bendixson theorem applies to the ring-
shaped region between the two circles. However, for this we must verify that R contains
no critical points of the system. We leave you to show as an exercise that (0, 0) is the
only critical point of the system; this shows that the ring-shaped region contains no critical
points.

The above argument shows that the Poincare-Bendixson theorem can be applied to R,
and we conclude that R contains a closed trajectory. In fact, it is easy to verify that
x = cos t, y = sin t solves the system, so the unit circle is the locus of a closed trajectory.
We leave as another exercise to show that it is actually a stable limit cycle for the system,
and the only closed trajectory.

3. Non-existence of limit cycles

We turn our attention now to the negative side of the problem of showing limit cycles
exist. Here are two theorems which can sometimes be used to show that a limit cycle does
not exist.

Bendixson’s Criterion If fx and gy are continuous in a region R which is simply-connected
(i.e., without holes), and

∂f

∂x
+

∂g

∂y
6= 0 at any point of R,

then the system

(4)
x′ = f(x, y)

y′ = g(x, y)

has no closed trajectories inside R.

Proof. Assume there is a closed trajectory C inside R. We shall derive a contradiction,
by applying Green’s theorem, in its normal (flux) form. This theorem says

(5)

∮

C

(f i + g j ) · n ds ≡

∮

C

f dy − g dx =

∫ ∫

D

(
∂f

∂x
+

∂g

∂y
) dx dy .

where D is the region inside the simple closed curve C.

This however is a contradiction. Namely, by hypothesis, the integrand on the right-hand
side is continuous and never 0 in R; thus it is either always positive or always negative, and
the right-hand side of (5) is therefore either positive or negative.

On the other hand, the left-hand side must be zero. For since C is a closed trajectory,
C is always tangent to the velocity field f i + g j defined by the system. This means the
normal vector n to C is always perpendicular to the velocity field f i + g j , so that the
integrand f(f i + g j ) · n on the left is identically zero.

This contradiction means that our assumption that R contained a closed trajectory of
(4) was false, and Bendixson’s Criterion is proved. �
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Critical-point Criterion A closed trajectory has a critical point in its interior.

If we turn this statement around, we see that it is really a criterion for non-existence: it
says that if a region R is simply-connected (i.e., without holes) and has no critical points,
then it cannot contain any limit cycles. For if it did, the Critical-point Criterion says there
would be a critical point inside the limit cycle, and this point would also lie in R since R
has no holes.

(Note carefully the distinction between this theorem, which says that limit cycles enclose
regions which do contain critical points, and the Poincare-Bendixson theorem, which seems
to imply that limit cycles tend to lie in regions which don’t contain critical points. The
difference is that these latter regions always contain a hole; the critical points are in the
hole. Example 1 illustrated this.

Example 2. For what a and d does

{

x′ = ax+ by

y′ = cx+ dy
have closed trajectories?

Solution. By Bendixson’s criterion, a+ d 6= 0 ⇒ no closed trajectories.

What if a+d = 0? Bendixson’s criterion says nothing. We go back to our analysis of the
linear system in Notes LS. The characteristic equation of the system is

λ2 − (a+ d)λ+ (ad− bc) = 0 .

Assume a+d = 0. Then the characteristic roots have opposite sign if ad− bc < 0 and the
system is a saddle; the roots are pure imaginary if ad − bc > 0 and the system is a center,
which has closed trajectories. Thus

the system has closed trajectories ⇔ a+ d = 0, ad− bc > 0.

4. The Van der Pol equation.

An important kind of second-order non-linear autonomous equation has the form

(6) x′′ + u(x)x′ + v(x) = 0 (Liénard equation) .

One might think of this as a model for a spring-mass system where the damping force u(x)
depends on position (for example, the mass might be moving through a viscous medium
of varying density), and the spring constant v(x) depends on how much the spring is
stretched—this last is true of all springs, to some extent. We also allow for the possibility
that u(x) < 0 (i.e., that there is ”negative damping”).

The system equivalent to (6) is

(7)
x′ = y

y′ = −v(x)− u(x) y

Under certain conditions, the system (7) has a unique stable limit cycle, or what is the
same thing, the equation (6) has a unique periodic solution; and all nearby solutions tend
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towards this periodic solution as t → ∞. The conditions which guarantee this were given
by Liénard, and generalized in the following theorem.

Levinson-Smith Theorem Suppose the following conditions are satisfied.

(a) u(x) is even and continuous,

(b) v(x) is odd, v(x) > 0 if x > 0, and v(x) is continuous for all x,

(c) V (x) → ∞ as x → ∞, where V (x) =
∫ x

0
v(t) dt ,

(d) for some k > 0, we have

U(x) < 0, for 0 < x < k,

U(x) > 0 and increasing, for x > k,

U(x) → ∞, as x → ∞,











where U(x) =

∫ x

0

u(t) dt.

Then, the system (7) has

i) a unique critical point at the origin;

ii) a unique non-zero closed trajectory C, which is a stable limit cycle around the origin;

iii) all other non-zero trajectories spiralling towards C as t → ∞ .

We omit the proof, as too difficult. A classic application is to the equation

(8) x′′ − a(1− x2)x′ + x = 0 (van der Pol equation)

which describes the current x(t) in a certain type of vacuum tube. (The constant a is
a positive parameter depending on the tube constants.) The equation has a unique non-
zero periodic solution. Intuitively, think of it as modeling a non-linear spring-mass system.
When |x| is large, the restoring and damping forces are large, so that |x| should decrease
with time. But when |x| gets small, the damping becomes negative, which should make |x|
tend to increase with time. Thus it is plausible that the solutions should oscillate; that it
has exactly one periodic solution is a more subtle fact.

There is a lot of interest in limit cycles, because of their appearance in systems which
model processes exhibiting periodicity. Not a great deal is known about them.

For instance, it is not known how many limit cycles the system (1) can have when f(x, y)
and g(x, y) are quadratic polynomials. In the mid-20th century, two well-known Russian
mathematicians published a hundred-page proof that the maximum number was three, but a
gap was discovered in their difficult argument, leaving the result in doubt; twenty years later
the Chinese mathematician Mingsu Wang constructed a system with four limit cycles. The
two quadratic polynomials she used contain both very large and very small coefficients; this
makes numerical computation difficult, so there is no computer drawing of the trajectories.

There the matter currently rests. Some mathematicians conjecture the maximum num-
ber of limit cycles is four, others six, others conjecture that there is no maximum. For
autonomous systems where the right side has polynomials of degree higher than two, even
less is known. There is however a generally accepted proof that for any particular system
for which f(x, y) and g(x, y) are polynomials, the number of limit cycles is finite.

Exercises: Section 5D



Frequency Response

1. Introduction

We will examine the response of a second order linear constant coefficient system to
a sinusoidal input. We will pay special attention to the way the output changes as the
frequency of the input changes. This is what we mean by the frequency response of the
system. In particular, we will look at the amplitude response and the phase response; that is,
the amplitude and phase lag of the system’s output considered as functions of the input
frequency.

In O.4 the Exponential Input Theorem was used to find a particular solution in the
case of exponential or sinusoidal input. Here we will work out in detail the formulas for
a second order system. We will then interpret these formulas as the frequency response
of a mechanical system. In particular, we will look at damped-spring-mass systems. We
will study carefully two cases: first, when the mass is driven by pushing on the spring and
second, when the mass is driven by pushing on the dashpot.

Both these systems have the same form

p(D)x = q(t),

but their amplitude responses are very different. This is because, as we will see, it can
make physical sense to designate something other than q(t) as the input. For example, in
the system

mx′ + bx′ + kx = by′

we will consider y to be the input. (Of course, y is related to the expression on the right-
hand-side of the equation, but it is not exactly the same.)

2. Sinusoidally Driven Systems: Second Order Constant Coefficient DE’s

We start with the second order linear constant coefficient (CC) DE, which as we’ve
seen can be interpreted as modeling a damped forced harmonic oscillator. If we further
specify the oscillator to be a mechanical system with mass m, damping coefficient b, spring
constant k, and with a sinusoidal driving force B cos ωt (with B constant), then the DE is

mx′′ + bx′ + kx = B cos ωt. (1)

For many applications it is of interest to be able to predict the periodic response of the
system to various values of ω. From this point of view we can picture having a knob you
can turn to set the input frequency ω, and a screen where we can see how the shape of the
system response changes as we turn the ω-knob.

The Exponential Input Theorem (O.4 (4), and see O.4 example 2) tells us how to find a
particular solution to (1):

Characteristic polynomial: p(r) = mr2 + br + k.

Complex replacement: mx̃′′ + bx̃′ + kx̃ = Beiωt, x = Re(x̃).

Exponential Input Theorem: x̃p =
Beiωt

p(iω)
=

Beiωt

k−mω2 + ibω
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thus,

xp = Re(x̃p) =
B

|p(iω)| cos(ωt− φ) =
B√

(k−mω2)2 + b2ω2
cos(ωt− φ), (2)

where φ = Arg(p(iω)) = tan−1
(

bω

k−mω2

)
. (In this case φ must be between 0 and π. We

say φ is in the first or second quadrants.)

Letting A =
B√

(k−mω2)2 + b2ω2
, we can write the periodic response xp as

xp = A cos(ωt− φ).

The complex gain, which is defined as the ratio of the amplitude of the output to the
amplitude of the input in the complexified equation, is

g̃(ω) =
1

p(iω)
=

1
k−mω2 + ibω

.

The gain, which is defined as the ratio of the amplitude of the output to the amplitude of
the input in the real equation, is

g = g(ω) =
1

| p(iω) | =
1√

(k−mω2)2 + b2ω2
. (3)

The phase lag is

φ = φ(ω) = Arg(p(iω) = tan−1(
bω

k−mω2 ) (4)

and we also have the time lag = φ/ω.

Terminology of Frequency Response
We call the gain g(ω) the amplitude response of the system. The phase lag φ(ω) is called
the phase response of the system. We refer to them collectively as the frequency response
of the system.

Notes:
1. Observe that the whole DE scales by the input amplitude B.

2. All that is needed about the input for these formulas to be valid is that it is of the
form (constant) × (a sinusoidal function). Here we have used the notation B cos ωt but
the amplitude factor in front of the cosine function can take any form, including having
the constants depend on the system parameters and/or on ω. (And of course one could
equally-well use sin ωt, or any other shift of cosine, for the sinusoid.) This point is very
important in the physical applications of this DE and we will return to it again.

3. Along the same lines as the preceding: we always define the gain as the the amplitude of
the periodic output divided by the amplitude of the periodic input. Later we will see examples
where the gain is not just equal to 1

p(iω)
(for complex gain) or 1

|p(iω)| (for real gain) – stay
tuned!
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3. Frequency Response and Practical Resonance

The gain or amplitude response to the system (1) is a function of ω. It tells us the size
of the system’s response to the given input frequency. If the amplitude has a peak at ωr
we call this the practical resonance frequency. If the damping b gets too large then, for the
system in equation (1), there is no peak and, hence, no practical resonance. The following
figure shows two graphs of g(ω), one for small b and one for large b.

ω

g

ω0
ωr

Fig 1a. Small b (has resonance).

ω

g

ω0

Fig 1b. Large b (no resonance)

In figure (1a) the damping constant b is small and there is practical resonance at the fre-
quency ωr. In figure (1b) b is large and there is no practical resonant frequency.

Finding the Practical Resonant Frequency.
We now turn our attention to finding a formula for the practical resonant frequency -if it
exists- of the system in (1). Practical resonance occurs at the frequency ωr where g(w) has a
maximum. For the system (1) with gain (3) it is clear that the maximum gain occurs when
the expression under the radical has a minimum. Accordingly we look for the minimum
of

f (ω) = (k−mω2)2 + b2ω2.

Setting f ′(ω) = 0 and solving gives

f ′(ω) = −4mω(k−mω2) + 2b2ω = 0

⇒ω = 0 or m2ω2 = mk− b2/2.

We see that if mk− b2/2 > 0 then there is a practical resonant frequency

ωr =

√
k
m
− b2

2m2 . (5)

Phase Lag:
In the picture below the dotted line is the input and the solid line is the response.

The damping causes a lag between when the input reaches its maximum and when the
output does. In radians, the angle φ is called the phase lag and in units of time φ/ω is the
time lag. The lag is important, but in this class we will be more interested in the amplitude
response.

t

. . . .............................................. . . . ..........
......

.....
......

......
........

..... . . . . ......................

•

φ/ω

time lag
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4. Mechanical Vibration System: Driving Through the Spring

The figure below shows a spring-mass-dashpot system that is driven through the spring.

Dashpot

Mass

Spring

y

x

Figure 1. Spring-driven system

Suppose that y denotes the displacement of the plunger at the top of the spring and x(t)
denotes the position of the mass, arranged so that x = y when the spring is unstretched
and uncompressed. There are two forces acting on the mass: the spring exerts a force given
by k(y− x) (where k is the spring constant) and the dashpot exerts a force given by −bx′

(against the motion of the mass, with damping coefficient b). Newton’s law gives

mx′′ = k(y− x)− bx′

or, putting the system on the left and the driving term on the right,

mx′′ + bx′ + kx = ky . (6)

In this example it is natural to regard y, rather than the right-hand side q = ky, as the
input signal and the mass position x as the system response. Suppose that y is sinusoidal,
that is,

y = B1 cos(ωt).

Then we expect a sinusoidal solution of the form

xp = A cos(ωt− φ).

By definition the gain is the ratio of the amplitude of the system response to that of the
input signal. Since B1 is the amplitude of the input we have g = A/B1.

In equations (3) and (4) we gave the formulas for g and φ for the system (1). We can
now use them with the following small change. The k on the right-hand-side of equation
(6) needs to be included in the gain (since we don’t include it as part of the input). We get

g(ω) =
A
B1

=
k

|p(iω)| =
k√

(k−mω2)2 + b2ω2

φ(ω) = tan−1
(

bω

k−mω2

)
.
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Note that the gain is a function of ω, i.e. g = g(ω). Similarly, the phase lag φ = φ(ω) is
a function of ω. The entire story of the steady state system response xp = A cos(ωt− φ)
to sinusoidal input signals is encoded in these two functions of ω, the gain and the phase
lag.

We see that choosing the input to be y instead of ky scales the gain by k and does not
affect the phase lag.

The factor of k in the gain does not affect the frequency where the gain is greatest, i.e.
the practical resonant frequency. From (5) we know this is

ωr =

√
k
m
− b2

2m2 .

Note: Another system leading to the same equation is a series RLC circuit. We will favor
the mechanical system notation, but it is interesting to note the mathematics is exactly the
same for both systems.

5. Mechanical Vibration System: Driving Through the Dashpot

Now suppose instead that we fix the top of the spring and drive the system by moving
the bottom of the dashpot instead.

Suppose that the position of the bottom of the dashpot is given by y(t) and the position
of the mass is given by x(t), arranged so that x = 0 when the spring is relaxed. Then the
force on the mass is given by

mx′′ = −kx + b
d
dt
(y− x)

since the force exerted by a dashpot is supposed to be proportional to the speed of the
piston moving through it. This can be rewritten as

mx′′ + bx′ + kx = by′ . (7)

Dashpot

Mass

Spring

x

y

Figure 2. Dashpot-driven system

We will consider x as the system response, and again on physical grounds we specify
as the input signal the position y of the back end of the dashpot. Note that the derivative of
the input signal (multiplied by b) occurs on the right hand side of the equation.
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Again we suppose that the input signal is of sinusoidal form

y = B1 cos(ωt).

We will now work out the frequency response analysis of this problem.

First, y = B1 cos(ωt) ⇒ y′ = −ωB1 sin(ωt), so our equation is

mx′′ + bx′ + kx = −bωB1 sin(ωt) . (8)

We know that the periodic system response will be sinusoidal, and as usual we choose
the amplitude-phase form with the cosine function

xp = A cos(ωt− φ) .

Since y = B1 cos(ωt) was chosen as the input, the gain g is given by g = A
B1

.

As usual, we compute the gain and phase lag φ by making a complex replacement.

One natural choice would be to regard q(t) = −bωB1 sin(ωt) as the imaginary part of
a complex equation. This would work, but we must keep in mind that the input signal is
B1 cos(ωt) and also that we want to express the solution xp as xp = A cos(ωt− φ).

Instead we will go back to equation (7) and complexify before taking the derivative of
the right-hand-side. Our input y = B1 cos(ωt) becomes ỹ = B1eiωt and the DE becomes

mz′′ + bz′ + kz = bỹ′ = iωbB1eiωt. (9)

Since y = Re(ỹ) we have x = Re(z); that is, the sinusoidal system response xp of (8) is
the real part of the exponential system response zp of (9). The Exponential Input Theorem
gives

zp =
iωbB1

p(iω)
eiωt

where
p(s) = ms2 + bs + k

is the characteristic polynomial.

The complex gain (scale factor that multiplies the input signal to get the output signal)
is

g̃(ω) =
iωb

p(iω)
.

Thus, zp = B1 g̃(ω)eiωt.

We can write g̃ = |g̃|e−iφ, where φ = −Arg(g̃). (We use the minus sign so φ will come
out as the phase lag.) Substitute this expression into the formula for zp to get

zp = B1|g̃| ei(ωt−φ).

Taking the real part we have
xp = B1|g̃| cos(ωt− φ).
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All that’s left is to compute the gain g = |g̃| and the phase lag φ = −Arg(g̃). We have

p(iω) = m(iω)2 + biω + k = (k−mω2) + biω ,

so,

g̃ =
iωb

p(iω)
=

iωb
(k−mω2) + biω

. (10)

This gives

g(ω) = |g̃| = ωb
|p(iω)| =

ωb√
(k−mω2)2 + b2ω2

.

In computing the phase φ we have to be careful not to forget the factor of i in the numerator
of g̃. After a little algebra we get

φ(ω) = −Arg(g̃) = tan−1(−(k−mω2)/(bω)).

As with the system driven through the spring, we try to find the input frequency
ω = ωr which gives the largest system response. In this case we can find ωr without
any calculus by using the following shortcut: divide the numerator and denominator in
(10) by biω and rearrange to get

g̃ =
1

1 + (k−mω2)/(iωb)
=

1
1− i(k−mω2)/(ωb)

.

Now the gain g = |g̃| can be written as

g =
1√

1 + (k−mω2)2/(ωb)2
.

Because squares are always positive, this is clearly largest when the term k−mω2 = 0. At
this point g = 1 and ωr =

√
k/m = ω0, i.e. the resonant frequency is the natural frequency.

Since g̃(ω0) = 1, we also see that the phase lag φ = Arg(g̃) is 0 at ωr Thus the input
and output sinusoids are in phase at resonance.

We have found interesting and rather surprising results for this dashpot-driven me-
chanical system, namely, that the resonant frequency occurs at the system’s natural un-
damped frequency ω0; that this resonance is independent of the damping coefficient b;
and that the maximum gain which can be obtained is g = 1. We can contrast this with the
spring-side driven system worked out in the previous note, where the resonant frequency
certainly did depend on the damping coefficient. In fact, there was no resonance at all if
the system is too heavily damped. In addition, the gain could, in principle, be arbitarily
large.

Comparing these two mechanical systems side-by-side, we can see the importance of
the choice of the specification for the input in terms of understanding the resulting be-
havior of the physical system. In both cases the right-hand side of the DE is a sinusoidal
function of the form B cos ωt or B sin ωt, and the resulting mathematical formulas are es-
sentially the same. The key difference lies in the dependence of the constant B on either
the system parameters m, b, k and/or the input frequency ω. It is in fact the dependence
of B on ω and b in the dashpot-driven case that results in the radically different result for
the resonant input frequency ωr.



Poles, Amplitude Response, Connection to the Exponential Input Theorem

1. Introduction

For our standard linear constant coefficient system

p(D)x = f (1)

the transfer function is W(s) = 1/p(s). In this case, what we will call the poles of W(s)
are simply the zeros of the characteristic polynomial p(s) (also known as the characteristic
roots). We have had lots of experience using these roots in this course and know they
give important information about the system. The reason we talk about the poles of the
transfer function instead of just sticking with the characteristic roots is that the system
(1) is a special case of a Linear Time Invariant (LTI) system and all LTI systems have a
transfer function, while the characteristic polynomial is defined only for systems described
by constant coefficient linear ODE’s like (1).

We have seen (Notes S) that the stability of the system (1) is determined by the roots of
the characteristic polynomial. We saw as well that the amplitude response of the system
to a sinusoidal input of frequency ω is also determined by the characteristic polynomial,
namely formula FR (2) says the gain is

g(ω) =
1

|p(iω)|

The Laplace transform gives us another view of a signal by transforming it from a
function of t, say f (t), to a function F(s) of the complex frequency s.

A key object from this point of view is the transfer function. For the system (1), if
we consider f (t) to be the input and x(t) to be the output, then the transfer function is
W(s) = 1/p(s), which is again determined by the characteristic polynomial.

We will now learn about poles and the pole diagram of an LTI system. This ties together
the notions of stability, amplitude response and transfer function, all in one diagram in the
complex s-plane. The pole diagram gives us a way to visualize systems which makes
many of their important properties clear at a glance; in particular, and remarkably, the
pole diagram

1. shows whether the system stable;

2. shows whether the unforced system is oscillatory;

3. shows the exponential rate at which the unforced system returns to equilibrium (for
stable systems); and

4. gives a rough picture of the amplitude response and practical resonances of the sys-
tem.

For these reasons the pole diagram is a standard tool used by engineers in understanding
and designing systems.
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We conclude by reminding you that every LTI system has a transfer function. Every-
thing we learn in this session will apply to such systems, including those not modeled by
DE’s of the form (1)

2. Definition of Poles

2.1. Rational Functions A rational function is a ratio of polynomials q(s)/p(s).

Examples. The following are all rational functions. (s2 + 1)/(s3 + 3s + 1), 1/(ms2 + bs +
k), s2 + 1 + (s2 + 1)/1.

If the numerator q(s) and the denominator p(s) have no roots in common, then the
rational function q(s)/p(s) is in reduced form

Example. The three functions in the example above are all in reduced form.

Example. (s− 2)/(s2− 4) is not in reduced form, because s = 2 is a root of both numerator
and denominator. We can rewrite this in reduced form as

s− 2
s2 − 4

=
s− 2

(s− 2)(s + 2)
=

1
s + 2

.

2.2. Poles For a rational function in reduced form the poles are the values of s where the
denominator is equal to zero; or, in other words, the points where the rational function is
not defined. We allow the poles to be complex numbers here.

Examples. a) The function 1/(s2 + 8s + 7) has poles at s = −1 and s = −7.
b) The function (s− 2)/(s2 − 4) = 1/(s + 2) has only one pole, s = −2.
c) The function 1/(s2 + 4) has poles at s = ±2i.
d) The function s2 + 1 has no poles.
e) The function 1/(s2 + 8s + 7)(s2 + 4) has poles at -1, -7, ±2i. (Notice that this function
is the product of the functions in (a) and (c) and that its poles are the union of poles from
(a) and (c).)

Remark. For ODE’s with system function of the form 1/p(s), the poles are just the roots
of p(s). These are the familiar characteristic roots, which are important as we have seen.

2.3. Graphs Near Poles

We start by considering the function F1(s) = 1
s . This is well defined for every complex

s except s = 0. To visualize F1(s) we might try to graph it. However it will be simpler, and
yet still show everything we need, if we graph |F1(s)| instead.

To start really simply, let’s just graph |F1(s)| = 1
|s| for s real (rather than complex).
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s
−3 −2 −1 1 2 3

1

2

|1/s|

Figure 1: Graph of 1
|s| for s real.

Now let’s do the same thing for F2(s) = 1/(s2 − 4). The roots of the denominator are
s = ±2, so the graph of |F2(s)| = 1

|s2−4| has vertical asymptotes at s = ±2.

s
−3 −2 −1 1 2 3

|1/(s2 − 4)|

Figure 2: Graph of 1
|s2−4| for s real.

As noted, the vertical asymptotes occur at values of s where the denominator of our
function is 0. These are what we defined as the poles.

• F1(s) = 1
s has a single pole at s = 0.

• F2(s) = 1
s2−4 has two poles, one each at s = ±2.

Looking at Figures 1 and 2 you might be reminded of a tent. The poles of the tent are
exactly the vertical asympotes which sit at the poles of the function.

Let’s now try to graph |F1(s)| and |F2(s)| when we allow s to be complex. If s = a + ib
then F1(s) depends on two variables a and b, so the graph requires three dimensions: two
for a and b, and one more (the vertical axis) for the value of |F1(s)|. The graphs are shown
in Figure 3 below. They are 3D versions of the graphs above in Figures 1 and 2. At each
pole there is a conical shape rising to infinity, and far from the poles the function fall off to
0.
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Figure 3: The graphs of |1/s| and 1/|s2 − 4|.

Roughly speaking, the poles tell you the shape of the graph of a function |F(s)|: it is
large near the poles. In the typical pole diagams seen in practice, the |F(s)| is also small far
away from the poles.

2.4. Poles and Exponential Growth Rate

If a > 0, the exponential function f1(t) = eat grows rapidly to infinity as t → ∞.
Likewise the function f2(t) = eat sin bt is oscillatory with the amplitude of the oscillations
growing exponentially to infinity as t → ∞. In both cases we call a the exponential growth
rate of the function.

The formal definition is the following
Definition: The exponential growth rate of a function f (t) is the smallest value a such that

lim
t→∞

f (t)
ebt = 0 for all b > a. (2)

In words, this says f (t) grows slower than any exponential with growth rate larger than a.

Examples.
1. e2t has exponential growth rate 2.

2. e−2t has exponential growth rate -2. A negative growth rate means that the function is
decaying exponentially to zero as t→ ∞.

3. f (t) = 1 has exponential growth rate 0.

4. cos t has exponential growth rate 0. This follows because lim
t→∞

cos t
ebt = 0 for all positive b.

5. f (t) = t has exponential growth rate 0. This may be surprising because f (t) grows to
infinity. But it grows linearly, which is slower than any positive exponential growth rate.

6. f (t) = et2
does not have an exponential growth rate since it grows faster than any

exponential.

Poles and Exponential Growth Rate
We have the following theorem connecting poles and exponential growth rate.

Theorem: The exponential growth rate of the function f (t) is the largest real part of all the
poles of its Laplace transform F(s).

Examples. We’ll check the theorem in a few cases.

1. f (t) = e3t clearly has exponential growth rate equal to 3. Its Laplace transform is
1/(s− 3) which has a single pole at s = 3,and this agrees with the exponential growth
rate of f (t).
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2. Let f (t) = t, then F(s) = 1/s2. F(s) has one pole at s = 0. This matches the exponential
growth rate zero found in (5) from the previous set of examples.

3. Consider the function f (t) = 3e2t + 5et + 7e−8t. The Laplace transform is F(s) =
3/(s− 2) + 5/(s− 1) + 7/(s + 8), which has poles at s = 2, 1, −8. The largest of these
is 2. (Don’t be fooled by the absolute value of -8, since 2 > −8, the largest pole is 2.)
Thus, the exponential growth rate is 2. We can also see this directly from the formula
for the function. It is clear that the 3e2t term determines the growth rate since it is the
dominant term as t→ ∞.

4. Consider the function f (t) = e−t cos 2t+ 3e−2t The Laplace transform is F(s) = s
(s+1)2+4 +

3
s+2 . This has poles s = −1± 2i, -2. The largest real part among these is -1, so the expo-
nential growth rate is -1.

Note that in item (4) in this set of examples the growth rate is negative because f (t)
actually decays to 0 as t→ ∞. We have the following
Rule:
1. If f (t) has a negative exponential growth rate then f (t)→ 0 as t→ ∞.

2. If f (t) has a positive exponential growth rate then f (t)→ ∞ as t→ ∞.

2.5. An Example of What the Poles Don’t Tell Us

Consider an arbitrary function f (t) with Laplace transform F(s) and a > 0. Shift f (t)
to produce g(t) = u(t− a) f (t− a), which has Laplace transform G(s) = e−asF(s). Since
e−as does not have any poles, G(s) and F(s) have exactly the same poles. That is, the poles
can’t detect this type of shift in time.

3. Pole Diagrams

3.1. Definition of the Pole Diagram

The pole diagram of a function F(s) is simply the complex s-plane with an X marking
the location of each pole of F(s).

Example 1. Draw the pole diagrams for each of the following functions.
a) F1(s) = 1

s+2 b) F2(s) = 1
s−2 c) F3(s) = 1

s2+4

d) F4(s) = s
s2+6s+10 e) F5(s) = 1

((s2+3)2+1)(s+2)(s+4) f) F6(s) = 1
((s+3)2+1)(s−2)

Solution.

(a)

1 3−1−3

i

3i

−i

−3i

X

(b)

1 3−1−3

i

3i

−i

−3i

X

(c)

1 3−1−3

i

3i

−i

−3i

X

X
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(d)

1 3−1−3

i

3i

−i

−3i

X

X

(e)

1 3−1−3

i

3i

−i

−3i

X

X
XX

( f )

1 3−1−3

i

3i

−i

−3i

X

X
X

For (d) we found the poles by first completing the square: s2 + 6s + 10 = (s + 3)2 + 1, so
the poles are at s = −3± i.

Example 2. Use the pole diagram to determine the exponential growth rate of the inverse
Laplace transform of each of the functions in example 1.

Solution.
a) The largest pole is at -2, so the exponential growth rate is -2.
b) The largest pole is at 2, so the exponential growth rate is 2.
c) The poles are ±2i, so the largest real part of a pole is 0. The exponential growth rate is 0.
d) The largest real part of a pole is -3. The exponential growth rate is -3.
e) The largest real part of a pole is -2. The exponential growth rate is -2.
f) The largest real part of a pole is 2. The exponential growth rate is 2.

Example 3. Each of the pole diagrams below is for a function F(s) which is the Laplace
transform of a function f (t). Say whether
(i) f (t)→ 0 as t→ ∞
(ii) f (t)→ ∞ as t→ ∞
(iii) You don’t know the behavior of f (t) as t→ 0,

(a)

1 3−1−3

i

3i

−i

−3i

X

(b)

1 3−1−3

i

3i

−i

−3i

X
X

X

(c)

1 3−1−3

i

3i

−i

−3i

X

X

X

(d)

1 3−1−3

i

3i

−i

−3i

X

(e)

1 3−1−3

i

3i

−i

−3i

X

X

X

( f )

1 3−1−3

i

3i

−i

−3i

X

X

X

X

X

X

(g)

1 3−1−3

i

3i

−i

−3i

X

X

Solution. a) Exponential growth rate is -2, so f (t)→ 0.
b) Exponential growth rate is -2, so f (t)→ 0.
c) Exponential growth rate is 2, so f (t)→ ∞.
d) Exponential growth rate is 0, so we can’t tell how f (t) behaves.
Two examples of this: (i) if F(s) = 1/s then f (t) = 1, which stays bounded; (ii) if
F(s) = 1/s2 then f (t) = t, which does go to infinity, but more slowly than any posi-
tive exponential.
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e) Exponential growth rate is 0, so don’t know the behavior of f (t).
f) Exponential growth rate is 3, so f (t)→ ∞.
g) Exponential growth rate is 0, so don’t know the behavior of f (t). (e.g. both cos t and
t cos t have poles at ±i.

3.2. The Pole Diagram for an LTI System

Definition: The pole diagram for an LTI system is defined to be the pole diagram of its
transfer function.

Example 4. Give the pole diagram for the system

x′′ + 8x′ + 7x = f (t),

where we take f (t) to be the input and x(t) the output.

Solution. The transfer function for this system is W(s) =
1

s2 + 8s + 1
=

1
(s + 1)(s + 7)

.

Therefore, the poles are s = −1, −7 and the pole diagram is

1−1−7

i

−i
XX

Example 5. Give the pole diagram for the system

x′′ + 4x′ + 6x = y′,

where we consider y(t) to be the input and x(t) to be the output.

Solution. Assuming rest IC’s, Laplace transforming this equation gives us (s2 + 4s +
6)X = sY. This implies X(s) =

s
s2 + 4s + 6

Y(s) and the transfer function is W(s) =
s

s2 + 4s + 6
.

This has poles at s = −2±
√

2 i.

1−1 2−2

i

−i

2i

−2i

X

X

Figure: Pole diagram for the system in example 5.

4. Poles and Stability

Recall that the LTI system
p(D)x = f (3)

has an associated homogeneous equation

p(D)x = 0 (4)

In Notes S we saw the following stability criteria.
1. The system is stable if every solution to (4) goes to 0 as t→ ∞.
In words, the unforced system always returns to equilibrium.
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2. Equivalently, the system is stable if all the roots of the characteristic equation have
negative real part.

Now, since the transfer function for the system in (3) is
1

p(s)
the poles of the system are

just the characteristic roots. Comparing this with the stability criterion 2, gives us another
way of expressing the stability criteria.

3. The system is stable if all its poles have negative real part.

4. Equivalently, the system is stable if all its poles lie strictly in the left half of the complex
plane Re(s) < 0.

Criterion 4 tells us how to see at a glance if the system is stable, as illustrated in the
following example.

Example. Each of the following six graphs is the pole diagram of an LTI system. Say which
of the systems are stable.

(a)

1 3−1−3

i

3i

−i

−3i

XX

(b)

1 3−1−3

i

3i

−i

−3i

XX X

X

X

(c)

1 3−1−3

i

3i

−i

−3i

XXXX

(d)

1 3−1−3

i

3i

−i

−3i

XX X X

(e)

1 3−1−3

i

3i

−i

−3i

X

X

X

X

X

( f )

1 3−1−3

i

3i

−i

−3i

X

X

X

Solution. (a), (c) and (e) have all their poles in the left half-plane, so they are stable. The
others do not, so they are not stable.

5. Poles and Amplitude Response

We started by considering the poles of functions F(s), and saw that, by definition, the
graph of |F(s)| went off to infinity at the poles. Since it tells us where |F(s)| is infinite,
the pole diagram provides a crude graph of |F(s)|: roughly speaking, |F(s)| will be large
for values of s near the poles. In this note we show how this basic fact provides a useful
graphical tool for spotting resonant or near-resonant frequencies for LTI systems.

Example 1. Figure 1 shows the pole diagram of a function F(s). At which of the points A,
B, C on the diagram would you guess |F(s)| is largest?
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1−1 2−2

i

−i

2i

−2i

X

X

X

X

•A

•B

•C

Figure 2: Pole diagram for example 1.

Solution. Point A is close to a pole and B and C are both far from poles so we would guess
point |F(s)| is largest at point A.

Example 2. The pole diagram of a function F(s) is shown in Figure 2. At what point s on
the positive imaginary axis would you guess that |F(s)| is largest?

1−1 2−2

i

−i

2i

−2i

3i

−3i

X

X

X

X

X

Figure 2: Pole diagram for example 2.

Solution. We would guess that s should be close to 3 i, which is near a pole. There is not
enough information in the pole diagram to determine the exact location of the maximum,
but it is most likely to be near the pole.

5.1. Amplitude Response and the System Function

Consider the system
p(D)x = f (t). (5)

where we take f (t) to be the input and x(t) to be the output. The transfer function of this
system is

W(s) =
1

p(s)
. (6)

If f (t) = B cos(ωt) then equation FR (2) gives the following periodic solution to (5)

xp(t) =
B cos(ωt− φ)

|p(iω)| , where φ = Arg(p(iω)). (7)

If the system is stable, then all solutions are asymptotic to the periodic solution in (7). In
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this case, we saw (FR (3)) that the amplitude response of the system as a function of ω is

g(ω) =
1

|p(iω)|. (8)

Comparing (6) and (8), we see that for a stable system the amplitude response is related to
the transfer function by

g(ω) = |W(iω)|. (9)

Note: The relation (9) holds for all stable LTI systems.

Using equation (9) and the language of amplitude response we will now re-do example
2 to illustrate how to use the pole diagram to estimate the practical resonant frequencies of
a stable system.

Example 3. Figure 3 shows the pole diagram of a stable LTI system. At approximately
what frequency will the system have the biggest response?

1−1 2−2

i

−i

2i

−2i

3i

−3i

X

X

X

X

X

Figure 3: Pole diagram for example 3 (same as Figure 2).

Solution. Let the transfer function be W(s). Equation (9) says the amplitude response
g(ω) = |W(iω)|. Since iω is on the positive imaginary axis, the amplitude response g(ω)
will be largest at the point iω on the imaginary axis where |W(iω)| is largest. This is
exactly the point found in example 2. Thus, we choose iω ≈ 3i, i.e. the practical resonant
frequency is approximately ω = 3.

Note: Rephrasing this in graphical terms: we can graph the magnitude of the system
function |W(s)| as a surface over the s-plane. The amplitude response of the system
g(ω) = |W(iω)| is given by the part of the system function graph that lies above the
imaginary axis. This is all illustrated beautifully by the applet Amplitude: Pole Diagram.



18.03 LA.1: Phase plane and linear systems

[1] Energy conservation
[2] Energy loss
[3] Companion system
[4] Heat flow
[5] Elimination

[1] Energy conservation

Let’s think again about the harmonic oscillator, mẍ + kx = 0. The
solutions are sinusoids of angular frequency ω =

√
k/m. The mass bounces

back and forth without damping. Let’s check conservation of energy.

From physics we know that energy is the sum of kinetic plus potential.
Kinetic energy is given by

KE =
mẋ2

2

Potential energy can be determined by computing work done. If we declare
the relaxed spring to have PE = 0, then using Hooke’s law when the mass is
at position x

PE = −
∫ x

0

−kx dx =
kx2

2

(When you’re fighting the force, you increase potential energy, so the poten-
tial energy is given by −

∫
F dx. But the direction of force in Hooke’s law

opposes the displacement, so the force is −kx.)

So the total energy of the spring system is given by

E =
kx2

2
+

mẋ2

2
(1)

Let’s see how it changes with time:

Ė = kxẋ + mẋẍ = ẋ(kx + mẍ) = 0

Conservation of energy is in force!

Energy is a function of two variables, x and ẋ. The plane with these
coordinates is called the phase plane. It is traditional to draw x horizontally

1



and ẋ vertically. Contours of constant energy are curves on this plane, namely
ellipses. Rearranging (1),

x2

2E/k
+

ẋ2

2E/m
= 1

so the maximal value (i.e. the amplitude) of x is
√

2E/k and the amplitude

of ẋ is
√

2E/m. These are the semi-axes of the ellipse. These formulas make
sense: For given energy, small spring constant means big swing; small mass
means large velocity.

As time increases, the point (x(t), ẋ(t)) traces out this ellipse. Which el-
lipse depends on the energy. You get a whole family of nested non-intersecting
curves. This is called the phase diagram of this system.

Question 10.1. In which direction is the ellipse traversed?

1. Clockwise
2. Counterclockwise
3. Depends
4. I don’t know

Well, above the axis ẋ > 0, which means that x is increasing. So the
answer is 1, clockwise.

In a phase diagram, trajectories move to the right above the horizontal
axis, and to the left below it.

How about when the trajectory crosses the horizontal? Well there ẋ = 0:
the tangent is vertical. It crosses at right angles.

As the point moves around the ellipse, energy in the system sloshes back
and forth between potential (when |x| is large and |ẋ| is small) and kinetic
(when |ẋ| is large and |x| is small).

[2] Energy loss

What happens when we introduce some damping? So now

mẍ + bẋ + kx = 0 (2)

Our equation for the energy is unchanged, but now

Ė = ẋ(kx + mẍ) = −bẋ2

2



Energy is lost to friction. The dashpot heats up. The loss is largest when |ẋ|
is largest, and zero when ẋ = 0.

The effect of the friction is that the trajectory crosses through the equal-
energy ellipses; it spirals in towards the origin, clockwise.

The x and ẋ graphs are damped sinusoids, out of phase with each other.

Wait, that’s just the underdamped case. The other option is that the
trajectory just curves in to zero without spiralling. These are clearly shown
in the Mathlet “Linear Phase Portraits: Matrix Entry.”

[3] The companion system

In introducing ẋ as an independent variable, we’ve done something im-
portant. We’ve rewritten the original equation as a first order equation. To
be clear about this, let’s write y for the new variable. It’s related to x: y = ẋ.
What’s ẏ? To keep the notation clean, let me replace b by b

m
and k by k

m
.

ẏ = ẍ = −kx− bẋ = −kx− by

So we have a pair of linked differential equations, a system of ordinary dif-
ferential equations. (Sorry about the overuse of the word “system.”){

ẋ = y
ẏ = −kx− by

This is called the companion system of the equation (2).

We might as well use vector notation:

u =

[
x
y

]
so u̇ =

[
ẋ
ẏ

]
so we can write our equation using matrix multiplication:

u̇ =

[
0 1
−k −b

]
u

The matrix here is the companion matrix of the differential operator D2 +
bD + kI.

This is pretty amazing! We have replaced a second order equation with
a first order (but now vector-valued) equation!

3



You can even incorporate a forcing term:

ẍ + bẋ + kx = q(t)

translates as {
ẋ = y
ẏ = −kx− by + q(t)

or

u̇ =

[
0 1
−k −b

]
u +

[
0

q(t)

]
Note also that the linear second order equation translated into a linear

first order vector valued equation, and that homogeneity is preserved.

You can do this with higher order equations too: For a third order equa-
tion

...
x + a2ẍ + a1ẋ + a0x = 0, say y = ẋ, z = ẏ, so ż = −a2z − a1y − a0x

and

d

dt

 x
y
z

 =

 0 1 0
0 0 1
−a0 −a1 −a2

 x
y
z


Side note: Numerical schemes work with first order equations only. To

solve a higher order equation numerically, one replaces it by its companion
first order system. We’ll discuss this in December.

[4] Heat flow

Suppose I have a thermally insulated rod, and I’m interested in how heat
flows through it.

I’ll install a thermometer every foot, and just think about heat transfers
between those points. Suppose for a start that the rod is three feet long. So
there are four temperatures, x0, x1, x2, and x3, to consider.

Let’s suppose that the temperatures at the end are fixed, constant, but
x1 and x2 are functions of time.

Well, the linear or Newtonian approach goes as follows: if x0 > x1, there
will be an upward pressure on x1 that is proportional to the difference x0−x1.
Independently of this, if x2 > x1, there will be an upward pressure on x1 that
is proportional to the difference x2 − x1.

Putting them together,

ẋ1 = k((x0 − x1) + (x2 − x1)) = k(x0 − 2x1 + x2)

4



Similarly,
ẋ2 = k(x1 − 2x2 + x3)

This is a linked system of equations, which we can express in matrix form,
using

d

dt

[
x1

x2

]
= k

[
−2 1
1 −2

][
x1

x2

]
+ k

[
x0

x3

]
(3)

A four foot section would lead to

d

dt

 x1

x2

x3

 = k

 −2 1 0
1 −2 1
0 1 −2

 x1

x2

x3

+ k

 x0

0
x4


and you can imagine from this what longer sections would look like.

The general picture is this: We have a system whose state is determined
not by a single number but rather by a vector u of n numbers. (Maybe

the vector is

[
x
ẋ

]
, but maybe not.) The rate of change of u at time t

is determined by the value of u(t) (and perhaps the value of t), and we
will mainly assume that this determination is linear, which means that the
equation is

u̇ = Au + q(t)

where A is an n×n matrix A. The matrix A represents the physical system.
q(t) is a “driving term” (perhaps the end point temperatures of the rod).
To get a particular solution one has to specify an initial condition, u(0),
consisting of n numbers.

There is a slight change of convention in force here: We are now isolating
the u̇ on the left, and putting everything else—representation of the system
and input signal alike—on the right. There’s a sign reversal that happens;
this is reflected in the signs in the formula for the companion matrix.

First order systems of linear equations incorporate higher order linear
differential equations, while giving natural representations of other types of
physical phenomena. To gain the deepest possible insight into their behavior,
it’s best to develop some of the theory of matrices, especially the square
matrices that show up in the model above.
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[5] Elimination

Do you think we can rewrite the equation (3) as a second order equation?
Let’s try. Maybe I’ll take x0 = x3 = 0, the homogeneous case. If we succeed:

Question 10.2 Do you expect this to be underdamped or overdamped?

1. Underdamped
2. Overdamped

Well, do you really expect oscillations in the heat distribution? Let’s see.{
ẋ1 = −2kx1 + kx2

ẋ2 = kx1 − 2kx2

Let’s try to eliminate x2. I can use the first equation to solve for it in terms
of x1: kx2 = ẋ1 + 2kx1. If I substitute this into k times the second equation
I get

ẍ1 + 2kẋ1 = k2x1 − 2k(ẋ1 + 2kx1)

or
ẍ1 + 4kẋ1 + 3k2x1 = 0

OK, the characteristic polynomial is

p(s) = s2 + 4ks + 3k2 = (s + k)(s + k)

so the roots are −1 and −3. Overdamped. General solution:

x1 = ae−kt + be−3kt

You can always do this; but it’s not very systematic or insightful, and it
breaks the symmetry of the variables. Linear algebra offers a better way.
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18.03 LA.2: Matrix multiplication, rank, solving linear
systems

[1] Matrix Vector Multiplication Ax
[2] When is Ax = b Solvable ?
[3] Reduced Row Echelon Form and Rank
[4] Matrix Multiplication
[5] Key Connection to Differential Equations

[1]Matrix Vector Multiplication Ax

Example 1:

Ax =

1 2
4 5
3 7

[x1

x2

]
.

I like to think of this multiplication as a linear combination of the columns:

Ax =

1 2
4 5
3 7

[x1

x2

]
= x1

1
4
3

+ x2

2
5
7

 .

Many people think about taking the dot product of the rows. That is
also a perfectly valid way to multiply. But this column picture is very nice
because it gets right to the heart of the two fundamental operation that we
can do with vectors.

We can multiply them by scalar numbers, such as x1 and x2, and we can
add vectors together. This is linearity.

[2] When is Ax = b Solvable?

There are two main components to linear algebra:

1. Solving an equation Ax = b

2. Eigenvalues and Eigenvectors

This week we will focus on this first part. Next week we will focus on the
second part.

1



Given an equation Ax = b, the first questions we ask are :

Question Is there a solution?

Question If there is a solution, how many solutions are there?

Question What is the solution?

Example 2: Let’s start with the first question. Is there a solution to this
equation? 1 2

4 5
3 7

 [
x1

x2

]
=

b1b2
b3


3× 2 2× 1 3× 1

Notice the dimensions or shapes. The number of columns of A must be
equal to the number of rows of x to do the multiplication, and the vector
we get has the dimension with the same number of rows as A and the same
number of columns as x.

Solving this equation is equivalent to finding x1 and x1 such that the
linear combination of columns of A gives the vector b.

Example 3: 1 2
4 5
3 7

[x1

x2

]
=

2
5
7


The vector b is the same as the 2nd column of A, so we can find this solution

by inspection, the answer is x =

[
0
1

]
.

But notice that this more general linear equation from Example 2:1 2
4 5
3 7

[x1

x2

]
=

b1b2
b3


is a system with 3 equations and 2 unknowns. This most likely doesn’t have a
solution! This would be like trying to fit 3 points of data with a line. Maybe
you can, but most likely you can’t!

To understand when this system has a solution, let’s draw a picture.
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All linear combinations of columns of A lie on a plane.

What are all linear combinations of these two columns vectors? How do
you describe it?

It’s a plane! And it is a plane that goes through the origin, because

0

1
4
3

+ 0

2
5
7

 = 0.

It is helpful to see the geometric picture in these small cases, because the
goal of linear algebra is to deal with very large matrices, like 1000 by 100.
(That’s actually a pretty small matrix.)

What would the picture of a 1000 by 100 matrix be?

It lives in 1000-dimensional space. What would the 100 column vectors
span? Or, what is the space of all possible solutions?

Just a hyperplane, a flat, thin, at most 100-dimensional space inside of
1000-dimensions. But linear algebra gets it right! That is the power of linear
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algebra, and we can use our intuition in lower dimensions to do math on
much larger data sets.

The picture exactly tells us what are the possible right hand sides to
the equation. Ax = b/ If b is in the plane, then there is a solution to the
equation!

All possible b ⇐⇒ all possible combinations Ax.

In our case, this was a plane. We will call this plane, this subspace, the
column space of the matrix A.

If b is not on that plane, not in that column space, then there is no
solution.

Example 4: What do you notice about the columns of the matrix in this
equation? 1 3

4 12
3 9

[x1

x2

]
=

b1b2
b3


The 2nd column is a multiple of the 1st column. We might say these

columns are dependent.

The picture of the column space in this case is a line.

All linear combinations of columns of A lie along a line.
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[3] Reduced Row Echelon Form and Rank

You learned about reduced row echelon form in recitation. Matlab and
other learn algebra systems do these operation.

Example 5: Find the reduced row echelon form of our matrix:1 2
4 5
3 7

 .

It is 1 0
0 1
0 0

 .

It is very obvious that the reduced row echelon form of the matrix has 2
columns that are independent.

Let’s introduce a new term the rank of a matrix.

Rank of A = the number of independent columns of A.

Example 6: Find the row echelon form of1 3
4 12
3 9

 .

But what do you notice about the rows of this matrix? We made this
matrix by making the columns dependent. So the rank is 1. We didn’t touch
the rows, this just happened.

How many independent rows are there?

1!

The reduced row echelon form of this matrix is1 3
0 0
0 0

?
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This suggests that we can define rank equally well as the number of
independent rows of A.

Rank of A = the number of independent columns of A
the number of independent rows of A

The process of row reduction provides the algebra, the mechanical steps
that make it obvious that the matrix in example 5 has rank 2! The steps of
row reduction don’t change the rank, because they don’t change the number
of independent rows!

Example 7: What if I create a 7x7 matrix with random entries. How many
linearly independent columns does it have?

7 if it is random!

What is the row echelon form? It’s the identity.

To create a random 7x7 matrix with entries random numbers between 0
and 1, we write

rand(7).

The command for reduced row echelon form is rref. So what you will see is
that

rref(rand(7))=eye(7).

The command for the identity matrix is

eye(n).

That’s a little Matlab joke.

[4] Matrix Multiplication

We thought of Ax = b as a combination of columns. We can do the same
thing with matrix multiplication.

AB = A

 | | |
b1 b2 · · · bn

| | |

 =

 | | |
Ab1 Ab2 · · · Abn

| | |
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This perspective leads to a rule A(BC) = (AB)C. This seemingly simple
rule takes some messing around to see. But this observation is key to many
ideas in linear algebra. Note that in general AB 6= BA.

[5] Key Connection to Differential Equations

We want to find solutions to equations Ax = b where x is an unknown.

You’ve seen how to solve differential equations like

dx

dt
− 3t5x = b(t).

The key property of this differential equation is that it is linear in x. To find
a complete solution we need to find one particular solution and add to it all
the homogeneous solution. This complete solution describes all solutions to
the differential equation.

The same is true in linear algebra! Solutions behave the same way. This
is a consequence of linearity.

Example: 8 Let’s solve 1 3
4 12
3 9

[x1

x2

]
=

2
8
6

 .

This matrix has rank 1, it has dependent columns. We chose b so that
this equation is solvable. What is one particular solution?

xp =

[
2
0

]
is one solution. There are many solutions. For example[

−1
1

] [
5
−1

] [
−22

8

]
But we only need to choose one particular solution. And we’ll choose [2;0].

What’s the homogeneous solution? We need to solve the equation1 3
4 12
3 9

[x1

x2

]
=

0
0
0

 .
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One solution is

[
−3
1

]
, and all solutions are given by scalar multiples of

this one solution, so all homogenous solutions are described by

xh = c

[
−3
1

]
c a real number.

The complete solution is

xcomplete =

[
2
0

]
+ c

[
−3
1

]
.

Here is how linearity comes into play!

Axcomplete = A(xp + xh) = Axp + Axh =

b1b2
b3

+

0
0
0
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18.03 LA.3: Complete Solutions, Nullspace, Space,
Dimension, Basis

[1] Particular solutions
[2] Complete Solutions
[3] The Nullspace
[4] Space, Basis, Dimension

[1] Particular solutions

Matrix Example

Consider the matrix equation

[
1 1

] [x1

x2

]
=
[
8
]

The complete solution to this equation is the line x1 + x2 = 8. The
homogeneous solution, or the nullspace is the set of solutions x1 + x2 = 0.
This is all of the points on the line through the origin. The homogeneous
and complete solutions are picture in the figure below.

Figure 1: The homogeneous and complete solutions
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To describe a complete solution it suffices to choose one particular solu-
tion, and add to it, any homogeneous solution. For our particular solution,
we might choose [

8
0

]
or

[
0
8

]
or

[
4
4

]
If we add any homogeneous solution to this particular solution, you move

along the line x1 +x2 = 8. All this equation does is take the equation for the
homogeneous line, and move the origin of that line to the particular solution!

How do solve this equation in Matlab? We type

x = [1 1] \ [8]

In general we write

x = A \ b

Differential Equations Example

Let’s consider the linear differential equation with initial condition given:

dy

dt
+ y = 1

y(0)

To solve this equation, we can find one particular solution and add to
it any homogeneous solution. The homogeneous solution that satisfies the
initial condition is xh = y(0)e−t. So then a particular solution must satisfy
yp(0) = 0 so that xp(0) + xh(0) = y(0), and such a particular solution is
yp = 1− e−t. The complete solution is then:

complete solution particular solution homogeneous solution
y = 1− e−t + y(0)e−t

However, maybe you prefer to take the steady state solution. The steady
state solution is when the derivative term vanishes, dy

dt
= 0. So instead we
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can choose the particular solution yp = 1. That’s an excellent solution to
choose. Then in order to add to this an homogeneous solution, we add some
multiple of e−t so that at t = 0 the complete solution is equal to y(0) and we
find

complete solution particular solution homogeneous solution

y = 1 + (y(0)− 1)e−t

↑ ↑
steady state solution transient solution

The solution 1 is an important solution, because all solutions, no matter
what initial condition, will approach the steady state solution y = 1.

There is not only 1 particular solution. There are many, but we have to
choose 1 and live with it. But any particular solution will do.

[2] Complete Solutions

Matrix Example

Let’s solve the system:

x1 +cx3 = b1
x2 +dx3 = b2

What is the matrix for this system of equations?

A =

[
1 0 c
0 1 d

]
Notice that A is already in row echelon form! But we could start with

any system

x1 +3x2 +5x3 = b1
4x1 +7x2 +19x3 = b2
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and first do a sequence of row operations to obtain a row echelon matrix.
(Don’t forget to do the same operations to b1 and b2:[

2 3 5
... b1

4 7 17
... b2

]
−→

[
2 3 5

... b1

0 1 9
... b2 − 2b1

]
−→

[
1 3/2 5/2

... b1/2

0 1 9
... b2 − 2b1

]

−→

[
1 0 −11

... 5b1/2− 3b2/2

0 1 9
... b2 − 2b1

]

Let’s find the complete solution to Ax = b for the matrix

A =

[
1 0 c
0 1 d

]
.

Geometrically, what are we talking about?

The solution to each equation is a plane, and the planes intersect in a line.
That line is the complete solution. It doesn’t go through 0! Only solutions
to the equation Ax = 0 will go through 0!

So let’s find 1 particular solution, and all homogeneous solutions.

Recommended particular solution: Set the free variable x3 = 0. Then

xp =

b1b2
0

 .

We could let the free variable be any value, but 0 is a nice choice because
with a reduced echelon matrix, it is easy to read off the solution.

So what about the homogenous, or null solution. I will write xn instead
of xh for the null solution of a linear system, but this is the same as the
homogeneous solution. So now we are solving Ax = 0. The only bad choice
is x3 = 0, since that is the zero solution, which we already know. So instead
we choose x3 = 1. We get

xn = C

−c−d
1
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The complete solution is

xcomplete =

b1b2
0

+ C

−c−d
1

 .

This is the power of the row reduced echelon form. Once in this form,
you can read everything off!

Differential Equations Example

Let’s consider the differential equation y′′+ y = 1. We can choose the steady
state solution for the particular solution yp = 1.

Let’s focus on solving y′′+ y = 0. What is the nullspace of this equation?

We can’t say vectors here. We have to say functions. But that’s OK.
We can add functions and we can multiply them by constants. That’s all we
could do with vectors too. Linear combinations are the key.

So what are the homogeneous solutions to this equation? Give me just
enough, but not too many.

One answer is yh = c1 cos(t) + c2 sin(t). Using linear algebra terminology,
I would say there is a 2-dimensional nullspace. There are two independent
solutions cos(t) and sin(t), and linear combinations of these two solutions
gives all solutions!

sin(t) and cos(t) are a basis for the nullspace.

A basis means each element of the basis is a solution to Ax = 0. Can
multiply by a constant and we still get a solution. And we can add together
and still get a solution. Together we get all solutions, but the sin(t) and
cos(t) are different or indepenedent solutions.

What’s another description of the nullspace?

C1e
it + C2e

−it

This description is just as good. Better in some ways (fulfills the pattern
better), not as good in others (involves complex numers). The basis in this
case is eit and e−it. They are independent solutions, but linear combinations
give all null solutions.
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If you wanted to mess with your TA, you could choose yh = Ceit+D cos(t).
This is just as good.

We’ve introduced some important words. The basis for the nullspace. In
this example, the beauty is that the nullspace will always have 2 functions
in it. 2 is a very important number.

• The degree of the ODE is 2

• There are 2 constants

• 2 initial conditions are needed

• The dimension of the nullspace is 2.

[3] The nullspace

Suppose we have the equation Rx = 0. The collection of x that solve this
equation form the nullspace. The nullspace always goes through the origin.

Example

Suppose we have a 5 by 5 matrix. Does it have an inverse or doesn’t it?
Look at the nullspace! If only solution in the nullspace is 0, then yes, it is
invertible. However, if there is some nonzero solution, then the matrix is not
invertible.

The other importan work we used is space.

Matrix Example

Let NR denote the nullspace of R:

R =

[
1 0 c
0 1 d

]

What’s a basis for the nullspace? A basis could be

−c−d
1

. Or we could
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take

−2c
−2d

2

. The dimension is 3 − 2 = 1. So there is only one element in

the basis.

Why can’t we take 2 vectors in the basis?

Because they won’t be independent elements!

Differential Equations Example

For example, Ceit + D cos(t) + E sin(t) does not form a basis because they
are not independent! Euler’s formula tells us that eit = cos(t) + i sin(t), so
eit depends on cos(t) and sin(t).

[4] Space, Basis, Dimension There are a lot of important words that have
been introduced.

• Space

• Basis for a Space

• Dimension of a Space

We have been looking at small sized examples, but these ideas are not
small, they are very central to what we are studying.

First let’s consider the word space. We have two main examples. The
column space and the nullspace.

A Column Space Nullspace
Definition All linear cominations of the columns of A All solutions to Ax = 0

50× 70 matrix Column space lives in R50 Nullspace lives in R70

m× n matrix Column space lives in Rm Nullspace lives in Rn

Definition V is a space (or vector space) when: if x and y are in the
space, then for any constant c, cx is in the space, and x + y is also in the
space. That’s superposition!

Let’s make sense of these terms for a larger matrix that is in row echelon
form.
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Larger Matrix Example

R =

= 1 2 0 3
0 0 1 4
0 0 0 0

 .

The first and third columns are the pivot columns. The second and forth
are free columns.

What is the column space, C(R)?

All linear combinations of the columns. Is

3
3
3

 in the column space? No

it’s not. The column space is the xy-plane, all vectors

ab
0

. The dimension

is 2, and a basis for the column space can be taken to be the pivot columns.
1

0
0

 ,

0
1
0


Note, if your original matrix wasn’t in rref form, you must take the orig-

inal form of the pivot columns as your basis, not the row reduced form of
them!

What is a basis for the nullspace, N(R)?

−2
1
0
0

 ,


−3
0
4
1




The reduced echelon form makes explicit the linear relations between the
columns.

The relationships between the columns of A are the same as the linear
relationships between the columns of any row-equivalent matrix, such as the
reduced echelon form R. So a pivot indicates that this column is independent
of the previous columns; and, for example, the 2 in the second column in this
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reduced form is a record of the fact that the second column is 2 times the
first. This is why the reduced row echelon form is so useful to us. It allows
us to immediately read off a basis for both the independent columns, and
the nullspace.

Note that this line of thought is how you see that the reduced echelon
form is well-defined, independent of the sequence of row operations used to
obtain it.
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18.03 LA.4: Inverses and Determinants

[1] Transposes
[2] Inverses
[3] Determinants

[1] Transposes

The transpose of a matrix A is denoted AT , or in Matlab, A′.

The transpose of a matrix exchanges the rows and columns. The ith
column becomes the ith row. Or the aij entry becomes the aji entry.

Example:

A =

[
1 2 4
3 5 7

] 1 3
2 5
4 7


Symmetric Matrices are square matrices that satisfy A = AT .

Example:

A =

1 3 9
3 2 5
9 5 8


We’ll see that the eigenvalues of symmetric matrices are great. The eigen-

vectors are even better! And symmetric matrices come up all of the time.

Property of transposes:

(AB)T = BTAT
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[2] Inverses

Important questions:

• Is a matrix A invertible?

• How do you compute the inverse?

Let A be a square matrix. Suppose it has an inverse. We denote the
inverse by A−1, and it has the property that

AA−1 = I A−1A = I.

The fact that the inverse is simultaneously a right and left inverse is not
immediately obvious. See if you can use the associative property (AB)C =
A(BC) to see why this must be the case when A is square.

If the inverse of A and B both exists, and both matrices have the same
shape, then

(AB)−1 = B−1A−1

Corny Example:

If B represents taking off your jacket, and A represents taking off your
sweater, then it makes sense that you first take of your jacket, and then
take off your sweater. To find the inverse, which is to reverse this process,
it makes sense that we have to reverse the order. First you put the sweater
back on, and then you put your jacket on.

So let’s start to answer our question: when is a matrix invertible? To
answer this question, we’ll look at when it is NOT invertible first.

A is NOT invertible when:

• The determinant of A is zero.

• There exists a nonzero vector x so that Ax = 0.
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Examples of matrices that are easy to invert:

2 by 2 matrices are easy to invert:[
a b
c d

]−1
=

1

ad− bc

[
d −b
c a

]
Check that the product of this matrix with its inverse is the identity.

The quantity in the denominator ad−bc is the determinant of that matrix.
That’s why it can’t be zero. This is true for 5 by 5 matrices, 10 by 10 matrices,
the inverse will always involve dividing by the determinant.

Diagonal matrices are easy to invert:


d1

d2
d3

d4


−1

=


1/d1

1/d2
1/d3

1/d4


Example of non-invertible matrix

A =

 3 −1 −2
−4 7 −3
−3 −2 5


We notices that the sum of each row is zero. So

 3 −1 −2
−4 7 −3
−3 −2 5




1
1
1
1

 = 0

The vector
[
1 1 1 1

]T
is in the nullspace of A.

Let’s see why if there is a nonzero vector in the nullspace, then A can’t
be invertible.

3



Proof: Suppose x 6= 0 and Ax = 0. If A−1 existed, then

A−1Ax = A−10

Ix = 0

x = 0

This contradiction forces us to accept that an inverse must not exist!
QED

Conditions for Invertibility:

• detA 6= 0.

• Nullspace of A is 0.

• Columns are independent.

• A has full rank (rank of A = n if A is an n by n matrix).

• Rows are independent.

• The row echelon form of A has a full set of nonzero pivots.

• rref A is the identify.

• Ax = b has a solution for every b.

This last condition is the question we’ve been interested in, when can
we solve this equation. The idea is that when it is always solvable, then
x = A−1b.

Proof:

Ax = b

A−1Ax = A−1b

x = A−1b

QED
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Triangular Matrices

If A is upper triangular,

A =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


we can tell whether or not A is invertible immediately by looking at the
diagonal, or pivot entries. If all the diagonal entries are nonzero, the matrix
is invertible.

For example, the matrix 
3 π e ρ
0 2 δ 0
0 0 1 0
0 0 0 7


is invertible, and its determinant is the product of these pivots, which is 42.

Computing Inverses

We’ve seen a bunch of connected ideas about when a matrix is invertible.
And it is important to understand that you basically never want to compute
the inverse. In Matlab, you could solve the equation Ax = b by typing

inv(A)*b

This is correct, but not smart. Instead, use

A \ b

which cleverly checks for certain forms of a matrix, and ultimately will row
reduce to find the solution.

However, if we want to compute A−1 there is a complicated formula in-
volving determinants. But what you want to do is really solve the equation
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AA−1 = I. Let a′1, a
′
2, . . . , a

′
n denote the columns of A−1. Then solving for

A−1 is equivalent to solving the n equations:

Aa′1 =


1
0
0
...
0

 Aa′2 =


0
1
0
...
0

 · · · Aa′n =


0
0
...
0
1


Recall that to solve Ax = b, we augment the matrix A with the column

b and do row operations until we end up with a row reduced matrix where
we can read off the solutions:

[A|b] −→ Apply row operations −→ [R|d]

It turns out we can solve all n of our equations simulaneously by aug-
menting the matrix A with the matrix I, [A|I] and then performing row
operations. Because A is invertible, its reduced row echelon form is I, and
what you end up with is I on the left, augmented by the solutions to Ax = I
on the right. But that solution is exactly A−1.

Computing the inverse

• Augment A with the identity matrix: [A|I]

• Apply row operations until A reaches row reduced echelon form (rref)

• What you are left with on the augmented side is the collection of
columns of A−1: [I|A−1]

[3] Determinants

Example 2 by 2

det

[
a b
c d

]
= ad− bc
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In general, the determinant of a square matrix is a single number. This
entry depends on all of the entries of the matrix.

Properties of the determinant:

• det I = 1

• If you subtract m times row i and subtract that from row j, the de-
terminants is unchanged! Example, subtract 4 times row 1 from row
2:

det

1 1 1
4 3 1
7 2 1

 = det

1 1 1
0 −1 −3
7 2 1


• If you exchange rows, the determinant changes sign. Example:

det I = − det

1 0 0
0 0 1
0 1 0


• If you multiply a row by a number c, the determinant is multiplied by
c.

det

c c c
4 3 1
7 2 1

 = c det

1 1 1
4 3 1
7 2 1


• det(AB) = detA detB

Example

Suppose I have a matrix A such that two of its rows are equal. Then if I
exchange those rows, the matrix is unchanged. But by the third property,
this implies that detA = − detA, which can only be true if detA is zero. This
tells us that any matrix whose rows and not independent has determinant
equal to zero.
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Example 3 by 3

The 3 by 3 determinant has 6 = 3! terms. Each term is a multiple of a three
entries, one from each row and column.

1 2 3
2 3 4
3 4 5

 = 1 · 3 · 5 + 2 · 4 · 3 + 3 · 2 · 4− 2 · 2 · 5− 1 · 4 · 4− 3 · 3 · 3

This matrix satisfies the equation1 2 3
2 3 4
3 4 5

 −1
2
−1

 =

0
0
0


so the determinant must be zero.

In general, the determinant of an n by n matrix is a sum of n! terms all
combined into one number. A 4 by 4 matrix already has 24 terms! That
is a lot of terms. The key idea here is that if a matrix is not invertible, its
determinant is zero.
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18.03 LA.5: Eigenvalues and Eigenvectors

[1] Eigenvectors and Eigenvalues
[2] Observations about Eigenvalues
[3] Complete Solution to system of ODEs
[4] Computing Eigenvectors
[5] Computing Eigenvalues

[1] Eigenvectors and Eigenvalues

Example from Differential Equations

Consider the system of first order, linear ODEs.

dy1
dt

= 5y1 + 2y2

dy2
dt

= 2y1 + 5y2

We can write this using the companion matrix form:[
y′1
y′2

]
=

[
5 2
2 5

] [
y1
y2

]
.

Note that this matrix is symmetric. Using notation from linear algebra,
we can write this even more succinctly as

y′ = Ay.

This is a coupled equation, and we want to uncouple it.

Method of Optimism

We’ve seen that solutions to linear ODEs have the form ert. So we will look
for solutions
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y1 = eλta

y2 = eλtb

Writing in vector notation:

y = eλt
[
a
b

]
= eλtx

Here λ is the eigenvalue and x is the eigenvector.

To find a solution of this form, we simply plug in this solution into the
equation y′ = Ay:

d

dt
eλtx = λeλtx

Aeλtx = eλtAx

If there is a solution of this form, it satisfies this equation

λeλtx = eλtAx.

Note that because eλt is never zero, we can cancel it from both sides of
this equation, and we end up with the central equation for eigenvalues and
eigenvectors:

λx = Ax

Definitions

• A nonzero vector x is an eigenvector if there is a number λ such that
Ax = λx.

• The scalar value λ is called the eigenvalue.

Note that it is always true that A0 = λ · 0 for any λ. This is why we
make the distinction than an eigenvector must be a nonzero vector, and an
eigenvalue must correspond to a nonzero vector. However, the scalar value
λ can be any real or complex number, including 0.
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This is a subtle equation. Both λ and x are unknown. This isn’t exactly
a linear problem. There are more unknowns.

What is this equation saying? It says that we are looking for a vector x
such that x and Ax point in the same direction. But the length can change,
the length is scaled by λ.

Note that this isn’t true for most vectors. Typically Ax does not point
in the same direction as x.

Example

If λ = 0, our central equation becomes Ax = 0x = 0. The eigenvector x
corresponding to the eigenvalue 0 is a vector in the nullspace!

Example

Let’s find the eigenvalues and eigenvectors of our matrix from our system of
ODEs. That is, we want to find x and λ such that[

5 2
2 5

] [
?
?

]
= λ

[
?
?

]
By inspection, we can see that[

5 2
2 5

] [
1
1

]
= 7

[
1
1

]
.

We have found the eigenvector x1 =

[
1
1

]
corresponding to the eigenvalue

λ1 = 7.

So a solution to a differential equation looks like

y = e7t
[
1
1

]
Check that this is a solution by pluging

y1 = e7t and

y2 = e7t
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into the system of differential equations.

We can find another eigenvalue and eigenvector by noticing that[
5 2
2 5

] [
1
−1

]
= 3

[
1
−1

]
.

We’ve found the nonzero eigenvector x2 =

[
1
−1

]
with corresponding

eigenvalue λ2 = 3.

Check that this also gives a solution by plugging

y1 = e3t and

y2 = −e3t

back into the differential equations.

Notice that we’ve found two independent solutions x1 and x2. More is
true, you can see that x1 is actually perpendicular to x2. This is because
the matrix was symmetric. Symmetric matrices always have perpendicular
eigenvectors.

[2] Observations about Eigenvalues

We can’t expect to be able to eyeball eigenvalues and eigenvectors everytime.
Let’s make some useful observations.

We have

A =

[
5 2
2 5

]
and eigenvalues

λ1 = 7

λ2 = 3

• The sum of the eigenvalues λ1 + λ2 = 7 + 3 = 10 is equal to the sum of
the diagonal entries of the matrix A is 5 + 5 = 10.
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The sum of the diagonal entries of a matrix A is called the trace and is
denoted tr (A).

It is always true that
λ1 + λ2 = tr (A).

If A is an n by n matrix with n eigenvalues λ1, . . . , λn, then

λ1 + λ2 + · · ·+ λn = tr (A)

• The product of the eigenvalues λ1λ2 = 7 · 3 = 21 is equal to detA =
25− 4 = 21.

In fact, it is always true that

λ1 · λ2 · · ·λn = detA .

For a 2 by 2 matrix, these two pieces of information are enough to compute
the eigenvalues. For a 3 by 3 matrix, we need a 3rd fact which is a bit more
complicated, and we won’t be using it.

[3] Complete Solution to system of ODEs

Returning to our system of ODEs:[
y′1
y′2

]
=

[
5 2
2 5

] [
y1
y2

]
.

We see that we’ve found 2 solutions to this homogeneous system.[
y1
y2

]
= e7t

[
1
1

]
and e3t

[
1
−1

]
The general solution is obtained by taking linear combinations of these

two solutions, and we obtain the general solution of the form:[
y1
y2

]
= c1e

7t

[
1
1

]
+ c2e

3t

[
1
−1

]
5



The complete solution for any system of two first order ODEs has the form:

y = c1e
λ1tx1 + c2e

λ2tx2,

where c1 and c2 are constant parameters that can be determined from the
initial conditions y1(0) and y2(0). It makes sense to multiply by this param-
eter because when we have an eigenvector, we actually have an entire line of
eigenvectors. And this line of eigenvectors gives us a line of solutions. This
is what we’re looking for.

Note that this is the general solution to the homogeneous equation y′ =
Ay. We will also be interested in finding particular solutions y′ = Ay + q.
But this isn’t where we start. We’ll get there eventually.

Keep in mind that we know that all linear ODEs have solutions of the
form ert where r can be complex, so this method has actually allowed us to
find all solutions. There can be no more and no less than 2 independent
solutions of this form to this system of ODEs.

In this example, our matrix was symmetric.

• Symmetric matrices have real eigenvalues.

• Symmetric matrices have perpendicular eigenvectors.

[4] Computing Eigenvectors

Let’s return to the equation Ax = λx.

Let’s look at another example.

Example

A =

[
2 4
0 3

]
This is a 2 by 2 matrix, so we know that

λ1 + λ2 = tr (A) = 5

λ1 · λ2 = det(A) = 6
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The eigenvalues are λ1 = 2 and λ2 = 3. In fact, because this matrix was
upper triangular, the eigenvalues are on the diagonal!

But we need a method to compute eigenvectors. So lets’ solve

Ax = 2x.

This is back to last week, solving a system of linear equations. The key idea
here is to rewrite this equation in the following way:

(A− 2I)x = 0

How do I find x? I am looking for x in the nullspace of A− 2I! And we
already know how to do this.

We’ve reduced the problem of finding eigenvectors to a problem that we
already know how to solve. Assuming that we can find the eigenvalues λi,
finding xi has been reduced to finding the nullspace N(A− λiI).

And we know that A − λI is singular. So let’s compute the eigenvector
x1 corresponding to eigenvalue 2.

A− 2I =

[
0 4
0 1

]
x1 =

[
0
0

]
By looking at the first row, we see that

x1 =

[
1
0

]
is a solution. We check that this works by looking at the second row.

Thus we’ve found the eigenvector x1 =

[
1
0

]
corresponding to eigenvalue

λ1 = 2.

Let’s find the eigenvector x2 corresponding to eigenvalue λ2 = 3. We do
this by finding the nullspace N(A− 3I), we wee see is

A− 3I =

[
−1 4
0 0

] [
4
1

]
=

[
0
0

]

The second eigenvector is x2 =

[
4
1

]
corresponding to eigenvalue λ2 = 3.
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Important observation: this matrix is NOT symmetric, and the eigenvec-
tors are NOT perpendicular!

[5] Method for finding Eigenvalues

Now we need a general method to find eigenvalues. The problem is to find λ
in the equation Ax = λx.

The approach is the same:

(A− λI)x = 0.

Now I know that (A−λI) is singular, and singular matrices have determi-
nant 0! This is a key point in LA.4. To find λ, I want to solve det(A−λI) = 0.
The beauty of this equation is that x is completely out of the picture!

Consider a general 2 by 2 matrix A:

A =

[
a b
c d

]
A− λI =

[
a− λ b
c d− λ

]
.

The determinant is a polynomial in λ:

det(A− λI) = λ2 − (a+ d)λ + (ad− bc) = 0
↑ ↑

tr (A) det(A)

This polynomial is called the characteristic polynomial. This polynomial
is important because it encodes a lot of important information.

The determinant is a polynomial in λ of degree 2. If A was a 3 by 3
matrix, we would see a polynomial of degree 3 in λ. In general, an n by n
matrix would have a corresponding nth degree polynomial.

Definition

The characteristic polynomial of an n by n matrix A is the nth degree poly-
nomial det(A− λI).
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• The roots of this polynomial are the eigenvalues of A.

• The constant term (the coefficient of λ0) is the determinant of A.

• The coefficient of λn−1 term is the trace of A.

• The other coefficients of this polynomial are more complicated invari-
ants of the matrix A.

Note that it is not fun to try to solve polynomial equations by hand if
the degree is larger than 2! I suggest enlisting some computer help.

But the fundamental theorem of arithmetic tells us that this polynomial
always has n roots. These roots can be real or complex.

Example of imaginary eigenvalues and eigenvectors[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
Take θ = π/2 and we get the matrix

A =

[
0 −1
1 0

]
.

What does this matrix do to vectors?

To get a sense for how this matrix acts on vectors, check out the Matrix
Vector Mathlet http://mathlets.org/daimp/MatrixVector.html

Set a = d = 0, b = −1 and c = 1. You see the input vector v in yellow,
and the output vector Av in blue.

What happens when you change the radius? How is the magnitude of the
output vector related to the magnitude of the input vector?

Leave the radius fixed, and look at what happens when you vary the angle
of the input vector. What is the relationship between the direction of the
input vector and the direction of the output vector?

This matrix rotates vectors by 90 degrees! For this reason, there can be
no real nonzero vector that points in the same direction after being multiplied

9
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by the matrix A. Let’s look at the characteristic polynomial and find the
eigenvalues.

det(A− λI) = det

[
−λ −1
1 −λ

]
= λ2 + 1 = 0

The eigenvalues are λ1 = i and λ2 = −i.
Let’s do a quick check:

• λ1 + λ2 = i− i = tr (A)

• λ1 · λ2 = (i)(−i) = −1 = det(A)

Let’s find the eigenvector corresponding to eigenvalue i:

A− iI =

[
−i −1
1 i

]
Solving for the nullspace we must find the solution to the equation:[

−i −1
1 i

] [
?
?

]
=

[
0
0

]
To solve this equation, I look at the first row, and checking against the

second row we find that the solution is[
−i −1
1 i

] [
1
−i

]
=

[
0
0

]
.

What ODE does this correspond to?[
y′1
y′2

]
=

[
−i −1
1 i

] [
y1
y2

]
This is the system

y′1 = y2

y′2 = y1
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Using the method of elimination we get that:

y′′1 = −y′2 = −y1

We are very familiar with this differential equation, it is the harmonic
oscillator y′′ + y = 0. This linear, 2nd order equation parameterized motion
around a circle! It is a big example and physics, and we know that the
solution space has a basis spanned by eit and e−it. Notice that the i and −i
are the eigenvalues!

Properties of Eigenvalues

Suppose A has eigenvalue λ and nonzero eigenvector x.

• The the eigenvalues of A2 are λ2.

Why?
A2x = λAx = λ2x

We see that the vector x will also be an eigenvector corresponding to λ.
However, be careful!!! In the example above, λ1 = i and λ2 = −1, we get
repeated eigenvalues λ1 = λ2 = −1. And in fact

[
0 −1
1 0

]2
=

[
−1 0
0 −1

]
= −I

Since −Ix = −x for all nonzero vectors x, in fact every vector in the
plane is an eigenvector with eigenvalue -1!

We know that the exponential function is important.

• The eigenvalues of eA are eλ, with eigenvector x.

If eAx had meaning,
eAx = eλx

where x is an eigenvector of A, and λ is the corresponding eigenvalue.

• The eigenvalues of e−1 are λ−1, with eigenvector x.
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Let’s look at the example A =

[
5 2
2 5

]
, which had eigenvalues 7 and 3. Check

that A−1 has eigenvalues 1/7 and 1/3. We know that det(A) ∗ det(A−1) = 1,
and det(A) = 21 and det(A−1) = 1/21, which is good.

• The eigenvalues of A+ 12I are λ+ 12, with eigenvector x.

Check this with our favorite symmetric matrix A above.

Nonexamples

Let A and B be n by n matrices.

• The eigenvalues of A+B are generally NOT the eigenvalues of A plus
eigenvalues of B.

• The eigenvalues of AB are generally NOT the eigenvalues of A times
the eigenvalues of B.

Question: What would be necessary for the eigenvalues of A+B to be the
sum of the eigenvalues of A and B? Similarly for AB.

Keep in mind that Ax = λx is NOT an easy equation.

In matlab, the command is

eig(A)
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18.03 LA.6: Diagonalization and Orthogonal Matrices

[1] Diagonal factorization
[2] Solving systems of first order differential equations
[3] Symmetric and Orthonormal Matrices

[1] Diagonal factorization

Recall: if Ax = λx, then the system ẏ = Ay has a general solution of the
form

y = c1e
λ1tx1 + c2e

λ2tx2,

where the λi are eigenvalues with corresponding eigenvectors xi.

I’m never going to see eigenvectors without putting them into a matrix.
And I’m never going to see eigenvalues without putting them into a matrix.
Let’s look at an example from last class.

A =

[
5 2
2 5

]
. We found that this had eigenvectors

[
1
1

]
and

[
1
−1

]
.

I’m going to form a matrix out of these eigenvectors called the eigenvector
matrix S:

S =

[
1 1
1 −1

]
Then lets look at what happens when we multiply AS, and see that we

can factor this into S and a diagonal matrix Λ:[
5 2
2 5

] [
1 1
1 −1

]
=

[
7 3
7 −3

]
=

[
1 1
1 −1

] [
7 0
0 3

]
A S S Λ

We call matrix Λ with eigenvalues λ on the diagonal the eigenvalue matrix.

So we see that AS = SΛ, but we can multiply both sides on the right by
S−1 and we get a factorization A = SΛS−1. We’ve factored A into 3 pieces.
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Properties of Diagonalization

• A2 = SΛS−1SΛS−1 = SΛ2S−1

• A−1 = (SΛS−1)−1 = (S−1)−1Λ−1S−1 = SΛ−1S−1

Diagonal matrices are easy to square and invert because you simply square
or invert the elements along the diagonal!

[2] Solving systems of first order differential

equations

The entire reason we are finding eigenvectors is to solve differential equations.
Let’s express our solution to the differential equation in terms of S and Λ:

y =
[
x1 x2

] [
eλ1t 0
0 eλ2t

] [
c1

c2

]
S eΛt c

What determines c? Suppose we have an initial condition y(0). Plugging
this into our vector equation above we can solve for c:

y(0) = SIc

S−1y(0) = c

The first line simply expresses our initial condition as a linear combination
of the eigenvectors, y(0) = c1x1 + c2x2. The second equation just multiplies
the first by S−1 on both sides to solve for c in terms of y(0) and S−1, which
we know, or can compute from what we know.

Steps for solving a differential equation

Step 0. Find λi and xi.
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Step 1. Use the initial condition to compute the parameters:

c = S−1y(0)

Step 2. Multiply c by eΛt and S:

y = SeΛtS−1y(0).

[3] Symmetric and Orthonormal Matrices

In our example, we saw that A was symmetric (A = AT ) implied that the
eigenvectors were perpendicular, or orthogonal. Perpendicular and orthogo-
nal are two words that mean the same thing.

Now, the eigenvectors we chose

[
1
1

]
and

[
1
−1

]
had length

√
2. If we make them unit length, we can choose eigenvectors

that are both orthogonal and unit length. This is called orthonormal.

Question: Are the unit length vectors also eigenvectors?[
1/
√

2

1/
√

2

]
and

[
1/
√

2

−1/
√

2

]
Yes! If Ax = λx, then

A
x

||x||
= λ

x

||x||
.

It turns out that finding the inverse of a matrix whose columns are or-
thonormal is extremely easy! All you have to do is take the transpose!
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Claim

If S has orthonormal columns, then S−1 = ST .

Example [
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
=

[
1 0
0 1

]
S ST = I

If the inverse exists, it is unique, so ST must be the inverse!

If we set θ = π/4 we get

1√
2

[
1 −1
1 1

]
,

but what we found was
1√
2

[
1 1
1 −1

]
.

Fortunately we can multiply the second column by negative 1, and it is still
and eigenvector. So in the 2 by 2 case, we can always choose the eigenvectors
of a symmetric matrix so that the eigenvector matrix is not only orthonormal,
but also so that it is a rotation matrix!

In general, a set of vectors x1, . . . ,xn is said to be orthonormal if the dot
product of any vector with itself is 1:

xi · xi = xTi xi = 1,

and the dot product of any two vectors that are not equal is zero:

xi · xj = xTi xj = 0,

when i 6= j.

This tells us that the matrix product:
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− xT1 −
− xT2 −
− xT3 −

  | | |
x1 x2 x3

| | |

 =

xT1 x1 xT1 x2 xT1 x3

xT2 x1 xT2 x2 xT2 x3

xT3 x1 xT3 x1 xT3 x3

 =

1 0 0
0 1 0
0 0 1


ST S = I

Example

We’ve seen that 2 by 2 orthonormal eigenvector matrices can be chosen to
be rotation matrices.

Let’s look at a 3 by 3 rotation matrix:

S =
1

3

 2 2 −1
−1 2 2

2 −1 2


As an exercise, test that all vector dot products are zero if the vectors are

not equal, and are one if it is a dot product with itself. This is a particularly
nice matrix because there are no square roots! And this is also a rotation
matrix! But it is a rotation is 3 dimensions.

Find a symmetric matrix A whose eigenvector matrix is S.

All we have to do is choose any Λ with real entries along the diagonal,
and then A = SΛST is symmetric!

Recall that (AB)T = BTAT . We can use this to check that this A is in
fact symmetric:

AT = (SΛST )T

= STTΛTST

= SΛST

This works because transposing a matrix twice returns the original ma-
trix, and transposing a diagonal matrix does nothing!

In physics and engineering this is called the principal axis theorem. In
math, this is the spectral theorem.
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Why is it called the principal axis theorem?

An ellipsoid whose principal axis are along the standard x, y, and z axes
can be written as the equation ax2 + by2 + cz2 = 1, which in matrix form is

[
x y z

] a 0 0
0 b 0
0 0 c

xy
z

 = 1

However, what you consider a general ellipsoid, the 3 principal direction
can be pointing in any direction. They are orthogonal direction though! And
this means that we can get back to the standard basis elements by applying
a rotation matrix S whose columns are orthonormal. Thus our equation for
a general ellipsoid is:S

xy
z

T a 0 0
0 b 0
0 0 c

S
xy
z

 = 1

[
x y z

]ST
a 0 0

0 b 0
0 0 c

S
xy

z

 = 1
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18.03 LA.7: Two dimensional dynamics

[1] Rabbits
[2] Springs

[1] Rabbits

Farmer Jones and Farmer McGregor have adjacent farms, both afflicted
with rabbits. Let’s model this. Write x(t) for the number of rabbits in
Jones’s farm, and y(t) for the number in McGregor’s.

Rabbits breed fast: growth rate of 5 per year: ẋ = 5x, ẏ = 5y.

But wait, these two systems are coupled. The rabbits can jump over the
hedge between the farms. McGregor’s grass is greener, so it happens twice
as often into his than out if his, per unit population. So we have{

ẋ = 3x+ y
ẏ = 2x+ 4y

The equation is homogeneous, at least till McGregor gets his gun. In matrices,

with u =

[
x
y

]
,

u̇ = Au , A =

[
3 1
2 4

]
We could eliminate, but now we know better: we look for solutions of the

form
u(t) = eλtv , v 6= 0

That is, you separate the time dependence from the high dimensionality. You
look for ray solutions. He pointed out what happens when you substitute
this into the equation:

u̇ = λeλtv

while
Ax = Aeλtv = eλtAv

and the only way these can be equal is if

Av = λv
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That is, λ is an eigenvalue of A, and v is a nonzero eigenvector.

Let’s try it: The characteristic polynomial of A is

pA(λ) = λ2 − (trA)λ+ detA = λ2 − 7λ+ 10 = (λ− 2)(λ− 5)

and the roots of this polynomial are λ1 = 2, λ2 = 5.

So we have two “normal mode” solutions, one growing like e2t and the
other much faster, like e5t. (They both get large as t grows, but when e2t =
100, e5t = 100, 000.)

Then find nonzero eigenvectors by finding nonzero vectors killed byA−λI.
With λ = 2,

A− (2I) =

[
1 1
2 2

]
: v1 =

[
1
−1

]
or any nonzero multiple. In general one has the row reduction algorithm, but
for 2×2 cases you can just eyeball it. I like to look at one of the rows, reverse
the order and change one sign. Then check your work using the other row.
Remember, A−λI is supposed to be a singular matrix, zero determinant, so
the rows should say the same things.

The other eigenvalue gives

A− (5I) =

[
−2 1
2 −1

]
: v2 =

[
1
2

]
The two normal mode solutions are thus

e2t
[

1
−1

]
, e5t

[
1
2

]
and the general solution is a linear combination of these two.

This way of solving is much more perspicacious than the elimination we
did back in September: the variables are equally important and are put on
equal footing.

Remember the phase diagram: Plot the trajectory of x(t). There are two
sets of ray solutions, along the two eigenvectors. All solutions except the
constant one at 0 go off exponentially to infinity. Other solutions are linear
combinations of these two. As t → −∞, both exponentials get small, but
e5t gets smaller much faster, so the solutions become asymptotic to the other
eigenline.
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The picture is this shown well on the Mathlet “Linear Phase Portraits:
Matrix Entry.” This phase portrait is called a “Node.”

[2] Springs again. Another source of systems is the companion matrix:
The companion matrix of

d3x

dt3
+ a2

d2x

dt2
+ a1

dx

dt
+ a0x

for example is

A =

 0 1 0
0 0 1
−a0 −a1 −a2


In the harmonic oscillator ẍ+ ω2x = 0 for example the companion matrix is

A =

[
0 1
−ω2 0

]
We know the solutions of the harmonic oscillator, but let’s solve using eigen-
vectors.

The characteristic polynomial is pA(λ) = λ2 + ω2. This is a general fact,
true in any dimension:

The characteristic polynomial of an LTI operator is the same as that of
its companion matrix.

The eigenvalues here are ±ωi. Plunge on and find corresponding eigen-
vectors: For λ1 = iω,

A− λI =

[
−iω 1
−ω2 −iω

]
: v1 =

[
1
iω

]
(Check the second row!) Complex eigenvalues give rise to complex eigenvec-
tors. The other eigenvalue is −iω = iω, and the corresponding eigenvector
is the complex conjugate of v1.

These are the normal modes: e±iωt
[

1
±iω

]
. We can extract real solutions

in the usual way, by taking real and imaginary parts:

x1 =

[
cos(ωt)
−ω sin(ωt)

]
, x2 =

[
sin(ωt)
ω cos(ωt)

]
Now the trajectories are ellipses. This phase portrait is called a center.
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18.03 LA.8: Stability

[1] Tr-Det plane
[2] More on the Tr-Det plane
[3] Stability and the Tr-Det plane

[1] The Trace-determinant plane

The system will oscillate if there are non-real eigenvalues. This is true
in any number of dimensions. In two dimenions we can decide whether
eigenvalues are real or not by completing the square:

λ2 − (trA)λ+ detA =

(
λ− trA

2

)2

−
(

(trA)2

4
− detA

)
so

λ1,2 =
trA

2
±
√

(trA)2

4
− detA

has

real roots if detA ≤ 1

4
(trA)2

non-real roots if detA >
1

4
(trA)2

The trace and determinant determine the eigenvalues, and conversely:

trA = λ1 + λ2 , detA = λ1λ2

Let’s draw a plane with the trace horizontally and the determinant vertically.
There’s a big division of behavior depending on whether you’re above or
below the critical parabola

detA =
(trA)2

4

If you’re above the critical parabola, you get spirals (or a special type of
spiral, a center, if you are at trA = 0 since that’s where Reλ = 0).

If you’re below the parabola, the roots are real. You get two differing
types of behavior depending on whether the eigenvalues are of the same sign
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or of opposite signs. Since the determinant is the product, detA > 0 if the
eigenvalues are of the same sign, detA < 0 if they are of opposite sign.

The big categories of behavior:

Spirals if Imλ 6= 0; of angular frequency Imλ = ωd.

Nodes if the eigenvalues are real and of the same sign: as in the rabbits
example.

Saddles if the eigenvalues are real and of opposite sign.

Here’s a saddle example: A =

[
1 0
0 −1

]
. This has already been “de-

coupled”: it’s already diagonal. The eigenvalues are +1, −1, with nonzero

eigenvectors

[
1
0

]
and

[
0
1

]
. The normal mode solutions are et

[
1
0

]
and

e−t

[
0
1

]
. There are two pairs of ray trajectories, and everything else moves

along hyperbolas.

You can see how this works out in general using the Mathlet “Linear
Phase Portraits.”

[2] More about the trace-determinant plane.

Let’s look in more detail at these dynamical systems. Start with this
unstable spiral and decrease the trace. Remember: the trace is the sum of
the eigenvalues, so in this complex case it’s twice the real part. You are
making the real part smaller, so the rate of expansion gets smaller and the
spiral gets tighter.

Question 17.1. If I increase the determinant,

1. The spirals will get tighter
2. The spirals will get looser
3. Neither (but the spirals will change in some other way)
4. Don’t know

Well, the determinant is the product of the eigenvalues. In this complex
case, the eigenvalues are complex conjugates of each other, so their product
is the square of their common magnitude. With fixed real part, the only way
that can increase is for the imaginary part to increase. When that happens,
you make more loops for a given amount of expansion. So I expect the spirals
to get tighter. Let’s see. Yes.
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As I decrease the determinant, the spirals get looser but also flatter, and
if we push all the way to the critical parabola the long direction becomes an
eigendirection. This marginal case is called a “defective node.” There’s a
repeated eigenvalue but only a one dimensional space of eigenvectors. Any
non-diagonal 2× 2 matrix with a repeated eigenvalue has this property. You
can read more about these marginal cases in the notes.

If I now move on into node territory, you see the single eigenline splitting
into two; there are now two eigenvalues of the same sign.

Maybe now is a good time to talk about this box at top right. Fixing
the trace and determinant give you two equations. But the space of 2 × 2
matrices is 4 dimensional, so there are two degrees of freedom within the set
of matrices with given trace and determinant. They are recorded in this box.

Side comment: These alterations are accomplished by replacing A by
SAS−1, where S is invertible. Notice that this doesn’t change the charac-
teristic polynomial: To compute the characteristic polynomial of SAS−1, we
notice that SAS−1 − λI = SAS−1 − SλIS−1 = S(A − λI)S−1. So, since
det(AB) = (detA)(detB), we have pSAS−1(λ) = pA(λ). So SAS−1 and A
have the same eigenvalues; and the same trace and determinant.

One thing I can do is rotate the whole picture. (This uses a rotation
matrix for S. These are discussed in LA.6)

The other thing I can do is change the angle between the two eigenlines.

If I look back at the degenerate node, this angle parameter shifts the
picture like this. In the middle, you find a “star node”: repeated eigenvalue,
but this time you do get two independent eigenvectors. In fact the matrix is
diagonal, a multiple of the identity matrix, and every vector is an eigenvector!

When we move down to the det = 0 axis, we are forcing one of the eigen-
values to be 0. That indicates a nonzero constant solution. The other eigen-
line is here. This phase portrait is called a “comb.” A comb is intermediate
between a node and a saddle.

The saddles behave like the nodes.

If I go back up to the spirals, now in the end, you see that the box splits
into two parts. As I push up towards the break, I get more symmetric spirals.
The upper part is clockwise motion, the lower counterclockwise. You can’t
tell which you have from the trace and determinant alone.
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[3] Stability

Here’s the trace-determinant plane again, visible using “Linear Phase
Portraits: Cursor Entry.” This plane descibes the various behaviors exhibited
by a 2D homogeneous linear system, u̇ = Au. Above the critical parabola
detA = (trA)2/4 the eigenvalues are non-real and the solution trajectories
are spirals. The entire phase portrait is actually called a spiral as well. To
the left and right, the eigenvalues are real and of the same sign; the phase
portrait is a “node.” Below the axis, the eigenvalues are real and of opposite
sign; the phase portraits are “saddles.” (I think this comes from the similarity
of this picture with the picture of level sets of x2 − y2, from 18.02.)

There’s an even more basic dichotomy:

Mostly, solutions either blow up or decay to zero.

How can we tell which happens? Well the solutions will always involve
exponentials with exponents given by the eigenvalues of the matrix. The
exponent might be real, it might be complex. But in every case, its growth
as t increases is determined by the sign of the real part.

Here’s the summary, valid for n× n systems.

Unstable: Most solutions blow up as t → ∞: the real part of some root is
positive.

Stable: All solutions decay to zero as t → ∞: the real parts of all roots are
negative.

In the 2× 2 case, we can work this out.

If detA < 0, the roots must be real and of opposite sign: unstable.

If detA > 0 and the roots are real, they must be either both positive
(trA > 0: unstable) or both negative (trA < 0: stable).

If detA > 0 and the roots are not real, then then Reλ = trA
2

: so again
trA > 0: unstable; trA < 0: stable.

So in the trace-det plane the stable region is the northwest quadrant only.
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18.03 LA.9: Decoupling

[1] Springs
[2] Initial conditions
[3] Heat phase portrait
[4] Coordinates
[5] Diagonalization
[6] Decoupling

[1] Multiple springs.

The “Coupled Oscillators” Mathlet shows a system with three springs
connecting two masses. The ends of the springs are fixed, and the whole
thing is set up so that there is a position in which all three springs are
relaxed. Let’s see some of the behaviors that are possible.

Wow, this is pretty complicated. Imagine what happens with five springs,
or a hundred . . . .

Let’s analyze this. The spring constants are k1, k2, k3; the masses are
m1, m2. The displacement from relaxed positions are x1, x2.

Let’s look at the special case when k1 = k2 = k3 = k and m1 = m2 = m.
You can put the subscripts back in on your own.

The forces on the objects are given by{
mẍ1 = −kx1 + k(x2 − x1) = −2kx1 + kx2
mẍ2 = −k(x2 − x1)− kx2 = kx1 − 2kx2

Let’s divide through by m, and agree to write k/m = ω2.

There’s a matrix here, B = ω2

[
−2 1
1 −2

]
. (This is the same as the heat

conduction matrix!) We have
ẍ = Bx

What do do about the second derivative? Let’s do the companion trick! Set
y = ẋ, so {

ẋ = y
ẏ = Bx
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Breaking this down even further, y1 = ẋ1, y2 = ẋ2; so we have four equations
in four unknown functions:

ẋ1 = y1
ẋ2 = y2
ẏ1 = −2ω2x1 + ω2x2
ẏ2 = ω2x1 − 2ω2x2

We might be quite uncomfortable about the prospect of computing eigen-
values of 4×4 matrices without something like Matlab. But we have a block
matrix here:

A =

[
0 I
B 0

]
and

d

dt

[
x
y

]
=

[
0 I
B 0

][
x
y

]
Let’s think about the eigenvector equation: It’s[

0 I
B 0

][
x
y

]
= λ

[
x
y

]
This breaks down to two simpler equations:{

y = λx
Bx = λy

Plugging the first equation into the second gives

Bx = λ2x

This says that the vector x =

[
x1
x2

]
is an eigenvector for B associated to

the eigenvalue λ2.

We have learned that the four eigenvalues of A are the square roots of the
two eigenvalues of B. And the eigenvectors are gotten by putting λx below
the x.

Well let’s see. The characteristic polynomial of B is

pB(λ) = λ2 + 4ω2λ+ 3ω4 = (λ+ ω2)(λ+ 3ω2)
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so its eigenvalues are −ω2 and −3ω2.

That says the eigenvalues of A are ±iω and ±
√

3iω.

We’re almost there. The eigenvectors for B: For −ω2 we want to find a

nonzero vector killed by B − (−ω2I) = ω2

[
−1 1
1 −1

]
;

[
1
1

]
will do. The

matrix is symmetric so eigenvectors for different eigenvalues are orthogonal;

an eigenvector for value −3ω2 is

[
1
−1

]
.

So the eigenvectors for A are given by

λ = ±iω :


1
1
±iω
±iω

 , λ = ±
√

3iω :


1
−1

±
√

3iω

∓
√

3iω


This gives us exponential solutions!

eiωt


1
1
iω
iω

 , ei
√
3ωt


1
−1√
3iω

−
√

3iω


and their complex conjugates. We can get real solutions by taking real and
imaginary parts. Let’s just write down the top halves; the bottom halves are
just the derivatives.[

cos(ωt)
cos(ωt)

]
,

[
sin(ωt)
sin(ωt)

]
,

[
cos(
√

3ωt)

− cos(
√

3ωt)

]
,

[
sin(
√

3ωt)

− sin(
√

3ωt)

]
The first two combine to give the general sinusoid of angular frequency ω

for x1 and x2 = x1. In this mode the masses are moving together; the spring
between them is relaxed.

The second two combine to give a general sinusoid of angular frequency√
3ω for x1, and x2 = −x1. In this mode the masses are moving back and

forth relative to each other.

These are “normal modes.” I have used this term as a synonym for “expo-
nential solutions” earlier in the course, but now we have a better definition.
From Wikipedia:
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A normal mode of an oscillating system is a pattern of motion
in which all parts of the system move sinusoidally with the same
frequency and with a fixed phase relation.

We can see them here on the Mathlet, if I adjust the initial conditions.

Behind the chaotic movement there are two very regular, sinuoidal mo-
tions. They happen at different frequencies, and that makes the linear combi-
nations look chaotic. In fact the two frequencies never match up, because

√
3

is an irrational number. Except for the normal mode solutions, no solutions
are perioidic.

The physics department has graciously provided some video footage of
this in real action’: http://www.youtube.com/watch?v=zlzns5PjmJ4Coupled
Air Carts You can’t see the springs here, and at the outset the masses have
brakes on. When they turn the switch, the carts become elevated and move.

Check out the action at 5:51 as well: five carts!

I didn’t really finish what could be gleaned from the “Coupled Oscillators”
applet. All three springs have the same strength k, and the masses all have
the same value m. What do you think? Are you seeing periodic motion here?

[The class was split on this question.]

Let’s see. We calculated that there at least two families of periodic,
even sinusoidal, solutions. They come from the eigenvalues ±ωi and ±

√
3ωi,

where ω =
√
k/m. I have the applet set to m = 1 and k = 4. These special

“normal mode” solutions are:[
x1
x2

]
= A

[
cos(ωt− φ)
cos(ωt− φ)

]
,

[
x1
x2

]
= A

[
cos(
√

3ωt− φ)

− cos(
√

3ωt− φ)

]
The general solution is a linear combination of these two. I claim that if

both normal modes occur in the linear combination, then you will definitely
NOT have a periodic solutions. This comes from the number-theoretic fact
that

√
3 is irrational!

[2] Heat Phase Portrait.

I want to discuss how initial conditions can be used to specify which
linear combination you get, in a situation like this—we are talking about
ẋ = Ax. For an example I’d like to go back to the insulated rod from LA.1.
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For 3 thermometers, placed at 1, 2, and 3 feet, the details are a little msesy.
The same ideas are already visible with two thermometers, so let’s focus on
that. The temperatures at 0, 1, 2, and 3 feet are x0, x1, x2, x3. The equation
controlling this is

d

dt

[
x1
x2

]
=

[
−2 1
1 −2

][
x1
x2

]
+

[
x0
x3

]
We’re interested in the homogeneous case, so we’ll take x0 = x3 = 0 (in
degrees centegrade, not Kelvin!), and I’m taking the conduction constant to
be k = 1.

You can easily find eigenvalues λ1 = −1 and λ2 = −3. This tells us right
off that some solutions decay like e−t, some others decay like e−3t, and in
general you get a mix of the two. In paricular: no oscillation, and stable. In
fact we can answer:

Question 18.1 This is a

1. Stable Spiral
2. Stable Saddle
3. Stable Node
4. Unstable Spiral
5. Unstable Saddle
6. Unstable Node
7. Don’t know.

[There was uniform agreement that 3 is correct. Of course there is no
such thing as a “stable saddle.”

To get more detail we need to know the eigenvectors. Get them by sub-
tracting the eigenvalue from the diagonal entry and finding a vector killed

by the result. For λ = −1 we get

[
−1 1
1 −1

]
, which kills

[
1
1

]
and all

multiples. We could do the same for the other eigenvalue, but as pointed
out in LA.6 symmetric matrices have orthogonal eigenvectors (for distict

eigenvalues), so a nonzero eigenvector for λ = −3 is given by

[
1
−1

]
.

So we get two basic exponential solutions: e−t
[

1
1

]
and e−3t

[
1
−1

]
.

We can now draw the two eigenlines. Ray solutions converge exponen-
tially to zero along them. These solutions are characterized by the fact that

5



the ratio between x1 and x2 is constant in time. These are the normal
modes for the heat model. The Wikipedia definition was applicable only
to oscillating motion. You know, the word “normal mode” is like the word
“happiness.” It’s hard to define, you know it when you see it, and it’s really
important, the basis of everything.

Other solutions are a mix of these two normal modes. IMPORTANT: The
smaller the (real part of) the eigenvalue, the quicker the decay. e−3t = (e−t)3,
so when e−t = 0.1, e−3t = 0.001. So the component of v2 decays much
more rapidly than the component of v1, so these other trajectories approach
tangency with the eigenline for value −1.

[3] Initial conditions.

Suppose I have a different initial condition, maybe

[
1
2

]
: so the temper-

atures are 0, 1, 2, 0. What happens? What are c1 and c2 in

x(t) = c1e
−t + c2e

−3t

How can we find c1 and c2?

More generally, when we are studying ẋ = Ax, and we’ve found eigenval-
ues λ1, . . . and nonzero eigenvectors v1, . . ., the general solution is

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · ·

We’re interested in the cofficients ci giving specified initial condition x(0) =
v. Since eλ·0 = 1 alwasy, our equation is

v = c1v1 + · · ·+ cnvn

As with many computations, the first step is to rewrite this as a matrix
equation:

v =
[
v1 · · · vn

] c1
...
cn


We will write S for the matrix whose columns are the eigenvectors, so v =
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S

 c1
...
cn

. Now it’s clear: we find c1, . . . by inverting S:

 c1
...
cn

 = S−1v

This is an important principle!

The entries in S−1v are the coefficients in

v = c1v1 + · · ·+ cnvn

In our example, S−1 = 1
−2

[
−1 −1
−1 1

]
=

1

2

[
1 1
1 −1

]
, so

[
c1
c2

]
=

1

2

[
1 1
1 −1

][
1
2

]
=

[
3/2
−1/2

]
sou our particular solution is

x(t) =
3

2
e−t
[

1
1

]
− 1

2
e−3t

[
1
−1

]
The second term decays much faster than the first.

[4] Coordinates.

The big idea: a system can seem complicated just because we are using
the wrong coordinates to describe it.

I want to let x be any vector; maybe it varies with time, as a solution
of ẋ = Ax. We can write it as a linear combination of v1, . . ., but now the
coefficients can vary too. I’ll write y1, y2, . . . for them to make them look
more variable:

x = y1v1 + y2v2 + · · ·

or
x = Sy
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For example, [
x1
x2

]
= x =

[
1 1
1 −1

]
y =

[
y1 + y2
y1 − y2

]
This is a change of cooridinates. The y1 axis (where y2 = 0) is the λ1
eigenline; the y2 axis (where y1 = 0) is the λ2 eigenline.

We can change back using S−1:

y = S−1x

so for us [
y1
y2

]
=

1

2

[
1 1
1 −1

][
x1
x2

]
i.e.

y1 =
x1 + x2

2
, y2 =

x1 − x2
2

[5] Diagonalization.

OK, but these vectors vi have something to do with the matrix A: they
are eigenvectors for it. What does this mean about the relationship between
S and A? Well, the eigenvector equation is

Av = λv

that is,
Av1 = λ1v1 , · · · , Avn = λnvn

Line these up as the columns of a matrix product:

AS = A
[
v1 · · · vn

]
=
[
λ1v1 · · · λnvn

]
Now comes a clever trick: the right hand side is a matrix product as well:

· · · =
[
v1 · · · vn

]

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = SΛ

where Λ (that’s a big “lambda”) is the “eigenvalue matrix,” with little λ’s
down the diagonal. That is:

AS = SΛ
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or
A = SΛS−1

This is a diagonalization of A. It exhibits the simlicity hidden inside of A.
There are only n eigenvalues, but n2 entries in A. They don’t completely
determine A, of course, but they say a lot about it.

[6] Decoupling.

Now let’s apply this to the differential equation ẋ = Ax. I’m going to
plug

x = Sy and A = SΛS−1

into this equation.

ẋ =
d

dt
Sy = Sẏ

and
Ax = SΛS−1x = SΛy

Put it together and cancel the S:

ẏ = Λy

Spelling this out:
ẏ1 = λ1y1
ẏ2 = λ2y2
· · ·

ẏn = λnyn

Each variable keeps to itself; its derivatives don’t depend on the other vari-
ables. They are decoupled.

In our example,

y1 = x1+x2
2

satisfies ẏ1 = −y1
y2 = x1−x2

2
satisfies ẏ3 = −3y2

So the smart variables to use to record the state of our insulated bar
are not x1 and x2, but rather the average and the difference (or half the
difference). The average decays exponentially like e−t. The difference decays
much faster. So quite quickly, the two temperatures become very close, and
then the both of them die off exponentially to zero.
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18.03 LA.10: The Matrix Exponential

[1] Exponentials
[2] Exponential matrix
[3] Fundamental matrices
[4] Diagonalization
[5] Exponential law

[1] Exponentials

What is ex?

Very bad definition: ex is the xth power of the number e ∼ 2.718281828459045 . . .

Two problems with this: (1) What is e? (2) What does it mean to raise
a number to the power of, say,

√
2, or π?

Much better definition: y(x) = ex is the solution to the differential equa-

tion
dy

dx
= y with initial condition y(0) = 1.

Now there’s no need to know about e in advance; e is defined to be e1.
And ex is just a function, which can be evaluated at

√
2 or at π just as easily

as at an integer.

Note the sublety: you can’t use this definition to describe ex for any single
x (except x = 0); you need to define the entire function at once, and then
evaluate that function at the value of x you may want.

As you know, this gives us solutions to other equations: I claim that

y = ert satisfies
dy

dt
= ry. This comes from the chain rule, with x = rt:

dy

dt
=
dx

dt

dy

dx
= ry

A further advantage of this definition is that it can be extended to other
contexts in a “brain-free” way.

A first example is Euler’s definition

eiθ = cos θ + i sin θ
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We defined x(t) = e(a+bi)t to be the solution to ẋ = (a + bi)x, and then
calculated that

e(a+bi)t = eat(cos(bt) + i sin(bt))

In all these cases, you get the solution for any initial condition: ertx(0)
is the solution to ẋ = rx with initial condition x(0).

[2] Matrix exponential

We’re ready for the next step: We have been studying the equation

dx

dt
= Ax

where A is a square (constant) matrix.

Definition. eAt is the matrix of functions such that the solution to ẋ = Ax,
in terms of its initial condition, is eAtx(0).

How convenient is that!

If we take x(0) to be the vector with 1 at the top and 0 below, the product
eAtx(0) is the first column of eAt. Similarly for the other columns. So:

Each column of eAt is a solution of ẋ = Ax. We could write this:

d

dt
eAt = AeAt

eAt is a matrix-valued solution! It satisfies a simple initial condition:

eA0 = I

Not everything about 1× 1 matrices extends to the general n×n matrix.
But everything about 1×1 matrices does generalize to diagonal n×nmatrices.

If A = Λ =

[
λ1 0
0 λ2

]
, the given coordinates are already decoupled: the

equation ẋ = Ax is just ẋ1 = λ1x1 and ẋ2 = λ2x2. Plug in initial condition[
1
0

]
: the first column of eΛt is

[
eλ1t

0

]
. Plug in initial condition

[
0
1

]
: the

second column is

[
0
eλ2t

]
. So

eΛt =

[
eλ1t 0
0 eλ2t

]
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Same works for n× n, of course.

[3] Fundamental matrices

Here’s how to compute eAt. Suppose we’ve found the right number (n)
independent solutions of ẋ = Ax: say u1(t), . . . ,un(t). Line them up in a
row: this is a “fundamental matrix” for A:

Φ(t) =
[

u1 u2 · · · un

]
The general solution is

x(t) = Φ(t)

 c1
...
cn



Φ(t) may not be quite eAt, but it’s close. Note that x(0) = Φ(0)

 c1
...
cn

,

or

 c1
...
cn

 = Φ(0)−1x(0). Thus

x(t) = Φ(t)Φ(0)−1x(0)

So
eAt = Φ(t)Φ(0)−1

for any fundamental matrix Φ(t).

Example: A =

[
0 −1
1 0

]
. Characteristic polynomial pA(λ) = λ2+1, so the

eigenvalues are ±i. The phase portrait is a “center.” Eigenvectors for λ = i

are killed by A − iI =

[
−i 1
1 −i

]
; for example

[
1
i

]
. So the exponential

solutions are given by

eit
[

1
i

]
= (cos t+ i sin t)

[
1
i

]
and its complex conjugate. To find real solutions, take just the right linear
combinations of these to get the real and imaginary parts:

u1(t) =

[
cos t
− sin t

]
, u2(t) =

[
sin t
cos t

]
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These both parametrize the unit circle, just starting at different places. The
corresponding fundamental matrix is

Φ(t) =

[
cos t sin t
− sin t cos t

]
We luck out, here: Φ(0) = I, so

eAt =

[
cos t sin t
− sin t cos t

]

[4] Diagonalization

Suppose that A is diagonalizable: A = SΛS−1.

Example: A =

[
1 2
0 3

]
. You can find the eigenvalues as roots of the

characteristic polynomial, but you might as well remember that the eigenval-
ues of an upper (or lower) triangular matrix are the diagonal entries: here 1

and 3. Also an eigenvalue for 1 is easy: v1 =

[
1
0

]
. For the other, subtract

3 from the diagonal entries:

[
−2 2
0 0

]
kills v2 =

[
1
1

]
.

So

S =

[
1 1
0 1

]
, Λ =

[
1 0
0 3

]
Suppose A = SΛS−1. Then we have exponential solutions corresponding

to the eigenvalues:
u1(t)eλ1tv1 , . . .

These give a fine fundamental matrix:

Φ(t) =
[
eλ1tv1 . . . eλntvn

]
= SeΛt , S =

[
u1 . . . un

]
,Λ =

 λ1

. . .

λn


Then Φ(0) = S, so

eAt = SeΛtS−1
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In our example,

eAt =

[
1 1
0 1

][
et 0
0 e3t

][
1 −1
0 1

]
You could multiply this out, but, actually, the exponential matrix is often a
pain in the neck to compute, and is often more useful as a symbolic device.
Just like ex, in fact!

[5] The exponential law

I claim that
eA(t+s) = eAteAs

This is a consequence of “time invariance.” We have to see that both sides
are equal after multiplying by an arbitrary vector v. Let x(t) be the solution
of ẋ = Ax with initial condtion x(0) = v: so x(t) = eAtv. Now fix s and let

y(t) = x(t+ s) = eA(t+s)v

Calculate using the chain rule:

d

dt
y(t) =

d

dt
x(t+ s) = ẋ(t+ s) = Ax(t+ s) = Ay(t)

So y is the solution to ẏ = Ay with y(0) = x(s) = eAsv. That means that
y(t) = eAteAsv. QED

This is the proof of the exponential law even in the 1 × 1 case; and you
will recall that as such it contains the trigonometric addition laws. Powerful
stuff!
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18.03 LA.11: Inhomogeneous Systems

[1] Planetarium
[2] Romance
[3] Family
[4] Variations
[5] Exponential Input/Response

[1] Planetarium

So now we have a symbol expressing a solution of

ẋ = Ax

in terms of initial conditions:

x(t) = eAtx(0)

We saw for example that for A =

[
0 −1
1 0

]

eAt =

[
cos t − sin t
sin t cos t

]
[I used the opposite signs on Monday; the calculation is the same.] I want you
to have the following vision: The differential equation causes a flow around
the origin. As time increases, the whole plane rotates. The differential
equation says: the velocity vector is always perpendicular to the position
vector (and points off to the left). After a time t has elapsed, whatever
starting vector you had has rotated by t radians, counterclockwise.

So let’s see: If I start at v and let s seconds elapse, I’m at eAsv. Then I
let another t seconds elapse. The effect is that I rotate this new vector by t
radians:

eAt(eAs)v

On the other hand, all that has happened is that t + s seconds has elapsed
since time 0, so

eAteAsv = eA(t+s)v

1



This is the exponential law. I had you thinking of the rotation matrix, but the
same reasoning works in complete generality. (Note that I used associativity.)

It shows for example that

(eAt)−1 = e−At

I think you need another example.

[2] The Romance of matrices

The MIT Humanities people have analyzed the plot of Shakespeare’s
Romeo and Juliet, and determined that it is well modeled by the following
system of equations. The two parameters are

R = Romeo’s affection for Juliet

J = Juliet’s affection for Romeo

These two young people are totally unaffected by any outside influences; this
will be a homogeneous system. Romeo’s affection for Juliet changes over
time. The rate of change is based on how he currently feels and also on
how she currently feels. Similarly for Juliet. The Humanities people have
discovered that

Ṙ = R− J , J̇ = R + J

that is
d

dt

[
R
J

]
=

[
1 −1
1 1

] [
R
J

]
So Juliet is a straightforward girl: if she likes him, that causes her to start

to like him better. If he likes her, same thing.

Romeo is more complicated. If he likes her, that causes him to start to
like her even more. That’s normal. But if he sees that she is starting to like
him, well, that exerts a negative influence on his feelings towards her.

Question 20.1. This relationship

1. is stable and will settle down to calm old age along a spiral
2. is stable and will settle down along a node
3. is unstable and will blow up along a node
4. is unstable and will probably blow up along a saddle
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5. is unstable and will spiral out of control
6. Who’s Shakespeare?

Let’s see how this plot develops. As the play opens, Romeo has noticed
Juliet at a dance, and immediately R = 1. Juliet is otherwise occupied,

though, and J = 0. But the deriviative is

[
1
1

]
: a promising sign.

Soon she does notice him and her affection rises. That very fact slows his
growth of passion, though, so the plot trajectory curves down. Notice that
Ṙ = 0 when R = J : he peaks out when their affections towards each other
are equal.

This continues. The more she likes him, the stronger a drag that is on
his growth of affection for her, till he starts to actively dislike the girl. This
continues till Juliet starts to lose heart. J̇ = 0 when J = −R. Then she
starts to like him less; but she still does love him, so that causes Romeo to
like her less, with predictable effects on her feelings towards him.

Presently her feelings become negative, and his continue to crater, but as
she like him less he gets more interested. His feelings bottom out over here,
but she continues to stay away. She starts to flirt with his friends. Things are
very bad, but his complicated nature brings things around. Soon he starts
to like her again; that decreases her rate of decline, and soon she bottoms
out. As he gets more passionate, she does too, and after a while we’re back
to J = 0.

But what’s R now? Well, you can work it out. For the present, let’s just
notice that trA = 2 and detA = 2. This puts us in the unstable part of the
spiral segment, so we could have predicted all this quite simply.

Shall we solve? pA(λ) = λ2−2λ+2 = (λ−1)2+1 has roots 1±i. Positive
real part, nonzero imaginary part: so unstable spiral. Eigenvectors for 1 + i

are killed by A − (1 + i)I =

[
−i 1
−1 −i

]
; for example

[
1
i

]
. So exponential

solution e(1+i)t
[
1
i

]
, with real part u1(t) = et

[
cos t
− sin t

]
and imaginary part

u2(t) = et
[

sin t
cos t

]
. The general solution is a linear combination. Luckily the

starting point we had above is here: our story line was u1.

We’re in luck here again: these two solutions are normalized and we’ve
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computed that

eAt = et
[

cos t sin t
− sin t cos t

]
The second factor is the rotation matrix we had above. So as time increases,
the whole romance spins around while expanding exponentially. After one
rotation, 2π time has elapsed, so now R = e2π ∼ 535.49! So my picture
wasn’t very accurate.

[3] Inhomogeneous

Of course this is somewhat oversimplified. The fact is that Romeo and
Juliet were influenced by their families, the Montagues and Capulets. So this
is not a homogeneous situation after all. A better model might be:

d

dt

[
R
J

]
=

[
1 −1
1 1

] [
R
J

]
−
[
10
10

]
The two families in Verona agree on one thing: this romance is a terrible
idea. Will they succeed in damping it down?

What’s the general form of the answer going to be?

We’ve learned to look for

x = xp + xh

We know about xh. What might we take for a particular solution, with this
constant forcing term (parental pressure)?

How about trying for a constant solution? It would have to be so that
the left hand side is zero, so[

1 1
−1 1

] [
R
J

]
=

[
10
10

]
This we can do; we have to compute[

1 −1
1 1

]−1

=
1

2

[
1 1
−1 1

]
so

xp =
1

2

[
1 1
−1 1

] [
10
10

]
=

[
10
0

]
4



So there is a stable point, an equilibrium, where R = 10 and J = 0, when
everything is in balance. It must be quite uncomfortable for poor Romeo.
But as soon as someone exhales, you add in a nonzero homogeneous equation
and the couple quickly spirals out of control. This is an unstable equilibrium!
The attempt at parental control works only if Romeo and Juliet happen to
be in this state; and it’s very unlikely to work for very long.

[4] Variations But what if the input signal here isn’t constant? I want to
solve

ẋ = Ax + q(t) or ẋ− Ax = q

Again it suffices to find a single “particular solution.”

Let’s try what we did before: “variation of parameters.” We know that
the general solution to ẋ = Ax is of the form

c1u1(t) + · · ·+ cnun(t)

where u1, . . . ,un are independent solutions, and we now have a slick way to
write this, using the corresponding “fundamental matrix”

Φ(t) =
[
u1(t) u2(t) · · · un(t)

]
The fact that the columns are solutions is recorded by the matrix equation

d

dt
Φ(t) = AΦ(t)

We can write the general solution of the homogeneous equation as Φ(t)c.
The coefficient vector c is a vector of “parameters.” Let’s let it vary: try for

x(t) = Φ(t)u(t)

Plug into the equation:

ẋ(t) = AΦ(t)u(t) + Φ(t)u̇(t)
−Ax(t) = −AΦ(t)u(t)

q(t) = Φ(t)u̇(t)

Solve for u̇:
u̇(t) = Φ(t)−tq(t)

5



Then integrate and multiply by Φ(t)−1:

x(t) = Φ(t)

∫
Φ(t)−1q(t) dt

Notice that the indefinite integral is only well defined up to adding a
constant vector, which then gets multiplied by Φ(t): so this is the general
solution in a nutshell.

Since we don’t care about initial conditions at this point, there’s no need
to use the exponential matrix and it’s generally more convenient not to. If
you do, though, you can use the fact that (eAt)−1 = e−At to write

x = eAt
∫
e−Atq(t) dt

[5] Exponential Input/Response

In this section we consider exponential input signals. Recall two things
about ordinary constant coefficient equations. First, with exponential input
we can use the method of optimism which leads to algebraic methods. Sec-
ond, using complex replacement sinusoidal input signals can be handled in
the same way as exponential signals.

Let A be a constant matrix, a a constant and K a constant column vector.
We consider here the system

ẋ = Ax + eatK

To solve this equation we use the method of optimism and try a particular
solution of the form xp = eatv, where v is an unknown constant vector.
Substituting xp into the equation and doing some simple algebra we find

xp = Ax + eatK
⇔ aeatv = eatAv + eatK
⇔ (aI − A)v = K
⇔ v = (aI − A)−1K
⇔ xp = eatv

= eat(aI − A)1K

Notes: 1. In the third equation we replaced av by aIv. The identity matrix
changes nothing, but allows us to do the algebra of matrix subtraction.
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2. This is only valid if (aI − A)−1 exists, that is if det(aI − A) 6= 0. (Note,
this is equivalent to saying a is not an eigenvalue of A.)

Following our usage for ordinary differential equations we call the formula
x = eat(aI−A)−K the exponential response formula or the exponential input
theorem.

Examples

1. Solve
ẋ = 3x− y + e2t

ẏ = 4x− y − e2t

Solution. Here A =

[
3 −1
4 −1

]
, a = 2, K =

[
1
−1

]
.

(2I − A)−1 =

[
−1 1
−4 3

]−1

=

[
3 −1
4 −1

]
⇒ xp = e2t

[
3 −1
4 −1

] [
1
−1

]
= e2t

[
4
5

]
.

2. (Same matrix as in example 1.) Solve

ẋ = 3x− y + 3

ẏ = 4x− y + 2

Solution: a = 0, K =

[
3
2

]
, −A−1 = −

[
−1 1
−4 3

]
=

[
1 −1
4 −3

]
.

xp = −A−1 ·K =

[
1 −1
4 −3

] [
3
2

]
=

[
1
6

]
.

Note: Here the input is a constant so our method of optimism is equivalent
to guessing a constant solution.

3. Solve
ẋ = x+ 2y + cos t

ẏ = 2x+ y

Solution: We use complex replacement:

ż =

[
1 2
2 1

]
z + eit

[
1
0

]
x = Re (z).

The exponential response formula gives

zp(t) = eit(iI − A)−1

[
1
0

]
7



We have

iI − A =

[
i− 1 −2
−2 i− 1

]
⇒ (iI − A)−1 =

1

−4− 2i

[
i− 1 2

2 i− 1

]
So (not showing all of the complex arithmetic),

zp(t) = 1
−4−2i

eit
[
i− 1 2

2 i− 1

] [
1
0

]
= (cos t+ i sin t) 1

10

[
1− 3i
−4 + 2i

]
= 1

10

([
cos t+ 3 sin t
−4 cos t− 2 sin t

]
+ i

[
−3 cos t+ sin t
2 cos t− 4 sin t

])

xp(t) = Re (zp)(t) = 1
10

[
cos t+ 3 sin t
−4 cos t− 2 sin t

]
=

[
xp
yp

]

Superposition
For linear constant coefficient equations the principle of superposition allows

us to use the exponential input method for input functions like f =

[
3e2t

−et
]
.

That is we can split f into a sum:

f =

[
3e2t

−et
]

= e2t
[
3
0

]
+ et

[
0
−1

]
.

and solve with each piece separately and then sum the two solutions.
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18.03 PDE.1: Fourier’s Theory of Heat

1. Temperature Profile.

2. The Heat Equation.

3. Separation of Variables (the birth of Fourier series)

4. Superposition.

In this note we meet our first partial differential equation (PDE)

∂u

∂t
= k

∂2u

∂x2

This is the equation satisfied by the temperature u(x, t) at position x and time t of a bar
depicted as a segment,

0 ≤ x ≤ L, t ≥ 0

The constant k is the conductivity of the material the bar is made out of.

We will focus on one physical experiment. Suppose that the initial temperature is 1, and
then the ends of the bar are put in ice. We write this as

u(x, 0) = 1, 0 ≤ x ≤ L u(0, t) = 0, u(L, t) = 0, t > 0 .

The value(s) of u = 1 at t = 0 are called initial conditions. The values at the ends are called
endpoint or boundary conditions. We think of the initial and endpoint values of u as the
input, and the temperature u(x, t) for t > 0, 0 < x < L as the response. (For simplicity,
we assume that only the ends are exposed to the lower temperature. The rest of the bar
is insulated, not subject to any external change in temperature. Fourier’s techniques also
yield answers even when there is heat input over time at other points along the bar.)

As time passes, the temperature decreases as cooling from the ends spreads toward the
middle. At the midpoint, L/2, one finds Newton’s law of cooling,

u(L/2, t) ≈ ce−t/τ , t > τ

The so-called characteristic time τ is inversely proportional to the conductivity of the ma-
terial. If we choose units so that τ = 1 for copper, then according to Wikipedia,

τ ∼ 7 (cast iron); τ ∼ 7000 (dry snow)

The constant c, on the other hand, is universal:

c ≈ 1.3

It depends only on the fact that the shape is a bar (modeled as a line segment).

Fourier figured out not only how to explain c using differential equations, but the whole

temperature profile: u(x, t) ≈ e−t/τh(x); h(x) =
4

π
sin
(π
L
x
)
, t > τ.

The shape of h reflects how much faster the temperature drops near the ends than in the
middle. It’s natural that h should be some kind of hump, symmetric around L/2.

We looked at the heat equation applet to see this profile emerge as t increases. It’s
remarkable that a sine function emerges out of the input u(x, 0) = 1. There is no evident
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mechanism creating a sine function, no spring, no circle, no periodic input. The sine function
and the number 4/π arise naturally out of differential equations alone.

Deriving the heat equation. To explain the heat equation, we start with a thought
experiment. If we fix the temperature at the ends, u(0, t) = 0 and u(L, t) = T , what will
happen in the long term as t→∞? The answer is that

u(x, t)→ Usteady(x), t→∞

where Usteady is the steady, or equilbrium, temperature, and

Usteady(x) =
T

L
x (linear)

The temperature u(L/2, t) at the midpoint L/2 tends to the average of 0 and T , namely
T/2. At the point L/4, half way between 0 and L/2, the temperature tends to the average
of the temperature at 0 and T/2, and so forth.

At a very small scale, this same mechanism, the tendency of the temperature profile
toward a straight line equilibrium means that if u is concave down then the temperature in
the middle should decrease (so the profile becomes closer to being straight). If u is concave
up, then the temperature in the middle should increase (so that, once again, the profile
becomes closer to being straight). We write this as

∂2u

∂x2
< 0 =⇒ ∂u

∂t
< 0

∂2u

∂x2
> 0 =⇒ ∂u

∂t
> 0

The simplest relationship that reflects this is a linear (proportional) relationship,

∂u

∂t
= k

∂2u

∂x2
, k > 0

Fourier’s reasoning. Fourier introduced the heat equation, solved it, and confirmed in
many cases that it predicts correctly the behavior of temperature in experiments like the
one with the metal bar.

Actually, Fourier crushed the problem, figuring out the whole formula for u(x, t) and not
just when the initial value is u(x, 0) = 1, but also when the initial temperature varies with
x. His formula even predicts accurately what happens when 0 < t < τ .

Separation of Variables. For simplicity, take L = π and k = 1. The idea is not to try
to solve for what looks like the simplest initial condition namely u(x, 0) = 1, but instead to
look for solutions of the form

u(x, t) = v(x)w(t)

Plugging into the equation, we find

∂u

∂t
= v(x)ẇ(t),

∂2u

∂2x
= v′′(x)w(t)

Therefore, since k = 1,

v(x)ẇ(t) = v′′(x)w(t) =⇒ ẇ(t)

w(t)
=
v′′(x)

v(x)
= c (constant).
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This is the first key step. We divided by v(x) and w(t) to “separate” the variables. But
the function ẇ(t)/w(t) is independent of x, whereas v′′(x)/v(x) is indendent of t. And since
these are equal, this function depends neither on x nor on t, and must be a constant. Notice
also that the constant, which we are calling c for the time being, is the same constant in
two separate ordinary differential equations:

ẇ(t) = cw(t), v′′(x) = cv(x).

The best way to proceed is to remember the endpoint conditions

u(0, t) = u(π, 0) = 0 =⇒ v(0) = v(π) = 0.

We know what the solutions to v′′(x) = cv(x), v(0) = v(π) = 0 look like. They are

vn(x) = sinnx, n = 1, 2, 3, . . .

Moreover, v′′n(x) = −n2 sinnx = −n2vn(x), so that c = −n2. We now turn to the equation
for w, which becomes

ẇn(t) = −n2w(t) =⇒ wn(t) = e−n
2t.

(We may as well take w(0) = 1. We will be taking multiples later.) In summary, we have
found a large collection of solutions to the equation, namely,

un(x, t) = vn(x)wn(t) = e−n
2t sinnx

For these solutions, the endpoint condition un(0, t) = un(π, t) = 0 is satisfied, but the initial
condition is

un(x, 0) = vn(x) = sinnx .

This is where Fourier made an inspired step. What if we try to write the function u(x, 0) = 1
as a linear combination of vn(x) = sinnx?

On the face of it, expressing 1 as a sum of terms like sinnx makes no sense. We know
that sinnx is zero at the ends x = 0 and x = π. But something tricky should be happening
at the ends because the boundary conditions are discontinuous in time. At t = 0 we
had temperature 1 at the ends, then suddenly when we plunged the ends in ice, we had
temperature 0. So it’s not crazy that the endpoints should behave in a peculiar way.

If there is any chance to write

u(x, 0) = 1 =
∑

bn sinnx, 0 < x < π,

then it must be that the function is odd. In other words, we need to look at

f(x) =

{
1 0 < x < π

−1 −π < x < 0

Moreover, the function has to be periodic of period 2π. This is none other than the square
wave f(x) = Sq(x), the very first Fourier series we computed.

1 = Sq(x) =
4

π

(
sinx+

1

3
sin 3x+

1

5
sin 5x+

)
, 0 < x < π.

Now since initial conditions vn(x) yield the solution un(x, t), we can apply the

Principle of Superposition u(x, 0) =
∑

bn sinnx =⇒ u(x, t) =
∑

bne
−n2t sinnx
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In other words, if u(x, 0) = 1, 0 < x < π, then

u(x, t) =
4

π

(
e−t sinx+

1

3
e−3

2t sin 3x+
1

5
e−5

2t sin 5x+ · · ·
)

0 ≤ x ≤ π, t > 0.

The exact formula for the solution u to the heat equation is this series; it cannot be
expressed in any simpler form. But often one or two terms already give a good approx-
imation. Fourier series work as well, both numerically and conceptually, as any finite sum
of terms involving functions like e−t and sinx. Look at the Heat Equation applet to see the
first term (main hump) emerge, while the next term b3e

−9t sin 3x tends to zero much more
quickly. (The other terms are negligible after an even shorter time.)

For this example, the characteristic time is τ = 1, e−t/τ = e−t, and

u(x, t) =
4

π
e−t sinx+ smaller terms as t→∞.

To get an idea how small the smaller terms are, take an example.

Example. Fix t1 = ln 2, then e−t1 = 1/2, and

u(x, t1) =
4

π

(
1

2
sinx+

1

3 · 29
sin 3x+ · · ·

)
=

2

π
sinx± 10−3
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18.03 PDE.2: Decoupling; Insulated ends

1. Normal Modes: eλktvk

2. Superposition

3. Decoupling; dot product

4. Insulated ends

In this note we will review the method of separation of variables and relate it to linear
algebra. There is a direct relationship between Fourier’s method and the one we used to
solve systems of equations.

We compare a system of ODE u̇(t) = Au(t) where A is a matrix and u(t) is a vector-
valued function of t to the heat equation

∂u

∂t
=

∂2

∂x2
u, 0 < x < π, t > 0; u(0, t) = u(π, t) = 0

with zero temperature ends. To establish the parallel, we write

u̇(t) = Au(t) −−−−− u̇ =
∂u

∂t
=

∂2

∂x2
u (A = (∂/∂x)2)

To solve the equations we look for normal modes:

Try u(t) = w(t)v. −−−−− Try u(x, t) = w(t)v(x).

This leads to equations for eigenvalues and eigenvectors:{
Av = λv

ẇ = λw
−−−−−−

{
Av = v′′(x) = λv(x) [and v(0) = v(π) = 0]

ẇ(t) = λw(t)

There is one new feature: in addition to the differential equation for v(x), there are endpoint
conditions. The response to the system u̇ = Au is determined by the initial condition u(0),
but the heat equation response is only uniquely identified if we know the endpoint conditions
as well as u(x, 0).

Eigenfunction Equation. The solutions to

v′′(x) = λv(x) and v(0) = v(π) = 0,

are known as eigenfunctions. They are

vk(x) = sin kx, k = 1, 2, . . .

and the eigenvalues λk = −k2 lead to wk(t) = e−k
2t.

normal modes : eλktvk −−−−−− e−k
2t sin(kx)

The principle of superposition, then says that

u(0) =
∑

ckvk =⇒ u(t) =
∑

cke
λktvk

and, similarly,

u(x, 0) =
∑

bk sin kx =⇒ u(x, t) =
∑

bke
−k2t sin kx
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More generally, we will get formats for solutions of the form

u(x, t) =
∑

bke
−βk2t sin(αkx) or cosines

The scaling will change if the units are different (inches versus meters in x; seconds versus
hours in t) and depending on physical constants like the conductivity factor in front of the
(∂/∂x)2 term, or if the interval is 0 < x < L instead of 0 < x < π. Also, we’ll see an
example with cosines below.

The final issue is how to find the coefficients ck or bk. If we have a practical way to find
the coefficients ck in

u(0) =
∑

ckvk,

then we say we have decoupled the system. The modes eλktvk evolve according to separate
equations ẇk = λkwk.

Recall that the dot product of vectors is given, for example, by1
2
3

 ·
 2
−1
0

 = 1 · 2 + (2)(−1) + 3 · 0 = 0

When the dot product is zero the vectors are perpendicular. We can also express the length
squared of a vector in terms of the dot product:

v =

1
2
3

 ; v · v =

1
2
3

 ·
1

2
3

 = 12 + 22 + 32 = (length)2 = ‖v‖2

There is one favorable situation in which it’s easy to calculate the coefficients ck, namely
if the eigenvectors vk are perpendicular to each other

vk ⊥ v` ⇐⇒ vk · v` = 0

This happens, in particular, if the matrix A is symmetric. In this case we also normalize
the vectors so that their length is one:

‖vk‖2 = vk · vk = 1

Then
ck = vk · u(0)

The proof is

vk(c1v1 + · · ·+ cnvn) = 0 + · · ·+ 0 + ckvk · vk + 0 + · · · = ck .

The same mechanism is what makes it possible to compute Fourier coefficients. We have

vk ⊥ v` ⇐⇒
∫ π

0

vk(x)v`(x) dx = 0

and ∫ π

0

vk(x)2 dx =

∫ π

0

sin2(kx) dx =
π

2
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To compensate for the length not being 1 we divide by the factor π/2. It follows that

bk =
2

π

∫ π

0

u(x, 0) sin(kx) dx

The analogy between these integrals and the corresponding dot products is very direct.
When evaluating integrals, it makes sense to think of functions as a vectors

~f = [f(x1), f(x2), . . . , f(xN )]; ~g = [g(x1), g(x2), . . . , g(xN )].

The Riemann sum approximation to an integral is written∫ π

0

f(x)g(x) dx ≈
∑
j

f(xj)g(xj)∆x = ~f · ~g∆x

We have not explained the factor ∆x, but this is a normalizing factor that works out after
taking into account proper units and dimensional analysis. To repeat, functions are vectors:
we can take linear combinations of them and even use dot products to find their “lengths”
and the angle between two of them, as well as distances between them.

Example 1. Zero temperature ends. We return to the problem from PDE.1, in which
the initial conditions and end point conditions were

u(x, 0) = 1 0 < x < π; u(0, t) = u(π, t) = 0 t > 0.

Our goal is to express

1 =

∞∑
1

bk sin(kx), 0 < x < π

The physical problem does not dictate any value for the function u(x, 0) outside 0 < x < π.
But if we want it to be represented by this sine series, it’s natural to consider the odd
function

f(x) =

{
1 0 < x < π

−1 −π < x < 0

Moreover, because the sine functions are periodic of period 2π, it’s natural to extend f to
have period 2π. In other words, f(x) = Sq(x), the square wave. We computed this series
in L26 (same formula as above for bk) and found

f(x) =
4

π

(
sinx+

sin 3x

3
+

sin 5x

5
+ · · ·

)
Therefore the solution is

u(x, t) =
4

π

(
e−t sinx+ e−3

2t sin 3x

3
+ · · ·

)

Example 2. Insulated Ends.

When the ends of the bar are insulated, we have the usual heat equation (taken here for
simplicity with conductivity 1 and on the interval 0 < x < π) given by

∂u

∂t
=
∂2u

∂x2
, 0 < x < π, t > 0,
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with the new feature that the heat flux across 0 and π is zero. This is expressed by the
equations

insulated ends :
∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0 t > 0

Separation of variables u(x, t) = v(x)w(t) yields a new eigenfunction equation:

v′′(x) = λv(x), v′(0) = v′(π) = 0

whose solution are
vk(x) = cos(kx), k = 0, 1, 2 . . .

Note that the index starts at k = 0 because cos 0 = 1 is a nonzero function. The eigenvalues
are λk = −k2, but now the first eigenvalue is

λ0 = 0.

This will make a difference when we get to the physical interpretation. Since ẇk(t) =
−k2wk(t), we have

wk(t) = e−k
2t

and the normal modes are
e−k

2t cos(kx), k = 0, 1, . . .

The general solution has the form (or format)

u(x, t) =
a0
2
e0t +

∞∑
1

ake
−k2t cos(kx)

(Here we have anticipated the standard Fourier series format by treating the constant term
differently.)

Let us look at one specific case, namely, initial conditions

u(x, 0) = x, 0 < x < π

We can imagine an experiment in which the temperature of the bar is 0 on one end and 1 on
the other. After a fairly short period, it will have stabilized to the equilibrium distribution
x. Then we insulate both ends (cease to provide heat or cooling that would maintain the
ends at 0 and 1 respectively). What happens next?

To find out we need to express x as a cosine series. So we extend it evenly to

g(x) = |x|, |x| < π, with period 2π

This is a triangular wave and we calculated its series using g′(x) = Sq(x) as

g(x) =
a0
2
− 4

π

(
cosx+

cos 3x

32
+

cos 5x

52
+ · · ·

)
The constant term is not determined by g′(x) = Sq(x) and must be calculated separately.
Recall that

a0 =
2

π

∫ π

0

g(x) cos 0 dx =
2

π

∫ π

0

x dx =
x2

π

∣∣∣∣π
0

= π
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Put another way,
a0
2

=
1

π

∫ π

0

g(x) dx = average(g) =
π

2

Thus, putting it all together,

u(x, t) =
π

2
− 4

π

(
e−t cosx+ e−3

2t cos 3x

32
+ · · ·

)
Lastly, to check whether this makes sense physically, consider what happens as t→∞.

In that case,

u(x, t)→ π

2

In other words, when the bar is insulated, the temperature tends to a constant equal to the
average of the initial temperature.
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18.03 PDE.3: The Wave Equation

1.
∂2u

∂t2
= c2

∂2u

∂x2
2. Normal Modes.
3. Wave fronts and wave speed (d’Alembert solution).
4. Real life waves.

I showed you an elastic band which oscillated. In the literature this is usually referred to
as a vibrating string. Let u(x, t) represent the vertical displacement of the string. In other
words, for each fixed time t, the graph of the string is y = y(x) = u(x, t).

Consider, as in the case of the heat equation, the equilibrium position in which the
elastic string is not moving. In that case, it’s in a straight line. If the string is concave
down (curved above the equilibrium) then the elasticity pulls the string back down in the
middle. This tendency is a restoring force like that of a spring. Since force is proportional
to acceleration (F = ma), and acceleration is ∂2u/∂t2, we have

∂2u

∂x2
< 0 =⇒ ∂2u

∂t2
< 0.

Similarly for concave up configurations,

∂2u

∂x2
> 0 =⇒ ∂2u

∂t2
> 0.

The simplest rule that realizes this effect is proportionality,

∂2u

∂t2
= c2

∂2u

∂x2
.

We wrote the constant first as c > 0 and rewrote it later as c2 > 0 when it turned out that
the right units of c are meters per second so that it represents a speed.

Let us take c = 1 for simplicity and fix the ends of the string at 0 and π. The normal
modes have the form

u(x, t) = v(x)w(t), v(0) = v(π) = 0.

Substituting into the equation, we find

ẅ(t)v(x) = w(t)v′′(x),

which leads (via the separation of variables method, ẅ(t)/w(t) = v′′(x)/v(x) = λ) to the
equations

v′′(x) = λv(x), v(0) = v(π) = 0.

These are the same as for the heat equation with fixed ends, and we already found a complete
list of solutions (up to multiples)

vn(x) = sin(nx), n = 1, 2, 3, . . . .

We also have v′′n(x) = −n2vn(x), so that λn = −n2. What is different this time is that the
equation for wn is second order

ẅn(t) = −n2wn(t)

A second order equation has a two dimensional family of solutions. In this case, they are

wn(t) = a cos(nt) + b sin(nt)

1



This highlights the main conceptual differences between the heat and wave equations. These
wave equation solutions are oscillatory in t not exponential. Also the extra degree of freedom
means we have to specify not only the initial position u(x, 0), but also the initial velocity
(∂/∂t)u(x, 0).

We will take the simplest initial velocity, namely, initial velocity 0 (also the most realistic
choice when we pluck a string). Thus we impose the conditions

0 = ẇn(0) = −an sin(0) + bn cos 0 = bn =⇒ b = 0

and (for simplicity) wn(0) = a = 1. Now a = 1 and b = 0, so that the normal modes are

un(x, t) = cos(nt) sin(nx)

The principle of superposition says that if

f(x) =

∞∑
n=1

bn sin(nx), 0 < x < π

then

u(x, t) =

∞∑
n=1

bn cos(nt) sin(nx), 0 < x < π

solves the wave equation with constant c = 1, initial condition u(x, 0) = f(x) and initial
velocity (∂/∂t)u(x, 0) = 0 and endpoint conditions u(0, t) = u(π, t) = 0, t > 0. (Actually,
the wave equation is reversible, and these equations are satisfied for −∞ < t <∞.)

Notice that there are now two inputs at time t = 0, the initial position f(x) and the
initial velocity which we have set equal to 0 for simplicity.1 This is consistent with the fact
that the equation is second order in the t variable.

Wave fronts. D’Alembert figured out another formula for solutions to the one (space)
dimensional wave equation. This works for initial conditions v(x) is defined for all x, −∞ <
x <∞. The solution (for c = 1) is

u1(x, t) = v(x− t)

We can check that this is a solution by plugging it into the equation,

∂2

∂t2
u(x, t) = (−1)2v′′(x− t) = v′′(x− t) =

∂2

∂x2
u(x, t).

Similarly, u2(x, t) = v(x+ t) is a solution.

We plot the behavior of this solution using a space-time diagram and taking the simplest
initial condition, namely the step function,

v(x) =

{
1 x < 0

0 x > 0

The solution
u1(x, t) = v(x− t)

1If the initial velocity is not zero, one can write a series solution involving, in addition, the other solution
to the equation for wn(t), namely sin(nt)

2



takes on only two values, 0 and 1. Therefore, we can draw a picture showing how the
solution behaves by drawing the (x, t) plane and dividing the plane into the region where
u1(x, t) = 1 versus u1(x, t) = 0. This kind of space-time diagram is often used to describe
the behavior of waves.2 We have

u1(x, t) = v(x− t) = 1 ⇐⇒ x− t < 0 ⇐⇒ t > x,

and
u1(x, t) = v(x− t) = 0 ⇐⇒ x− t > 0 ⇐⇒ t < x.

The divider between the places where u1 = 1 and u1 = 0 is known as the wave front and it
is located at the line of slope 1,

t = x

We drew this, indicating u1 = 1 above the line t = x and u1 = 0 below.

The only feature we want to extract from this picture is that as time increases, the wave
moves at a constant speed 1. An observer at x = 10 will see the wave front pass (the value
of u(x, t) switch from 0 to 1) at time t = 10. If we were to change the constant c we would
obtain a solution v(x− ct) whose wave front travels at the speed c.

In order to understand what we are looking at in simulations and real life, we need to
enforce both initial conditions, position and velocity. If

u(x, t) = av(x− t) + bv(x+ t)

and u(x, 0) = v(x), (∂/∂t)u(x, 0) = 0, then we have

u(x, 0) = av(x) + bv(x) = v(x) =⇒ a+ b = 1;

(∂/∂t)u(x, 0) = −av′(x) + bv′(x) = 0 =⇒ −a+ b = 0.

Hence,

a = b =
1

2
; u(x, t) =

1

2
(v(x− t) + v(x+ t))

is the solution of interest to us. Plotting the three regions u = 1, u = 1/2 and u = 0, we
see the plane divided by a V shape with 1 on the left 1/2 in the middle and 0 on the right.
This says that there is a wave front travelling both left and right from the source. This is
like what happens with point sources in higher dimensions. In two dimensions, a pebble
dropped in a quiet pond will send a disturbance (wave front) outward in all directions with
equal speed, forming a circular wave front. The space-time picture of this wave front looks
like an ice-cream cone. In three dimensions, a source of sound our light will send out wave
in all directions. The wave front is an expanding sphere. In one dimension, the geometry
is less evident. What is happening is that there are only two possible directions (left and
right) instead of a whole circle or sphere of directions.

The next step is to note that it is not realistic for a string to have a jump discontinuity
like the step function. But any feature of the graph will travel at the wave speed. For
example, if we strech a string to a triangular shape with a kink, then the kink will travel
(in both directions) at the wave speed. We looked at this in the applet, and also saw that
when the kink hits the fixed ends it bounces off and returns. (The kinks always go at the
speed c; take a look in the applet, in which you can adjust the wave speed.)

Real life waves. Finally, we looked at a slow motion film of an vibrating elastic band at

2In the general theory of relativity, certain rescaled space-time diagrams are used to keep track of light
as it travels into black holes. In that case, they are called Penrose diagrams.

3



http://www.acoustics.salford.ac.uk/feschools/waves/quicktime/elastic2512K_

Stream.mov

The video shows the kink(s) in the band propagating at a steady speed and bouncing off
the ends. This resembles what we saw in the applet. Then we witnessed a new phenomenon:
damping. As the system loses energy, all the modes are damped.

The damped wave equation is

∂2u

∂t2
+ b

∂u

∂t
= c2

∂2u

∂x2
, b > 0

This introduces the factor e−bt/2 in the solutions.

Closer examination indicates (not entirely clear without some more detailed numerical
simulation!) that the main mode(s) are revealed more quickly than would be the case
using a linear damped wave equation. The higher frequency modes are being damped more
quickly than the lower frequency ones. A scientist or engineer might say that this system
is exhibiting some nonlinearity in its response. The modes of a linear wave equation would
all have the same damping constant b. This suggests that one can’t explain fully this
rubber band using linear differential equations alone. It satisfies some nonlinear differential
equation that shares many features with the linear equation, including the wave speed and
the normal modes.

4



18.03 EXERCISES

1. First-order ODE’s

1A. Introduction; Separation of Variables

1A-1. Verify that each of the following ODE’s has the indicated solutions (ci, a are con-
stants):

a) y′′ − 2y′ + y = 0, y = c1e
x + c2xe

x

b) xy′ + y = x sinx, y =
sinx+ a

x
− cosx

1A-2. On how many arbitrary constants (also called parameters) does each of the following
families of functions depend? (There can be less than meets the eye. . . ; a, b, c, d, k are
constants.)

a) c1e
kx b) c1e

x+a c) c1 + c2 cos 2x+ c3 cos
2 x d) ln(ax+ b) + ln(cx+ d)

1A-3. Write down an explicit solution (involving a definite integral) to the following
initial-value problems (IVP’s):

a) y′ =
1

y2 lnx
, y(2) = 0 b) y′ =

yex

x
, y(1) = 1

1A-4. Solve the IVP’s (initial-value problems):

a) y′ =
xy + x

y
, y(2) = 0 b)

du

dt
= sin t cos2 u, u(0) = 0

1A-5. Find the general solution by separation of variables:

a) (y2 − 2y) dx+ x2dy = 0 b) x
dv

dx
=

√

1− v2

c) y′ =

(

y − 1

x+ 1

)2

d)
dx

dt
=

√
1 + x

t2 + 4

1B. Standard First-order Methods

1B-1. Test the following ODE’s for exactness, and find the general solution for those which
are exact.

a) 3x2y dx+ (x3 + y3) dy = 0 b) (x2 − y2) dx+ (y2 − x2) dy = 0

c) veuvdu+ yeuvdv = 0 d) 2xy dx− x2dy = 0

1B-2. Find an integrating factor and solve:

a) 2x dx+
x2

y
dy = 0 b) y dx− (x+ y) dy = 0, y(1) = 1

c) (t2 + 4) dt+ t dx = x dt d) u(du− dv) + v(du+ dv) = 0. v(0) = 1
1
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1B-3. Solve the homogeneous equations

a) y′ =
2y − x

y + 4x
b)

dw

du
=

2uw

u2 − w2
c) xy dy − y2dx = x

√

x2 − y2 dx

1B-4. Show that a change of variable of the form u =
y

xn
turns y′ =

4 + xy2

x2y
into an

equation whose variables are separable, and solve it.

(Hint: as for homogeneous equations, since you want to get rid of y and y′, begin by
expressing them in terms of u and x.)

1B-5. Solve each of the following, finding the general solution, or the solution satisfying
the given initial condition.

a) xy′ + 2y = x b)
dx

dt
− x tan t =

t

cos t
, x(0) = 0

c) (x2 − 1)y′ = 1− 2xy d) 3v dt = t(dt− dv), v(1) = 1

4

1B-6. Consider the ODE
dx

dt
+ax = r(t), where a is a positive constant, and lim

t→∞

r(t) = 0.

Show that if x(t) is any solution, then lim
t→∞

x(t) = 0. (Hint: use L’Hospital’s rule.)

1B-7. Solve y′ =
y

y3 + x
. Hint: consider

dx

dy
.

1B-8. The Bernoulli equation. This is an ODE of the form y′+p(x)y = q(x)yn, n 6= 1.

Show it becomes linear if one makes the change of dependent variable u = y1−n.

(Hint: begin by dividing both sides of the ODE by yn .)

1B-9. Solve these Bernoulli equations using the method decribed in 1B-8:

a) y′ + y = 2xy2 b) x2y′ − y3 = xy

1B-10. The Riccati equation. After the linear equation y′ = A(x) + B(x) y, in a sense
the next simplest equation is the Riccati equation

y′ = A(x) +B(x)y + C(x)y2,

where the right-hand side is now a quadratic function of y instead of a linear function. In
general the Riccati equation is not solvable by elementary means. However,

a) show that if y1(x) is a solution, then the general solution is

y = y1 + u,

where u is the general solution of a certain Bernoulli equation (cf. 1B-8).

b) Solve the Riccati equation y′ = 1− x2 + y2 by the above method.

1B-11. Solve the following second-order autonomous equations (“autonomous” is an im-
portant word; it means that the independent variable does not appear explicitly in the
equation — it does lurk in the derivatives, of course.)

a) y′′ = a2y b) yy′′ = y′
2

c) y′′ = y′(1 + 3y2), y(0) = 1, y′(0) = 2
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1B-12. For each of the following, tell what type of ODE it is — i.e., what method you

would use to solve it. (Don’t actually carry out the solution.) For some, there are several

methods which could be used.

1. (x3 + y) dx+ x dy = 0 2.
dy

dt
+ 2ty − e−t = 0

3. y′ =
x2 − y2

5xy
4. (1 + 2p) dq + (2− q) dp = 0

5. cosx dy = (y sinx+ ex) dx 6. x(tan y)y′ = −1

7. y′ =
y

x
+

1

y
8.

dv

du
= e2u+3v

9. xy′ = y + xey/x 10. xy′ − y = x2 sinx

11. y′ = (x+ ey)−1 12. y′ +
2y

x
− y2

x
= 0

13.
dx

dy
= −x

(

2x2y + cos y

3x2y2 + sin y

)

14. y′ + 3y = e−3t

15. x
dy

dx
− y =

√

x2 + y2 16.
y′ − 1

x2
= 1

17. xy′ − 2y + y2 = x4 18. y′′ =
y(y + 1)

y′

19. t
ds

dt
= s(1− ln t+ ln s) 20.

dy

dx
=

3− 2y

2x+ y + 1

21. x2y′ + xy + y2 = 0 22. y′ tan(x+ y) = 1− tan(x+ y)

23. y ds− 3s dy = y4 dy 24. du = −1 + u cos2 t

t cos2 t
dt

25. y′ + y2 + (2x+ 1)y + 1 + x+ x2 = 0 26. y′′ + x2y′ + 3x3 = sinx

1C. Graphical and Numerical Methods

1C-1. For each of the following ODE’s, draw a direction field by using about five isoclines;
the picture should be square, using the intervals between−2 and 2 on both axes. Then sketch
in some integral curves, using the information provided by the direction field. Finally, do
whatever else is asked.

a) y′ = −y

x
; solve the equation exactly and compare your integral curves with the

correct ones.

b) y′ = 2x+ y ; find a solution whose graph is also an isocline, and verify this fact
analytically (i.e., by calculation, not from a picture).

c) y′ = x− y ; same as in (b).

d) y′ = x2 + y2 − 1

e) y′ =
1

x+ y
; use the interval −3 to 3 on both axes; draw in the integral curves

that pass respectively through (0, 0), (−1, 1), (0,−2). Will these curves cross the line
y = −x− 1? Explain by using the Intersection Principle (Notes G, (3)).
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1C-2. Sketch a direction field, concentrating on the first quadrant, for the ODE

y′ =
−y

x2 + y2
.

Explain, using it and the ODE itself how one can tell that the solution y(x) satisfying the
initial condition y(0) = 1

a) is a decreasing function for y > 0;
b) is always positive for x > 0 .

1C-3. Let y(x) be the solution to the IVP y′ = x− y, y(0) = 1.

a) Use the Euler method and the step size h = .1 to to find an approximate value of
y(x) for x = .1, .2, .3 . (Make a table as in notes G).

Is your answer for y(.3) too high or too low, and why?

b) Use the Modified Euler method (also called Improved Euler, or Heun’s method) and
the step size h = .1 to determine the approximate value of y(.1) . Is the value for y(.1) you
found in part (a) corrected in the right direction — e.g., if the previous value was too high,
is the new one lower?

1C-4. Use the Euler method and the step size .1 on the IVP y′ = x+ y2, y(0) = 1, to
calculate an approximate value for the solution y(x) when x = .1, .2, .3 . (Make a table as
in Notes G.) Is your answer for y(.3) too high or too low?

1C-5. Prove that the Euler method converges to the exact value for y(1) as the progressively
smaller step sizes h = 1/n, n = 1, 2, 3, . . . are used, for the IVP

y′ = x− y, y(0) = 1 .

(First show by mathematical induction that the approximation to y(1) gotten by using the
step size 1/n is

yn = 2(1− h)n − 1 + nh .

The exact solution is easily found to be y = 2e−x + x− 1 .)

1C-6. Consider the IVP y′ = f(x), y(0) = y0.

We want to calculate y(2nh), where h is the step size, using n steps of the Runge-Kutta
method.

The exact value, by Chapter D of the notes, is y(2nh) = y0 +

∫ 2nh

0

f(x) dx .

Show that the value for y(2nh) produced by Runge-Kutta is the same as the value for
y(2nh) obtained by using Simpson’s rule to evaluate the definite integral.

1C-7. According to the existence and uniqueness theorem, under what conditions on
a(x), b(x), and c(x) will the IVP

a(x) y′ + b(x) y = c(x), y(x0) = y0

have a unique solution in some interval [x0 − h, x0 + h] centered around x0?
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1D. Geometric and Physical Applications

1D-1. Find all curves y = y(x) whose graphs have the indicated geometric property. (Use
the geometric property to find an ODE satisfied by y(x), and then solve it.)

a) For each tangent line to the curve, the segment of the tangent line lying in the first
quadrant is bisected by the point of tangency.

b) For each normal to the curve, the segment lying between the curve and the x-axis las
constant length 1.

c) For each normal to the curve, the segment lying between the curve and the x-axis is
bisected by the y-axis.

d) For a fixed a, the area under the curve between a and x is proportional to y(x)−y(a).

1D-2. For each of the following families of curves,
(i) find the ODE satisfied by the family (i.e., having these curves as its integral curves);
(ii) find the orthogonal trajectories to the given family;
(iii) sketch both the original family and the orthogonal trajectories.

a) all lines whose y-intercept is twice the slope
b) the exponential curves y = cex

c) the hyperbolas x2 − y2 = c
d) the family of circles centered on the y-axis and tangent to the x-axis.

1D-3. Mixing A container holds V liters of salt solution. At time t = 0, the salt
concentration is c0 g/liter. Salt solution having concentration c1 is added at the rate of k
liters/min, with instantaneous mixing, and the resulting mixture flows out of the container
at the same rate. How does the salt concentration in the tank vary with time?

Let x(t) be the amount of salt in the tank at time t. Then c(t) =
x(t)

V
is the

concentration of salt at time t.
a) Write an ODE satisfied by x(t), and give the initial condition.
b) Solve it, assuming that it is pure water that is being added. (Lump the constants by

setting a = k/V .)
c) Solve it, assuming that c1 is constant; determine c(t) and find lim

t→∞

c(t). Give an

intuitive explanation for the value of this limit.
d) Suppose now that c1 is not constant, but is decreasing exponentially with time:

c1 = c0e
−αt, α > 0.

Assume that a 6= α (cf. part (b)), and determine c(t), by solving the IVP. Check your
answer by putting α = 0 and comparing with your answer to (c).

1D-4. Radioactive decay A radioactive substance A decays into B, which then further
decays to C.

a) If the decay constants of A and B are respectively λ1 and λ2 (the decay constant
is by definition (ln 2/half-life)), and the initial amounts are respectively A0 and B0, set up
an ODE for determining B(t), the amount of B present at time t, and solve it. (Assume
λ1 6= λ2.)

b) Assume λ1 = 1 and λ2 = 2. Tell when B(t) reaches a maximum.

1D-5. Heat transfer According to Newton’s Law of Cooling, the rate at which the
temperature T of a body changes is proportional to the difference between T and the external
temperature.

At time t = 0, a pot of boiling water is removed from the stove. After five minutes, the
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water temperature is 80oC. If the room temperature is 20oC, when will the water have
cooled to 60oC? (Set up and solve an ODE for T (t).)

1D-6. Motion A mass m falls through air under gravity. Find its velocity v(t) and its
terminal velocity (that is, lim

t→∞

v(t)) assuming that

a) air resistance is kv (k constant; this is valid for small v);

b) air resistance is kv2 (k constant; this is valid for high v).

Call the gravitational constant g. In part (b), lump the constants by introducing a

parameter a =
√

gm/k .

1D-7. A loaded cable is hanging from two points of support, with Q the lowest point on
the cable. The portion QP is acted on by the total load W on it, the constant tension TQ

at Q, and the variable tension T at P . Both W and T vary with the point P .

Let s denote the length of arc QP .

a) Show that
dx

TQ
=

dy

W
=

ds

T
.

b) Deduce that if the cable hangs under its own weight, and
y(x) is the function whose graph is the curve in which the cable
hangs, then

dy
dx

Q

P
ds

x

y

(i) y′′ = k
√

1 + y′2, k constant

(ii) y =
√
s2 + c2 + c1, c, c1 constants

c) Solve the suspension bridge problem: the cable is of negligible weight, and the loading
is of constant horizontal density. (“Solve” means: find y(x).)

d) Consider the “Marseilles curtain” problem: the cable is of negligible weight, and
loaded with equally and closely spaced vertical rods whose bottoms lie on a horizontal line.

( Take the x-axis as the line, and show y(x) satisfies the ODE y′′ = k2y.)

1E. First-order autonomous ODE’s

1E-1. For each of the following autonomous equations dx/dt = f(x), obtain a qualitative
picture of the solutions as follows:

(i) draw horizontally the axis of the dependent variable x, indicating the critical points
of the equation; put arrows on the axis indicating the direction of motion between the
critical points; label each critical point as stable, unstable, or semi-stable. Indicate where
this information comes from by including in the same picture the graph of f(x), drawn in
dashed lines;

(ii) use the information in the first picture to make a second picture showing the tx-
plane, with a set of typical solutions to the ODE: the sketch should show the main qualitative
features (e.g., the constant solutions, asymptotic behavior of the non-constant solutions).

a) x′ = x2 + 2x
b) x′ = −(x− 1)2

c) x′ = 2x− x2

d) x′ = (2− x)3



2. Higher-order Linear ODE’s

2A. Second-order Linear ODE’s: General Properties

2A-1. On the right below is an abbreviated form of the ODE on the left:

(*) y′′ + p(x)y′ + q(x)y = r(x) Ly = r(x) ;

where L is the differential operator:

L = D2 + p(x)D + q(x) .

a) If u1 and u2 are any two twice-differentiable functions, and c is a constant, then

L(u1 + u2) = L(u1) + L(u2) and L(c u) = c L(u).

Operators which have these two properties are called linear . Verify that L is linear, i.e.,
that the two equations are satisfied.

b) Show that if yp is a solution to (*), then all other solutions to (*) can be written in
the form

y = yc + yp ,

where yc is a solution to the associated homogeneous equation Ly = 0.

2A-2.

a) By eliminating the constants, find a second-order linear homogeneous ODE whose
general solution is y = c1e

x + c2e
2x .

b) Verify for this ODE that the IVP consisting of the ODE together with the initial
conditions

y(x0) = y0, y′(x0) = y′0 y0, y′0 constants

is always solvable.

2A-3.

a) By eliminating the constants, find a second-order linear homogeneous ODE whose
general solution is y = c1x+ c2x

2 .

b) Show that there is no solution to the ODE you found in part (a) which satisfies the
initial conditions y(0) = 1, y′(0) = 1.

c) Why doesn’t part (b) contradict the existence theorem for solutions to second-order
linear homogeneous ODE’s? (Book: Theorem 2, p. 110.)

2A-4. Consider the ODE y′′ + p(x)y′ + q(x)y = 0.

a) Show that if p and q are continuous for all x, a solution whose graph is tangent to
the x-axis at some point must be identically zero, i.e., zero for all x.

b) Find an equation of the above form having x2 as a solution, by calculating its
derivatives and finding a linear equation connecting them. Why isn’t part (a) contradicted,
since the function x2 has a graph tangent to the x axis at 0?

1
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2A-5. Show that the following pairs of functions are linearly independent, by calculating
their Wronskian.

a) em1x, em2x, m1 6= m2 b) emx, xemx (can m = 0?)

2A-6. Consider y1 = x2 and y2 = x|x| . (Sketch the graph of y2.)

a) Show that W (y1, y2) ≡ 0 (i.e., is identically zero).

b) Show that y1 and y2 are not linearly dependent on any interval (a, b) containing 0.
Why doesn’t this contradict theorem 3b, p. 116 in your book?

2A-7. Let y1 and y2 be two solutions of y′′ + p(x)y′ + q(x)y = 0.

a) Prove that
dW

dx
= −p(x)W , where W = W (y1, y2), the Wronskian.

b) Prove that if p(x) = 0, then W (y1, y2) is always a constant.

c) Verify (b) by direct calculation for y′′ + k2y = 0, k 6= 0, whose general solution is
y1 = c1 sin kx+ c2 cos kx .

2B. Reduction of Order

2B-1. Find a second solution y2 to y′′ − 2y′ + y = 0, given that one solution is y1 = ex, by
three methods:

a) putting y2 = uex and determining u(x) by substituting into the ODE;

b) determining W (y1, y2) using Exercise 2A-7a, and from this getting y2;

c) by using the general formula y2 = y1

∫

1

y21
e
−

∫

p dx
dx .

d) If you don’t get the same answer in each case, account for the differences. (What is
the most general form for y2?)

2B-2. In Exercise 2B-1, prove that the general formula in part (c) for a second solution gives
a function y2 such that y1 and y2 are linearly independent. (Calculate their Wronskian.)

2B-3. Use the method of reduction of order (as in 2B-1a) to find a second solution to

x2y′′ + 2xy′ − 2y = 0 ,

given that one solution is y1 = x.

2B-4. Find the general solution on the interval (−1, 1) to the ODE

(1− x2)y′′ − 2xy′ + 2y = 0,

given that y1 = x is a solution.
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2C. Second-order Linear ODE’s with Constant Coefficients

2C-1. Find the general solution, or the solution satisfying the given initial conditions, to
each of the following:

a) y′′ − 3y′ + 2y = 0 b) y′′ + 2y′ − 3y = 0; y(0) = 1, y′(0) = −1

c) y′′ + 2y′ + 2y = 0 d) y′′ − 2y′ + 5y = 0; y(0) = 1, y′(0) = −1

e) y′′ − 4y′ + 4y = 0; y(0) = 1, y′(0) = 1

2C-2. Show by using the Wronskian criterion that eax cos bx and eax sin bx are linearly
independent. Are there any restrictions on the constants a and b ?

2C-3. Consider y′′ + cy′ + 4y = 0, c constant. For each statement below, tell for what
value(s) of c it holds (indicate reasoning):

a) the equation has oscillatory solutions

b) all solutions are damped oscillations

2C-4. Euler’s equidimensional equation is the ODE

x2y′′ + pxy′ + qy = 0; p, q constants.

a) Show that setting x = et changes it into an equation with constant coefficients.

b) Use this to find the general solution to x2y′′ + xy′ + y = 0.

2C-5. The equation mx′′ + cx′ + kx = 0 represents the motion of a damped spring-mass
system. (The independent variable is the time t.)

How are the constants m, c, k related if the system is critically damped (i.e., just on the
edge of being oscillatory)?

2C-6. Show that the angle α of the pendulum swinging with small amplitude (so you can
use the approximation sinα ≈ α) approximately obeys a second-order ODE with constant
coefficients. Use

L = length, m = mass, damping = mc
dα

dt
, for some constant c

If the motion is undamped, i.e., c = 0, express the period in terms of L,m, and the
gravitational constant g.

L

m

α

α

2C-7. For each of the following, tell what you would use as the trial solution in determining
a particular solution by the method of undetermined coefficients

a) y′′ + 2y′ + 2y = x+ ex b) y′′ − 4y′ = cos 2x

c) y′′ + 4y = 3 cos 2x d) y′′ − 2y′ + y = 3ex

e) y′′ − 3y′ + 2y = e−x + 3e2x f) y′′ − 6y′ + 9y = 2xe3x

2C-8. Find the general solution, or the solution satisfying the given initial conditions:

a) y′′ − 6y′ + 5y = ex b) y′′ + 4y = 2 cosx, y(0) = 0, y′(0) = 1

c) y′′ + y′ + y = 2x ex d) y′′ − y = x2, y(0) = 0, y′(0) = −1
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2C-9. Consider the ODE y′′ + p(x)y′ + q(x)y = r(x).

a) Prove that if yi is a particular solution when r = ri(x), (i = 1, 2), then y1 + y2 is a
particular solution when r = r1 + r2. (Use the ideas of Exercise 2A-1.)

b) Use part (a) to find a particular solution to y′′ + 2y′ + 2y = 2x+ cosx.

2C-10. A series RLC-circuit is modeled by either of the ODE’s (the second equation is
just the derivative of the first)

Lq′′ +Rq′ +
q

C
= E ,

Li′′ +Ri′ +
i

C
= E ′,

where q(t) is the charge on the capacitor, and i(t) is the current in the circuit; E(t) is the
applied electromotive force (from a battery or generator), and the constants L,R,C are
respectively the inductance of the coil, the resistance, and the capacitance, measured in
some compatible system of units.

a) Show that if R = 0 and E = 0, then q(t) varies periodically, and find the period.
(Assume L 6= 0.)

b) Assume E = 0; how must R,L,C be related if the current oscillates?

c) If R = 0 and E = E0 sinωt, then for a certain ω0, the current will have large amplitude
whenever ω ≈ ω0. What is the value of ω0. (Indicate reason.)

2D. Variation of Parameters

2D-1. Find a particular solution by variation of parameters:

a) y′′ + y = tanx b) y′′ + 2y′ − 3y = e−x

c) y′′ + 4y = sec2 2x

2D-2. Bessel’s equation of order p is x2y′′ + xy′ + (x2 − p2)y = 0.
For p = 1

2 , two independent solutions for x > 0 are

y1 =
sinx√

x
and y2 =

cosx√
x

, x > 0.

Find the general solution to

x2y′′ + xy′ + (x2 − 1
4 ) y = x3/2 cosx .

2D-3. Consider the ODE y′′ + p(x)y′ + q(x)y = r(x).

a) Show that the particular solution obtained by variation of parameters can be written
as the definite integral

y =

∫ x

a

∣

∣

∣

∣

y1(t) y2(t)
y1(x) y2(x)

∣

∣

∣

∣

W (y1(t), y2(t))
r(t) dt .

(Write the functions v1 and v2 (in the Variation of Parameters formula) as definite integrals.)

b) If instead the particular solution is written as an indefinite integral, there are arbitrary
constants of integration, so the particular solution is not precisely defined. Explain why this
doesn’t matter.

2D-4. When must you use variation of parameters to find a particular solution, rather
than the method of undetermined coefficients?
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2E. Complex Numbers

All references are to Notes C: Complex Numbers

2E-1. Change to polar form: a) −1 + i b)
√
3− i .

2E-2. Express
1− i

1 + i
in the form a + bi by two methods: one using the Cartesian form

throughout, and one changing numerator and denominator to polar form. Show the two
answers agree.

2E-3.* Show the distance between any two complex points z1 and z2 is given by |z2 − z1|.

2E-4. Prove two laws of complex conjugation:

for any complex numbers z and w, a) z + w = z + w b) zw = zw .

2E-5.* Suppose f(x) is a polynomial with real coefficients. Using the results of 2E-4, show
that if a+ ib is a zero, then the complex conjugate a− ib is also a zero. (Thus, complex
roots of a real polynomial occur in conjugate pairs.)

2E-6.* Prove the formula eiθeiθ
′

= ei(θ+θ′) by using the definition (Euler’s formula (9)),
and the trigonometric addition formulas.

2E-7. Calculate each of the following two ways: by changing to polar form, and also by
using the binomial theorem.

a) (1− i)4 b) (1 + i
√
3)3

2E-8.* By using Euler’s formula and the binomial theorem, express cos 3θ and sin 3θ in
terms of cos θ and sin θ.

2E-9. Express in the form a+ bi the six sixth roots of 1.

2E-10. Solve the equation x4 + 16 = 0.

2E-11.* Solve the equation x4 + 2x2 + 4 = 0, expressing the four roots in both the polar
form and the Cartesian form a+ bi.

2E-12.* Calculate A and B explicitly in the form a+ bi for the cubic equation on the first
page of Notes C, and then show that A+B is indeed real, and a root of the equation.

2E-13.* Prove the law of exponentials (16), as suggested there.

2E-14. Express sin4 x in terms of cos 4x and cos 2x, using (18) and the binomial
theorem. Why would you not expect sin 4x or sin 2x in the answer?

2E-15. Find

∫

e2x sinx dx by using complex exponentials.

2E-16. Prove (18): a) cosx = 1
2 (e

ix + e−ix), b) sinx = 1
2i (e

ix − e−ix) .

2E-17.* Derive formula (20): D(e(a+ib)x) = (a+ib)e(a+ib)x from the definition of complex
exponential and the derivative formula (19): D(u+ iv) = Du+ iDv.

2E-18.* Find the three cube roots of unity in the a+ bi form by locating them on the unit
circle and using elementary geometry.
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2F. Linear Operators and Higher-order ODE’s

2F-1. Find the general solution to each of the following ODE’s:

a) (D − 2)3(D2 + 2D + 2) y = 0 b) (D8 + 2D4 + 1) y = 0

c) y(4) + y = 0 d) y(4) − 8y′′ + 16y = 0

e) y(6) − y = 0 (use 2E-9) f) y(4) + 16y = 0 (use 2E-10)

2F-2. Find the solution to y(4) − 16y = 0, which in addition satisfies the four side
conditions y(0) = 0, y′(0) = 0, y(π) = 1, and |y(x)| < K for some constant K and
all x > 0.

2F-3. Find the general solution to

a) (D3 −D2 + 2D − 2) y = 0 b) (D3 +D2 − 2) y = 0

c) y(3) − 2y′ − 4 = 0 d) y(4) + 2y′′ + 4y = 0

(By high-school algebra, if m is a zero of a polynomial p(D), then (D−m) is a factor of
p(D). If the polynomial has integer coefficients and leading coefficient 1, then any integer
zeros of p(D) must divide the constant term.)

2F-4. A system consisting of two coupled springs is modeled by the
pair of ODE’s (we take the masses and spring constants to be 1; in the
picture the Si are springs, the mi are the masses, and xi represents the
distance of mass mi from its equilibrium position (represented here by a
short horisontal line)):

x′′

1 + 2x1 − x2 = 0, x′′

2 + x2 − x1 = 0 .

a) Eliminate x1 to get a 4th order ODE for x2.

b) Solve it to find the general solution.

m

m

S

S1

2

2

1
x1

x2

2F-5. Let y = e2x cosx. Find y′′ by using operator formulas.

2F-6. Find a particular solution to

a) (D2 + 1)y = 4ex b) y(3) + y′′ − y′ + 2y = 2 cosx

c) y′′ − 2y′ + 4y = ex cosx d) y′′ − 6y′ + 9y = e3x

(Use the methods in Notes O; use complex exponentials where possible.)

2F-7. Find a particular solution to the general first-order linear equation with constant
coefficients, y′ + ay = f(x), by assuming it is of the form yp = e−axu, and applying the
exponential-shift formula.
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2G. Stability of Linear ODE’s with Constant Coefficients

2G-1. For the equation y′′ + 2y′ + cy = 0, c constant,

(i) tell which values of c correspond to each of the three cases in Notes S, p.1;
(ii) for the case of two real roots, tell for which values of c both roots are negative, both

roots are positive, or the roots have different signs.
(iii) Summarize the above information by drawing a c-axis, and marking the intervals on

it corresponding to the different possibilities for the roots of the characteristic equation.
(iv) Finally, use this information to mark the interval on the c-axis for which the corre-

sponding ODE is stable. (The stability criterion using roots is what you will need.)

2G-2. Prove the stability criterion (coefficient form) (Notes S,(8)), in the direction =⇒.

(You can assume that a0 > 0, after multiplying the characteristic equation through by
−1 if necessary. Use the high-school algebra relations which express the coefficients in terms
of the roots.)

2G-3. Prove the stability criterion in the coefficient form (Notes S,(8)) in the direction ⇐=.
Use the quadratic formula, paying particular attention to the case of two real roots.

2G-4.* Note: in what follows, formula references (11), (12), etc. are to Notes S.

(a) Prove the higher-order stability criterion in the coefficient form (12).

(You can use the fact that a real polynomial factors into linear and quadratic factors,
corresponding respectively to its real roots and its pairs of complex conjugate roots. You
will need (11) and the stability criterion in the coefficient form for second-order equations.)

(b) Prove that the converse to (12) is true for those equations all of whose characteristic
roots are real.

(Use an indirect proof — assume it is false and derive a contradiction.)

(c) To illustrate that the converse to (12) is in general false, show by using the criterion
(11) that the equation y′′′+y′′+y′+6y = 0 is not stable. (Find a root of the characteristic
equation by inspection, then use this to factor the characteristic polynomial.)

2G-5.* (a) Show when n = 2, the Routh-Hurwitz conditions (Notes S, (13)) are the same
as the conditions given for second-order ODE’s in (8).

(b) For the ODE y′′′ + y′′ + y′ + cy = 0, use the Routh-Hurwitz conditions to find all
values of c for which the ODE is stable.

2G-6.* Take as the input r(t) = At, where A is a constant, in the ODE

(1) ay′′ + by′ + cy = r(t), a, b, c constants, t = time.

a) Assume a, b, c > 0 and find by undetermined coefficients the steady-state solution.
Express it in the form K(t− d), where K and d are constants depending on the parameter
A and on the coefficients of the equation.

b) We may think of d as the “time-delay”. Going back to the two physical interpretations
of (1) (i.e., springs and circuits), for each interpretation, express d in terms of the usual
constants of the system (m-b-k, or R-L-C, depending on the interpretation).
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2H. Impulse Response and Convolution

2H-1. Find the unit impulse response w(t) to y′′ − k2y = f(t).

2H-2.* a) Find the unit impulse response w(t) to y′′ − (a+ b)y′ + aby = f(t).

b) As b → a, the associated homogeneous system turns into one having the repeated
characteristic root a, and teat as its weight function, according to Example 2 in the Notes.
So the weight function w(t) you found in part (a) should turn into t eat, even though the
two functions look rather different.

Show that indeed, lim
b→a

w(t) = t eat. (Hint: write b = a+ h and find limh→0.)

2H-3. a) Use (10) in Notes I to solve y′′ + 4y′ + 4y = f(x), y(0) = y′(0) = 0, x ≥ 0,
where f(x) = e−2x.
Check your answer by using the method of undetermined coefficients.

b)* Build on part (a) by using (10) to solve the IVP if f(x) =

{

e−2x, 0 ≤ x ≤ 1;

0, x > 1 .

2H-4. Let φ(x) =

∫ x

0

(2x+ 3t)2dt. Calculate φ′(x) two ways:

a) by using Leibniz’ formula
b) directly, by calculating φ(x) explicitly, and differentiating it.

2H-5.* Using Leibniz’ formula, verify directly that these IVP’s have the solution given:

a) y′′ + k2y = f(x), y(0) = y′(0) = 0; yp =
1

k

∫ x

0

sin k(x− t) f(t) dt.

b) y′′ − 2ky′ + k2y = f(x), y(0) = y′(0) = 0; yp =

∫ x

0

(x− t)ek(x−t) f(t) dt.

2H-6.* Find the following convolutions, as explicit functions f(x):

a) eax ∗ eax = xeax (cf. (15)) b) 1 ∗ x c) x ∗ x2

2H-7.* Give, with reasoning, the solution to Example 7.

2H-8.* Show y′ + ay = r(x), y(0) = 0 has the solution yp = e−ax ∗ r(x) by
a) Leibniz’ formula
b) solving the IVP by the first-order method, using a definite integral (cf. Notes D).

2H-9.* There is an analogue of (10) for the IVP with non-constant coefficients:

(*) y′′ + p(x)y′ + q(x)y = f(x), y(0) = y′(0) = 0.

It assumes you know the complementary function: yc = c1u(x) + c2v(x). It says

y(x) =

∫ x

0

g(x, t) f(t) dt, where g(x, t) =

∣

∣

∣

∣

u(t) v(t)
u(x) v(x)

∣

∣

∣

∣

∣

∣

∣

∣

u(t) v(t)
u′(t) v′(t)

∣

∣

∣

∣

.

By using Leibniz’ formula, prove this solves the IVP (*).



3. Laplace Transform

3A. Elementary Properties and Formulas

3A-1. Show from the definition of Laplace transform that L(t) = 1

s2
, s > 0.

3A-2. Derive the formulas for L(eat cos bt) and L(eat sin bt) by assuming the formula

L(eαt) = 1

s− α

is also valid when α is a complex number; you will also need

L(u+ iv) = L(u) + iL(v),
for a complex-valued function u(t) + iv(t).

3A-3. Find L−1
(

F (s)
)

for each of the following, by using the Laplace transform formulas.
(For (c) and (e) use a partial fractions decomposition.)

a)
1

1

2
s+ 3

b)
3

s2 + 4
c)

1

s2 − 4
d)

1 + 2s

s3
e)

1

s4 − 9s2

3A-4. Deduce the formula for L(sin at) from the definition of Laplace transform and the
formula for L(cos at), by using integration by parts.

3A-5. a) Find L(cos2 at) and L(sin2 at) by using a trigonometric identity to change
the form of each of these functions.

b) Check your answers to part (a) by calculating L(cos2 at) +L(sin2 at). By inspection,
what should the answer be?

3A-6. a) Show that L
(

1√
t

)

=

√

π

s
, s > 0, by using the well-known integral

∫

∞

0

e−x2

dx =

√
π

2
.

(Hint: Write down the definition of the Laplace transform, and make a change of variable
in the integral to make it look like the one just given. Throughout this change of variable,
s behaves like a constant.)

b) Deduce from the above formula that L(
√
t) =

√
π

2s3/2
, s > 0.

3A-7. Prove that L(et2) does not exist for any interval of the form s > a.
(Show the definite integral does not converge for any value of s.)

3A-8. For what values of k will L(1/tk) exist? (Write down the definition of this Laplace
transform, and determine for what k it converges.)

3A-9. By using the table of formulas, find: a) L(e−t sin 3t) b) L(e2t(t2 − 3t+ 2))

3A-10. Find L−1
(

F (s)
)

, if F (s) =

a)
3

(s− 2)4
b)

1

s(s− 2)
c)

s+ 1

s2 − 4s+ 5
1
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3B. Derivative Formulas; Solving ODE’s

3B-1. Solve the following IVP’s by using the Laplace transform:

a) y′ − y = e3t, y(0) = 1 b) y′′ − 3y′ + 2y = 0, y(0) = 1, y′(0) = 1

c) y′′ + 4y = sin t, y(0) = 1, y′(0) = 0 d) y′′ − 2y′ + 2y = 2et, y(0) = 0, y′(0) = 1

e) y′′ − 2y′ + y = et, y(0) = 1, y′(0) = 0 .

3B-2. Without referring to your book or to notes, derive the formula for L(f ′(t)) in
terms of L(f(t)). What are the assumptions on f(t) and f ′(t)?

3B-3. Find the Laplace transforms of the following, using formulas and tables:

a) t cos bt b) tnekt (two ways) c) eatt sin t

3B-4. Find L−1(F (s)) if F (s) = a)
s

(s2 + 1)2
b)

1

(s2 + 1)2

3B-5. Without consulting your book or notes, derive the formulas

a) L
(

eatf(t)
)

= F (s− a) b) L
(

t f(t)
)

= −F ′(s)

3B-6. If y(t) is a solution to the IVP y′′ + ty = 0, y(0) = 1, y′(0) = 0, what ODE
is satisfied by the function Y (s) = L(y(t))?

(The solution y(t) is called an Airy function; the ODE it satisfies is the Airy equation.)

3C. Discontinuous Functions

3C-1. Find the Laplace transforms of each of the following functions; do it as far as possible
by expressing the functions in terms of known functions and using the tables, rather than by
calculating from scratch. In each case, sketch the graph of f(t). (Use the unit step function
u(t) wherever possible.)

a) f(t) =











1, 0 ≤ t ≤ 1

−1, 1 < t ≤ 2

0, otherwise

b) f(t) =











t, 0 ≤ t ≤ 1

2− t, 1 ≤ t ≤ 2

0, otherwise

c) f(t) = | sin t|, t ≥ 0.

3C-2. Find L−1 for the following: a)
e−s

s2 + 3s+ 2
b)

e−s − e−3s

s
(sketch answer)

3C-3. Find L(f(t)) for the square wave f(t) =

{

1, 2n ≤ t ≤ 2n+ 1, n = 0, 1, 2, . . .

0, otherwise

a) directly from the definition of Laplace transform;

b) by expressing f(t) as the sum of an infinite series of functions, taking the Laplace
transform of the series term-by-term, and then adding up the infinite series of Laplace
transforms.

3C-4. Solve by the Laplace transform the following IVP, where h(t) =

{

1, π ≤ t ≤ 2π,

0, otherwise

y′′ + 2y′ + 2y = h(t), y(0) = 0, y′(0) = 1;
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write the solution in the format used for h(t) .

3C-5. Solve the IVP: y′′ − 3y′ + 2y = r(t), y(0) = 1, y′(0) = 0, where r(t) = u(t) t,
the ramp function.

3D. Convolution and Delta Function

3D-1. Solve the IVP: y′′ + 2y′ + y = δ(t) + u(t− 1), y(0) = 0, y′(0−) = 1.

Write the answer in the “cases” format y(t) =

{ · · · , 0 ≤ t ≤ 1

· · · , t > 1

3D-2. Solve the IVP: y′′+y = r(t), y(0) = 0, y′(0) = 1, where r(t) =

{

1, 0 ≤ x ≤ π

0, otherwise.

Write the answer in the “cases” format (see 3D-1 above).

3D-3. If f(t + c) = f(t) for all t, where c is a fixed positive constant, the function f(t)
is said to be periodic, with period c. (For example, sinx is periodic, with period 2π.)

a) Show that if f(t) is periodic with period c, then its Laplace transform is

F (s) =
1

1− e−cs

∫ c

0

e−stf(t) dt .

b) Do Exercise 3C-3, using the above formula.

3D-4. Find L−1 by using the convolution: a)
s

(s+ 1)(s2 + 4)
b)

1

(s2 + 1)2

Your answer should not contain the convolution ∗ .

3D-5. Assume f(t) = 0, for t ≤ 0. Show informally that δ(t) ∗ f(t) = f(t), by using the
definition of convolution; then do it by using the definition of δ(t).

(See (5), section 4.6 of your book; δ(t) is written δ0(t) there.)

3D-6. Prove that f(t) ∗ g(t) = g(t) ∗ f(t) directly from the definition of convolution, by
making a change of variable in the convolution integral.

3D-7. Show that the IVP: y′′ + k2y = r(t), y(0) = 0, y′(0) = 0 has the solution

y(t) =
1

k

∫ t

0

r(u) sin k(t− u) du ,

by using the Laplace transform and the convolution.

3D-8. By using the Laplace transform and the convolution, show that in general the IVP
(here a and b are constants):

y′′ + ay′ + by = r(t), y(0) = 0, y′(0) = 0,

has the solution

y(t) =

∫ t

0

w(t− u)r(u) du ,

where w(t) is the solution to the IVP: y′′ + ay′ + by = 0, y(0) = 0, y′(0) = 1 .

(The function w(t−u) is called the Green’s function for the linear operator D2+aD+b.)



4. Linear Systems

4A. Review of Matrices

4A-1. Verify that

(

2 0 1
1 −1 −2

)





1 0 −1
0 2 1

−1 0 2



 =

(

1 0 0
3 −2 −6

)

.

4A-2. If A =

(

1 2
3 −1

)

and B =

(

0 −1
2 1

)

, show that AB 6= BA.

4A-3. Calculate A−1 if A =

(

2 2
3 2

)

, and check your answer by showing that AA−1 = I

and A−1A = I.

4A-4. Verify the formula given in Notes LS.1 for the inverse of a 2× 2 matrix.

4A-5. Let A =

(

0 1
1 1

)

. Find A3 (= A ·A ·A).

4A-6. For what value of c will the vectors x1 = (1, 2, c), x2 = (−1, 0, 1), and x3 = (2, 3, 0)
be linearly dependent? For this value, find by trial and error (or otherwise) a linear relation
connecting them, i.e., one of the form c1x1 + c2x2 + c3x3 = 0

4B. General Systems; Elimination; Using Matrices

4B-1. Write the following equations as equivalent first-order systems:

a)
d2x

dt2
+ 5

dx

dt
+ tx2 = 0 b) y′′ − x2y′ + (1− x2)y = sinx

4B-2. Write the IVP

y(3) + p(t)y′′ + q(t)y′ + r(t)y = 0, y(0) = y0, y′(0) = y′0, y′′(0) = y′′0

as an equivalent IVP for a system of three first-order linear ODE’s. Write this system both
as three separate equations, and in matrix form.

4B-3. Write out x′ =

(

1 1
4 1

)

x, x =

(

x

y

)

as a system of two first-order equations.

a) Eliminate y so as to obtain a single second-order equation for x.

b) Take the second-order equation and write it as an equivalent first-order system. This
isn’t the system you started with, but show a change of variables converts one system into
the other.

4B-4. For the system x′ = 4x− y, y′ = 2x+ y,

a) using matrix notation, verify that x = e3t, y = e3t and x = e2t, y = 2e2t are
solutions;

b) verify that they form a fundamental set of solutions — i.e., that they are linearly
independent;

1
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c) write the general solution to the system in terms of two arbitrary constants c1 and
c2; write it both in vector form, and in the form x = . . . , y = . . . .

4B-5. For the system x′ = Ax , where A =

(

1 3
3 1

)

,

a) show that x1 =

(

1
1

)

e4t and x2 =

(

1
−1

)

e−2t form a fundamental set of solutions

(i.e., they are linearly independent and solutions);

b) solve the IVP: x′ = Ax, x(0) =

(

5
1

)

.

4B-6. Solve the system x′ =

(

1 1
0 1

)

x in two ways:

a) Solve the second equation, substitute for y into the first equation, and solve it.

b) Eliminate y by solving the first equation for y, then substitute into the second equation,
getting a second order equation for x. Solve it, and then find y from the first equation. Do
your two methods give the same answer?

4B-7. Suppose a radioactive substance R decays into a second one S which then also
decays. Let x and y represent the amounts of R and S present at time t, respectively.

a) Show that the physical system is modeled by a system of equations

x′ = Ax, where A =

(

−a 0
a −b

)

, x =

(

x

y

)

, a, b constants.

b) Solve this sytem by either method of elimination described in 4B-6.

c) Find the amounts present at time t if initially only R is present, in the amount x0.

Remark. The method of elimination which was suggested in some of the preceding
problems (4B-3,6,7; book section 5.2) is always available. Other than in these exercises, we
will not discuss it much, as it does not give insights into systems the way the methods will
decribe later do.

Warning. Elimination sometimes produces extraneous solutions — extra “solutions”
that do not actually solve the original system. Expect this to happen when you have to
differentiate both equations to do the elimination. (Note that you also get extraneous
solutions when doing elimination in ordinary algebra, too.) If you get more independent
solutions than the order of the system, they must be tested to see if they actually solve the
original system. (The order of a system of ODE’s is the sum of the orders of each of the
ODE’s in it.)

4C. Eigenvalues and Eigenvectors

4C-1. Solve x′ = Ax, if A is: a)

(

−3 4
−2 3

)

b)

(

4 −3
8 −6

)

c)





1 −1 0
1 2 1

−2 1 −1



.

( First find the eigenvalues and associated eigenvectors, and from these construct the
normal modes and then the general solution.)
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4C-2. Prove that m = 0 is an eigenvalue of the n×n constant matrix A if and only if A is
a singular matrix (detA = 0). (You can use the characteristic equation, or you can use the
definition of eigenvalue.)

4C-3. Suppose a 3 × 3 matrix is upper triangular. (This means it has the form below,
where ∗ indicates an arbitrary numerical entry.)

A =





a ∗ ∗

0 b ∗

0 0 c





Find its eigenvalues. What would be the generalization to an n× n matrix?

4C-4. Show that if ~α is an eigenvector of the matrix A, associated with the eigenvalue m,
then ~α is also an eigenvector of the matrix A2, associated this time with the eigenvalue m2.
(Hint: use the eigenvector equation in 4F-3.)

4C-5. Solve the radioactive decay problem (4B-7) using eigenvectors and eigenvalues.

4C-6. Farmer Smith has a rabbit colony in his pasture, and so does Farmer Jones. Each
year a certain fraction a of Smith’s rabbits move to Jones’ pasture because the grass is
greener there, and a fraction b of Jones’ rabbits move to Smith’s pasture (for the same
reason). Assume (foolishly, but conveniently) that the growth rate of rabbits is 1 rabbit
(per rabbit/per year).

a) Write a system of ODE’s for determining how S and J , the respective rabbit popu-
lations, vary with time t (years).

b) Assume a = b = 1
2 . If initially Smith has 20 rabbits and Jones 10 rabbits, how do the

two populations subsequently vary with time?

c) Show that S and J never oscillate, regardless of a, b and the initial conditions.

4C-7. The figure shows a simple feedback loop.

Black box B1 inputs x1(t) and outsputs 1
4 (x

′

1 − x1).

Black box B2 inputs x2(t) and outputs x′

2 − x2.

x

x x x

1

2 2 2

x )11(x

B

B1

2

4

If they are hooked up in a loop as shown, and initially x1 = 1, x2 = 0, how do x1 and
x2 subsequently vary with time t? (If it helps, you can think of x1 and x2 as currents, for
instance, or as the monetary values of trading between two countries, or as the number of
times/minute Punch hits Judy and vice-versa.)

4D. Complex and Repeated Eigenvalues

4D-1. Solve the system x′ =

(

1 −5
1 −1

)

x .

4D-2. Solve the system x′ =

(

3 −4
4 3

)

x .

4D-3. Solve the system x′ =





2 3 3
0 −1 −3
0 0 2



x .
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4D-4. Three identical cells are pictured, each containing salt solution, and separated
by identical semi-permeable membranes. Let Ai represent the amount of salt in cell i

(i = 1, 2, 3), and let

xi = Ai −A0

be the difference bwetween this amount and some standard reference amount
A0. Assume the rate at which salt diffuses across the membranes is propor-
tional to the difference in concentrations, i.e. to the difference in the two
values of Ai on either side, since we are supposing the cells identical. Take
the constant of proportionality to be 1.

1 2

3

membrane

a) Derive the system x′ = Ax, where A =





−2 1 1
1 −2 1
1 1 −2



.

b) Find three normal modes, and interpret each of them physically. (To what initial
conditions does each correspond — is it reasonable as a solution, in view of the physical
set-up?)

4E. Decoupling

4E-1. A system is given by x′ = 4x + 2y, y′ = 3x − y . Give a new set of variables,
u and v, linearly related to x and y, which decouples the system. Then verify by direct
substitution that the system becomes decoupled when written in terms of u and v.

4E-2. Answer the same questions as in the previous problem for the system in 4D-4. (Use
the solution given in the Notes to get the normal modes. In the last part of the problem,
do the substitution by using matrices.)

4F. Theory of Linear Systems

4F-1. Take the second-order equation x′′ + p(t)x′ + q(t)x = 0 .

a) Change it to a first-order system x′ = Ax in the usual way.

b) Show that the Wronskian of two solutions x1 and x2 of the original equation is the
same as the Wronskian of the two corresponding solutions x1 and x2 of the system.

4F-2. Let x1 =

(

t

1

)

and x2 =

(

t2

2t

)

be two vector functions.

a) Prove by using the definition that x1 and x2 are linearly independent.

b) Calculate the Wronskian W (x1,x2).

c) How do you reconcile (a) and (b) with Theorem 5.3 in Notes LS.5?

d) Find a linear system x′ = Ax having x1 and x2 as solutions, and confirm your answer
to (c). (To do this, treat the entries of A as unknowns, and find a system of equations whose
solutions will give you the entries. A will be a matrix function of t, i.e., its entries will be
functions of t.)
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4F-3. Suppose the 2 × 2 constant matrix A has two distinct eigenvectors m1 and m2,
with associated eigenvectors respectively ~α1 and ~α2. Prove that the corresponding vector
functions

x1 = ~α1e
m1t, x2 = ~α2e

m2t

are linearly independent, as follows:

a) using the determinantal criterion, show they are linearly independent if and only if
~α1 and ~α2 are linearly independent;

b) then show that c1~α1 + c2~α2 = 0 ⇒ c1 = 0, c2 = 0. (Use the eigenvector equation
(A−miI)~αi = 0 in the form: A~αi = mi~αi.)

4F-4. Suppose x′ = Ax, where A is a nonsingular constant matrix. Show that if x(t) is
a solution whose velocity vector x′(t) is 0 at time t0, then x(t) is identically zero for all t.
What is the minimum hypothesis on A that is needed for this result to be true? Can A be
a function of t, for example?

4G. Fundamental Matrices

4G-1. Two independent solutions to x′ = Ax are x1 =

(

1
1

)

e3t and x2 =

(

1
2

)

e2t.

a) Find the solutions satisfying x(0) =

(

0
1

)

and x(0) =

(

1
0

)

.

b) Using part (a), find in a simple way the solution satisfying x(0) =

(

a

b

)

.

4G-2. For the system x′ =

(

5 −1
3 1

)

x,

a) find a fundamental matrix, using the normal modes, and use it to find the solution
satisfying x(0) = 2, y(0) = −1;

b) find the fundamental matrix normalized at t = 0, and solve the same IVP as in part
(a) using it.

4G-3.* Same as 4G-2, using the matrix

(

3 −2
2 −2

)

instead.

4H. Exponential Matrices

4H-1. Calculate eAt if A =

(

a 0
0 b

)

. Verify directly that x = eAtx0 is the solution to

x′ = Ax, x(0) = x0.

4H-2. Calculate eAt if A =

(

0 1
−1 0

)

; then answer same question as in 4H-1.

4H-3. Calculate eAt directly from the infinite series, if A =

(

1 1
0 1

)

; then answer same

question as in 4H-1.
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4H-4. What goes wrong with the argument justifying the eAt solution of x′ = Ax if A is
not a constant matrix, but has entries which depend on t?

4H-5. Prove that a) ekIt = Iekt. b) AeAt = eAtA.

(Here k is a constant, I is the identity matrix, A any square constant matrix.)

4H-6. Calculate the exponential matrix in 4H-3, this time using the third method in the
Notes (writing A = B + C).

4H-7. Let A =

(

1 0
2 1

)

. Calculate eAt three ways:

a) directly, from its definition as an infinite series;

b) by expressing A as a sum of simpler matrices, as in Notes LS.6, Example 6.3C;

c) by solving the system by elimination so as to obtain a fundamental matrix, then
normalizing it.

4I. Inhomogeneous Systems

4I-1. Solve x′ =

(

1 1
4 −2

)

x+

(

2
−8

)

−

(

5
8

)

t, by variation of parameters.

4I-2. a) Solve x′ =

(

1 1
4 −2

)

x+

(

e−2t

−2et

)

by variation of parameters.

b) Also do it by undetermined coefficients, by writing the forcing term and trial solution
respectively in the form:

(

e−2t

−2et

)

=

(

1
0

)

e−2t +

(

0
−2

)

et; xp = ~ce−2t + ~det .

4I-3.* Solve x′ =

(

−1 1
−5 3

)

x+

(

sin t
0

)

by undetermined coefficients.

4I-4. Solve x′ =

(

2 −1
3 −2

)

x+

(

1
−1

)

et by undetermined coefficients.

4I-5. Suppose x′ = Ax+ x0 is a first-order order system, where A is a nonsingular n× n

constant matrix, and x0 is a constant n-vector. Find a particular solution xp.



Section 5. Graphing Systems

5A. The Phase Plane

5A-1. Find the critical points of each of the following non-linear autonomous systems.

a)
x′ = x2

− y2

y′ = x− xy
b)

x′ = 1− x+ y

y′ = y + 2x2

5A-2. Write each of the following equations as an equivalent first-order system, and find
the critical points.

a) x′′ + a(x2
− 1)x′ + x = 0 b) x′′

− x′ + 1− x2 = 0

5A-3. In general, what can you say about the relation between the trajectories and the
critical points of the system on the left below, and those of the two systems on the right?

x′ = f(x, y)

y′ = g(x, y)
a)

x′ = −f(x, y)

y′ = −g(x, y)
b)

x′ = g(x, y)

y′ = −f(x, y)

5A-4. Consider the autonomous system

x′ = f(x, y)

y′ = g(x, y)
; solution : x =

(

x(t)
y(t)

)

.

a) Show that if x1(t) is a solution, then x2(t) = x1(t − t0) is also a solution. What is
the geometric relation between the two solutions?

b) The existence and uniqueness theorem for the system says that if f and g are contin-
uously differentiable everywhere, there is one and only one solution x(t) satisfying a given
initial condition x(t0) = x0.

Using this and part (a), show that two trajectories cannot intersect anywhere.

(Note that if two trajectories intersect at a point (a, b), the corresponding solutions x(t)
which trace them out may be at (a, b) at different times. Part (a) shows how to get around
this difficulty.)

5B. Sketching Linear Systems

5B-1. Follow the Notes (GS.2) for graphing the trajectories of the system

{

x′ = −x

y′ = −2y .

a) Eliminate t to get one ODE
dy

dx
= F (x, y). Solve it and sketch the solution curves.

b) Solve the original system (by inspection, or using eigenvalues and eigenvectors),
obtaining the equations of the trajectories in parametric form: x = x(t), y = y(t). Using
these, put the direction of motion on your solution curves for part (a). What new trajectories
are there which were not included in the curves found in part (a)?

c) How many trajectories are needed to cover a typical solution curve found in part (a)?
Indicate them on your sketch.

1
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d) If the system were x′ = x, y′ = 2y instead, how would your picture be modified?
(Consider both parts (a) and (b).)

5B-2. Answer the same questions as in 5B-1 for the system x′ = y, y′ = x. (For part
(d), use −y and −x as the two functions on the right.)

5B-3. Answer the same question as in 5B-1a,b for the system x′ = y, y′ = −2x.

For part (b), put in the direction of motion on the curves by making use of the vector
field corresponding to the system.

5B-4. For each of the following linear systems, carry out the graphing program in Notes
GS.4; that is,

(i) find the eigenvalues of the associated matrix and from this determine the geometric
type of the critical point at the origin, and its stability;

(ii) if the eigenvalues are real, find the associated eigenvectors and sketch the corre-
sponding trajectories, showing the direction of motion for increasing t; then draw in some
nearby trajectories;

(iii) if the eigenvalues are complex, obtain the direction of motion and the approximate
shape of the spiral by sketching in a few vectors from the vector field defined by the system.

a)
x′ = 2x− 3y

y′ = x− 2y
b)

x′ = 2x

y′ = 3x+ y
c)

x′ = −2x− 2y

y′ = −x− 3y

d)
x′ = x− 2y

y′ = x+ y
e)

x′ = x+ y

y′ = −2x− y

5B-5. For the damped spring-mass system modeled by the ODE

mx′′ + cx′ + kx = 0, m, c, k > 0 ,

a) write it as an equivalent first-order linear system;

b) tell what the geometric type of the critical point at (0, 0) is, and determine its stability,
in each of the following cases. Do it by the methods of Sections GS.3 and GS.4, and check
the result by physical intuition.

(i) c = 0 (ii) c ≈ 0; m, k ≫ 1. (iii) Can the geometric type be a saddle? Explain.

5C. Sketching Non-linear Systems

5C-1. For the following system, the origin is clearly a critical point. Give its geometric
type and stability, and sketch some nearby trajectories of the system.

x′ = x− y + xy

y′ = 3x− 2y − xy

5C-2. Repeat 5C-1 for the system

{

x′ = x+ 2x2
− y2

y′ = x− 2y + x3
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5C-3. Repeat 5C-1 for the system

{

x′ = 2x+ y + xy3

y′ = x− 2y − xy

5C-4. For the following system, carry out the program outlined in Notes GS.6 for sketching
trajectories — find the critical points, analyse each, draw in nearby trajectories, then add
some other trajectories compatible with the ones you have drawn; when necessary, put in a
vector from the vector field to help.

x′ = 1− y

y′ = x2
− y2

5C-5. Repeat 5C-4 for the system

{

x′ = x− x2
− xy

y′ = 3y − xy − 2y2

5D. Limit Cycles

5D-1. In Notes LC, Example 1,

a) Show that (0, 0) is the only critical point (hint: show that if (x, y) is a non-zero
critical point, then y/x = −x/y; derive a contradiction).

b) Show that (cos t, sin t) is a solution; it is periodic: what is its trajectory?

c) Show that all other non-zero solutions to the system get steadily closer to the solution
in part (b). (This shows the solution is an asymptotically stable limit cycle, and the only
periodic solution to the system.)

5D-2. Show that each of these systems has no closed trajectories in the region R (this is
the whole xy-plane, except in part (c)).

a)
x′ = x+ x3 + y3

y′ = y + x3 + y3
b)

x′ = x2 + y2

y′ = 1 + x− y
c)

x′ = 2x+ x2 + y2

y′ = x2
− y2

R = half-plane x < −1

d)
x′ = ax+ bx2

− 2cxy + dy2

y′ = ex+ fx2
− 2bxy + cy2

:
find the condition(s) on the six constants that

guarantees no closed trajectories in the xy-plane

5D-3. Show that Lienard’s equation (Notes LC, (6)) has no periodic solution if either

a) u(x) > 0 for all x b) v(x) > 0 for all x .

(Hint: consider the corresponding system, in each case.)

5D-4.* a) Show van der Pol’s equation (Notes LC.4) satisfies the hypotheses of the
Levinson-Smith theorem (this shows it has a unique limit cycle).

b) The corresponding system has a unique critical point at the origin; show this and
determine its geometric type and stability. (Its type depends on the value of the parameter).
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5D-5.* Consider the following system (where r =
√

x2 + y2):
x′ = −y + xf(r)

y′ = x+ yf(r)

a) Show that if f(r) has a positive zero a, then the system has a circular periodic solution.

b) Show that if f(r) is a decreasing function for r ≈ a, then this periodic solution is
actually a stable limit cycle. (Hint: how does the direction field then look?)

5E. Structural stability; Volterra’s Principle

5E-1. Each of the following systems has a critical point at the origin. For this critical point,
find the geometric type and stability of the corresponding linearized system, and then tell
what the possibilities would be for the corresponding critical point of the given non-linear
system.

a) x′ = x− 4y − xy2, y′ = 2x− y + x2y

b) x′ = 3x− y + x2 + y2, y′ = −6x+ 2y + 3xy

5E-2. Each of the following systems has one critical point whose linearization is not
structurally stable. In each case, sketch several pictures showing the different ways the
trajectories of the non-linear system might look.

Begin by finding the critical points and determining the type of the corresponding lin-
earized system at each of the critical points.

a) x′ = y, y′ = x(1− x)

b) x′ = x2
− x+ y, y′ = −yx2

− y

5E-3. The main tourist attraction at Monet Gardens is Pristine Acres, an expanse covered
with artfully arranged wildflowers. Unfortunately, the flower stems are the favorite food of
the Kandinsky borer; the flower and borer populations fluctuate cyclically in accordance
with Volterra’s predator-prey equations. To boost the wildflower level for the tourists, the
director wants to fertilize the Acres, so that the wildflower growth will outrun that of the
borers.

Assume that fertilizing would boost the wildflower growth rate (in the absence of borers)
by 25 percent. What do you think of this proposal?

Using suitable units, let x be the wildflower population and y be the borer population.

Take the equations to be x′ = ax − pxy, y′ = −by + qxy, where a, b, p, q are
positive constants.



6. Power Series

6A. Power Series Operations

6A-1. Find the radius of convergence for each of the following:

a)

∞∑

0

nxn b)

∞∑

0

x2n

n2n
c)

∞∑

1

n!xn d)

∞∑

0

(2n)!

(n!)2
xn

6A-2. Starting from the series
∞∑

0

xn =
1

1− x
and

∞∑

0

xn

n!
= ex ,

by using operations on series (substitution, addition and multiplication, term-by-term dif-
ferentiation and integration), find series for each of the following

a)
1

(1− x)2
b) xe−x

2

c) tan−1 x d) ln(1 + x)

6A-3. Let y =

∞∑

0

x2n+1

(2n+ 1)!
. Show that

a) y is a solution to the ODE y′′ − y = 0 b) y = sinhx = 1

2
(ex − e−x).

6A-4. Find the sum of the following power series (using the operations in 6A-2 as a help):

a)

∞∑

0

x3n+2 b)

∞∑

0

xn

n+ 1
c)

∞∑

0

nxn

6B. First-order ODE’s

6B-1. For the nonlinear IVP y′ = x+ y2, y(0) = 1, find the first four nonzero terms
of a series solution y(x) two ways:

a) by setting y =
∑

∞

0
anx

n and finding in order a0, a1, a2, . . . , using the initial condition
and substituting the series into the ODE;

b) by differentiating the ODE repeatedly to obtain y(0), y′(0), y′′(0), . . . , and then
using Taylor’s formula.

6B-2. Solve the following linear IVP by assuming a series solution

y =

∞∑

0

anx
n ,

substituting it into the ODE and determining the an recursively by the method of undeter-
mined coefficients. Then sum the series to obtain an answer in closed form, if possible (the
techniques of 6A-2,4 will help):

a) y′ = x+ y, y(0) = 0 b) y′ = −xy, y(0) = 1 c) (1− x)y′ − y = 0, y(0) = 1

1
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6C. Solving Second-order ODE’s

6C-1. Express each of the following as a power series of the form

∞∑

N

bnx
n . Indicate the

value of N , and express bn in terms of an.

a)

∞∑

1

anx
n+3 b)

∞∑

0

n(n− 1)anx
n−2 c)

∞∑

1

(n+ 1)anx
n−1

6C-2. Find two independent power series solutions
∑

anx
n to y′′− 4y = 0, by obtaining

a recursion formula for the an.

6C-3. For the ODE y′′ + 2xy′ + 2y = 0,

a) find two independent series solutions y1 and y2;

b) determine their radius of convergence;

c) express the solution satisfying y(0) = 1, y′(0) = −1 in terms of y1 and y2;

d) express the series in terms of elementary functions (i.e., sum the series to an elementary
function).

(One of the two series is easily recognizable; the other can be gotten using the operations
on series, or by using the known solution and the method of reduction of order—see Exercises
2B.)

6C-4. Hermite’s equation is y′′ − 2xy′ + ky = 0. Show that if k is a positive even
integer 2m, then one of the power series solutions is a polynomial of degree m.

6C-5. Find two independent series solutions in powers of x to the Airy equation: y′′ = xy.

Determine their radius of convergence. For each solution, give the first three non-zero
terms and the general term.

6C-6. Find two independent power series solutions
∑

anx
n to

(1− x2)y′′ − 2xy′ + 6y = 0 .

Determine their radius of convergence R. To what extent is R predictable from the original
ODE?

6C-7. If the recurrence relation for the an has three terms instead of just two, it is
more difficult to find a formula for the general term of the corresponding series. Give
the recurrence relation and the first three nonzero terms of two independent power series
solutions to

y′′ + 2y′ + (x− 1)y = 0 .



7. Fourier Series
Based on exercises in Chap. 8, Edwards and Penney, Elementary Differential Equations

7A. Fourier Series

7A-1. Find the smallest period for each of the following periodic functions:

a) sinπt/3 b) | sin t| c) cos2 3t

7A-2. Find the Fourier series of the function f(t) of period 2π which is given over the
interval −π < t ≤ π by

a) f(t) =

{

0, −π < t ≤ 0;

1, 0 < t ≤ π
b) f(t) =

{

−t, −π < t < 0;

t, 0 ≤ t ≤ π

7A-3. Give another proof of the orthogonality relations

∫

π

−π

cosmt cosnt dt =

{

0, m 6= n;

π, m = n .

by using the trigonometric identity: cosA cosB = 1

2

(

cos(A+B) + cos(A−B)
)

.

7A-4. Suppose that f(t) has period P . Show that
∫

I
f(t) dt has the same value over any

interval I of length P , as follows:

a) Show that for any a, we have

∫

a+P

P

f(t) dt =

∫

a

0

f(t) dt. (Make a change of variable.)

b) From part (a), deduce that

∫

a+P

a

f(t) dt =

∫

P

0

f(t) dt.

7B. Even and Odd Series; Boundary-value Problems

7B-1. a) Find the Fourier cosine series of the function 1− t over the interval 0 < t < 1,
and then draw over the interval [−2, 2] the graph of the function f(t) which is the sum of
this Fourier cosine series.

b) Answer the same question for the Fourier sine series of 1− t over the interval (0, 1).

7B-2. Find a formal solution as a Fourier series, for these boundary-value problems (you
can use any Fourier series derived in the book’s Examples):

a) x′′ + 2x = 1, x(0) = x(π) = 0;
b) x′′ + 2x = t, x′(0) = x′(π) = 0 (use a cosine series)

7B-3. Assume a > 0; show that

∫ 0

−a

f(t) dt = ±

∫

a

0

f(t) dt, according to whether f(t)

is respectively an even function or an odd function.

7B-4. The Fourier series of the function f(t) having period 2, and for which f(t) = t2 for
0 < t < 2, is

f(t) =
4

3
+

4

π2

∞
∑

1

cosnπt

n2
−

4

π

∞
∑

1

sinnπt

n
.

Differentiate this series term-by-term, and show that the resulting series does not converge
to f ′(t).
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2 18.03 EXERCISES

7C. Applications to resonant frequencies

7C-1. For each spring-mass system, find whether pure resonance occurs, without actually
calculating the solution.

a) 2x′′ + 10x = F (t); F (t) = 1 on (0, 1), F (t) is odd, and of period 2;
b) x′′ + 4π2x = F (t); F (t) = 2t on (0, 1), F (t) is odd, and of period 2;
c) x′′ + 9x = F (t); F (t) = 1 on (0, π), F (t) is odd, and of period 2π.

7C-2. Find a periodic solution as a Fourier series to x′′ + 3x = F (t), where F (t) = 2t on
(0, π), F (t) is odd, and has period 2π.

7C-3. For the following two lightly damped spring-mass systems, by considering the form
of the Fourier series solution and the frequency of the corresponding undamped system,
determine what term of the Fourier series solution should dominate — i.e., have the biggest
amplitude.

a) 2x′′ + .1x′ + 18x = F (t); F (t) is as in 7C-2.
b) 3x′′ + x′ + 30x = F (t); F (t) = t− t2 on (0, 1), F (t) is odd, with period 2.



18.03 Exercises

8: Extra Problems

8A. Bifurcation Diagrams

8A-1. Suppose that a population of variable size (in some suitable units) P(t) follows

the growth law
dP
dt

= −P3 + 12P2 − 36P + r, where r is a constant replenishment rate.
Without solving the DE explicitly:

a) Let r = 0. Find all critical points and classify each according to its stability type
using a phase-line diagram. Sketch some representative integral curves.

b) What is the smallest value of r such that the population always stabilizes at a size
greater than 4, no matter what the size of the initial population?

c) Sketch the P vs. r bifurcation diagram.

8B. Frequency Response

8B-1. For each of the following systems, use your calculus graphing skills to plot the graph
of the amplitude response (i.e. gain vs. ω). If there is a resonant frequency say what it is.

a) x′′ + x′ + 7x = F0 cos ωt.

b) x′′ + 8x′ + 7x = F0 cos ωt.

8C. Pole Diagrams

8C-1. Consider the following pole diagrams for some linear time invariant systems P(D)x = f (t).

× ×

(a)

×

×

(b)

×

×
××

(c)

××

(d)

××

(e)
×

×
×

×

( f )

× × ×

(g)

×

×

(h)

a) Which of the systems are stable?

b) For which systems are all of the non-zero solutions to the homogeneous equation oscillatory?

c) For which systems are none of the non-zero solutions to the homogeneous equation oscillatory?

d) For which systems does P(D) have real coefficients?
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e) Comparing b and c, for which one does the weight function decay faster. (Assume
both plots are on the same scale.)

f) Give the order of each of the systems.

g) Give a possible polynomial P(D) that would have pole diagram (a). Do the same
thing for (b) and (c).

h) Comparing (b) and (h) which has the largest possible response to input of the form cos ωt?



9. 18.03 Linear Algebra Exercises

9A. Matrix Multiplication, Rank, Echelon Form

9A-1. Which of the following matrices is in row-echelon form?

(i)

[
0 1
1 0

]
(ii)

[
1 5
0 0

]
(iii)

[
0 1
0 0

]
(iv)

1 2 0
0 0 0
0 0 1

 (v)
[
0
]

9A-2. Find the reduced echelon form of each of the following matrices.

(i)
[
4
]

(ii)
[
1 1

]
(iii)

[
1 1
1 1

]
(iv)

−2 1 0
1 −2 1
0 1 −2


9A-3. Write a row vector with norm 1 (the square root of the sum of the squares of
the entries).

9A-4. Write a column vector with 4 entries whose entries add to zero.

9A-5. Let

A =

1 0 1 4
0 1 0 2
0 0 1 1

 .
(a) Find a vector v such that Av is the third column of A.

(b) Find a vector w such that wA is the third row of A.

9A-6. Find the following matrix products, and their ranks.

(a)

1
1
1

 [1 0 −1
]

(b)
[
1 2 −1

] 1
1
1

 (c)

[
1 2 0
0 1 1

]1 2
0 1
2 3



9B. Column Space, Null Space, Independence, Basis, Dimension

9B-1. Write a matrix equation that shows that the vectors

v1 =

1
0
0

 , v2 =

1
1
0

 , v3 =

1
1
1

 , v4 =

2
3
4

 ,

are linearly dependent (or, more properly, form a linearly dependent set).

1



9B-2 (a) Find a basis for the null spaces of the following matrices.

A =

0 1 2 3
1 2 3 4
2 3 4 5

 , AT =


0 1 2
1 2 3
2 3 4
3 4 5


(First find the reduced echelon form; then set each free variable equal to 1 and the
others to zero, one at a time.)

Note: The second matrix is the transpose of the first: that is the rows become the
columns and the columns become the rows.

(b) Find the genaral solutions to Ax =
[
1 1 1

]T
and ATy =

[
1 1 1 1

]T
.

9B-3 Find a basis for each of the following subspaces of R4. Do this in (ii) and (iii)
by expressing the subspace as the null space of an appropriate matrix, and finding a
basis for that null space by finding the reduced echelon form. In each case, state the
dimension of this subspace.

(a) All vectors whose entries are all the same.

(b) All vectors whose entries add to zero.

(c) All vectors


x1

x2

x3

x4

 such that x1 + x2 = 0 and x1 + x3 + x4 = 0.

9B-4 (a) For which numbers c and d does the column space of the matrix1 2 5 0 5
0 0 c 2 2
0 0 0 d 2


have dimension 2?

(b) Find numbers c and d such that the null space of the matrix1 2 5 0 5
0 0 c 2 2
0 0 0 d 2


is 3-dimensional.

9C. Determinants and Inverses

2



Summary of properties of the determinant

(0) detA is a number determined by a square matrix A.
(1) det I = 1.
(2) Adding a multiple of one row to another does not change the determinant.
(3) Multiplying a row by a number a multiplies the determinant by a.
(4) det(AB) = det(A) det(B).
(5) A is invertible exactly when detA 6= 0.
Also, if you swap two rows you reverse the sign of the determinant.

9C-1 Let R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(a) Compute R(α)R(β). The claim is that it is R(γ) for some angle γ.

(b) Compute detR(θ) and R(θ)−1.

9C-2 Compute the determinants of the following matrices, and if the determinant is
nonzero find the inverse.

(a)

[
1 a
0 1

]
(b)

1 a b
0 1 c
0 0 1

 (c)

0 1 1
1 0 1
1 1 0

 (d)


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

.

9D. Eigenvalues and Eigenvectors

9D-1 (a) Find the eigenvalues and eigenvectors of the matrices A =

[
1 1
0 2

]
and

B =

[
3 0
1 4

]
.

(b) In LA.5 it was pointed out that the eigenvalues of AA are the squares of the
eigenvalues of A. It’s not generally the case that the eigenvalues of a product are the
products of the eigenvalues, though: find the eigenvalues of AB.

(c) If you know the eigenvalues of A, what can you say about the eigenvalues of cA
(where c is some constant, and cA means A with all entries multiplied by c)?

(d) In (c) you have computed the eigenvalues of A + A (think about it!). On the
other hand, check the eigenvalues of A+B for the matrices A and B in (i).

9D-2 Find the characteristic polynomial pA(λ) = det(A−λI) of each of the matrices
in 9C-2.

9D-3 Suppose A and B are square matrices with eigenvalues λ1, . . . λm and µ1 . . . µn.

What are the eigenvalues of

[
A 0
0 B

]
?
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9D-4 Suppose A and B are n × n matrices. Express the eigenvalues of the 2n × 2n

matrix

[
0 A
B 0

]
in terms of the eigenvalues of an n× n matrix constructed out of A

and B.

9E. Two Dimensional Linear Dynamics

9E-1 Diffusion: A door is open between rooms that initially hold v(0) = 30 people
and w(0) = 10 people. People tend to move to the less crowded. Let’s suppose that
the movement is proportional to v − w:

v̇ = w − v , ẇ = v − w

(a) Write this system as a matrix equation u̇ = Au: What is A?

(b) Find the eigenvalues and eigenvectors of this matrix.

(c) What are v and w at t = 1

(d) What are v and w at t =∞? (Some parties last that long!)

9E-2 (a) Find all the solutions to u̇ =

[
0 1
−1 0

]
u which trace out the circle of radius

1.

(b) Find all solutions to u̇ =

[
0 1
1 0

]
u whose trajectories pass through the point

[
1
1

]
.

F. Normal modes

9F-1 Find the normal modes of the equation
d4x

dt4
= cx. (In this 1D example, a normal

mode is just a periodic solution. Constant functions are periodic (of any period; they
just don’t have a minimal period).) Your answer will depend upon c.

9G. Diagonalization, Orthogonal Matrices

9G-1 Suppose that A is a 10 × 10 matrix of rank 1 and trace 5. What are the ten
eigenvalues of A? (Remember, eigenvalues can be repeated! and the trace of a matrix,
defined as the sum of its diagonal entries, is equally well the sum of its eigenvalues
(taken with repetition).)

9G-2 (a) Diagonalize each of the following matrices: that is, find an invertible S and
a diagonal Λ such that the matrix factors as SΛS−1.

A =

[
1 2
0 3

]
, B =

[
1 1
3 3

]
4



(b) Write down diagonalizations of A3 and A−1.

9G-3 A matrix S is orthogonal when its columns are orthogonal to each other and
all have length (norm) 1. This is the same as saying that STS = I. Think about why
this is true!

Write the symmetric matrix A =

[
−2 1
1 −2

]
as SΛS−1 with Λ diagonal and S orthog-

onal.

9H. Decoupling

9H-1 Decouple the rabbit model from LA.7: what linear combinations of the two rab-
bit populations grow purely exponentially? At what rates? Does the hedge between
the two fields have any impact on the combined population?

9I. Matrix Exponential

9I-1 The two farmers from LA.7 and problem 9H-1 want to be able to predict
what their rabbit populations will be after one year, for any populations today. They
hire you as a consultant. Write down an explicit matrix which tells them how to

compute

[
x(t0 + 1)
y(t0 + 1)

]
in terms of

[
x(t0)
y(t0)

]
. You can leave the matrix written as a

product of explicit matrices if that saves you some work.

9I-2 Compute eAt for A =

[
0 1
−2 −2

]
.

9J. Inhomogeneous Systems

9J-1 Find particular solutions to the following systems using the exponential response
formula (That is, guess a solution of the form eatv.)

(a) u̇ =

[
6 5
1 2

]
u + e2t

[
1
2

]
.

(b) u̇ =

[
1 0
1 2

]
u + cos(2t)

[
1
0

]
.

9J-2 Farmer Jones gets his gun. As he gets madder he shoots faster. He bags at the
rate of et rabbits/year rabbits at time t. We’ll see what happens.

In our work so far we have found S and Λ so that the rabbit matrix A =

[
3 1
2 4

]
factors as SΛS−1. So eAt = SeΛtS−1. The final S−1 adjusts the fundamental matrix

5



Φ(t) = SeΛt to give it the right initial condition. If you don’t care about the initial
condition, Φ(t) is good enough.

Use it in a variation of parameters solution of the equation u̇ = Au−
[
et

0

]
with initial

condition u(0) =

[
1
0

]
. Begin by finding some particular solution (without regard to

initial condition). If you are careful, and keep your matrices factorized, you can use
matrices with just one term (rather than a sum) in each entry.
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10. 18.03 PDE Exercises

10A. Heat Equation; Separation of Variables

10A-1 Solve the boundary value problem for the temperature of a bar of length 1
following the steps below.

∂u

∂t
=
∂2u

∂x2
0 < x < 1, t > 0 (10A-1.1)

u(0, t) = u(1, t) = 0 t > 0 (10A-1.2)

u(x, 0) = x 0 < x < 1 (10A-1.3)

(i) Separation of variables. Find all solutions of the form u(x, t) = v(x)w(t) to
(10A-1.1) and (10A-1.2) (not (10A-1.3)). Write the list of possible answers in the
form

uk(x, t) = vk(x)wk(t)

Note that your answer is ambiguous up to a multiple, so we just pick the simplest
vk(x) and the simplest wk(t) (so that wk(0) = 1). With wk(0) = 1, we see that

uk(x, 0) = vk(x)

Thus, we have succeeded in solving our problem when the initial condition is vk(x).

(ii) Write the initial condition (10A-1.3) as a sum of vk(x) — a Fourier series.

x =
∑

bkvk(x), 0 < x < 1.

Hints: How should you extend the function x outside the range 0 < x < 1? What is
the period? What is the parity (odd/even)? Graph the extended function. Once you
have figured out what it is, you will be able to find the series in your notes.

(iii) Superposition principle. Write the solution to (10A-1.1), (10A-1.2), and (10A-
1.3) in the form

u(x, t) = b1u1(x, t) + b2u2(x, t) + · · · ,

with explicit formulas for bk and uk.

(iv) Find u(1/2, 1) to one significant figure.

10A-2 Use the same steps as in 10A-1 to solve the boundary value problem for the
temperature of a bar of length 1:

∂u

∂t
= 2

∂2u

∂x
0 < x < 1, t > 0 (10A-2.1)

u(0, t) = u(1, t) = 0 t > 0 (10A-2.2)

u(x, 0) = 1 0 < x < 1 (10A-2.3)

1



10A-3 Consider the boundary value problem with inhomogeneous boundary condi-
tion give by:

∂u

∂t
= 2

∂2u

∂x
0 < x < 1, t > 0 (10A-3.1)

u(0, t) = 1 u(1, t) = 0 t > 0 (10A-3.2)

u(x, 0) = 1 0 < x < 1 (10A-3.3)

(a) In temperature problems a steady state solution ust is constant in time:

∂u

∂t
= 0

It follows that ust = U(x), a function depending only on x. Find the steady state
solution ust(x, t) = U(x) to (10A-3.1) and (10A-3.2).

(b) Find the partial differential equation, endpoint, and initial conditions satisfied
by ũ(x, t) = u(x, t) − U(x). Then write down the formula for ũ. [Hint: We already
know how to solve the problem with zero boundary conditions.]

(c) Superposition principle. Now that we have found ũ and U , what is u?

(d) Estimate, to two significant figures, the time T it takes for the solution to be
within 1% of its steady state value at the midpoint x = 1/2. In other words, find T
so that

|u(1/2, t)− U(1/2)| ≤ 1

100
U(1/2) for t ≥ T .

10B. Wave Equation

10B-1 (a) Find the normal modes of the wave equation on 0 ≤ x ≤ π/2, t ≥ 0 given
by

∂2

∂t2
u = c2

∂2

∂x2
u, u(0, t) = u(π/2, t) = 0, t > 0

(b) If the solution in part (a) represents a vibrating string, then what frequencies will
you hear if it is plucked?

(c) If the length of the string is longer/shorter what happens to the sound?

(d) When you tighten the string of a musical instrument such as a guitar, piano, or
cello, the note gets higher. What has changed in the differential equation?
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18.03 Solutions

8: Extra Problems

8A. Bifurcation Diagrams

8A-1.

a) Critical points: f (P) = 0 ⇒ P = 0, 6. See below for phase line. The integral curves
are not shown. Make sure you know how to sketch them as functions of P vs. t.

b) The picture below shows the graph of P′ = f (P) (i.e. when r = 0).
A positive r will raise the graph. As soon as r > 32 the graph will have only one zero and
that zero will be above 6. Solution. r = 32.

P

JT


�


�

•0 stable

•6 semistable

Phaseline (r = 0)
P' vs. P (r=0)

P

P'

6●

(2,−32)

Bifurcation

r

P

32

6

●

●

●

stable

unstable

stable

c) See above diagram. The curve of critical points is given by solving

P′ = −P3 + 12P2 − 36P + r = 0 ⇒ r = P3 − 12P2 + 36P,

which is a sideways cubic. The phase-line for r = 0 is determined by the middle plot. The
phase line for the other values of r then follow by continuity, i.e. the rP-plane is divided
into two pieces by the curve, and arrows in the same piece have to point the same way.

8B. Frequency Response

8B-1.

a) Characteristic polynomial: p(s) = r2 + r + 7
Complexified ODE: x̃′′ + x̃ + 7x̃ = F0eiωt.
Particular solution (from Exp. Input Theorem): x̃p = F0eiωt/p(iω) = F0eiωt/(7−ω2 + iω)

Complex and real gain: g̃(ω) = 1/(7−ω2 + iω), g(ω) = 1/|p(iω)| = 1/
√
(7−ω2)2 + ω2.

For graphing we analyze the term under the square root: f (ω) = (7−ω2)2 + ω2.
Critical points: f ′(ω) = −4ω(7−ω2) + 2ω = 0 ⇒ ω = 0 or ω =

√
13/2.

Evaluate at the critical points: g(0) = 1/7, g(
√

13/2) = .385
Find regions of increase and decrease by checking values of f ′(ω):
On [0,

√
13/2]: f (ω) < 0 ⇒ f is decreasing ⇒ g is increasing.

On [
√

13/2, ∞]: f (ω) > 0 ⇒ f is increasing ⇒ g is decreasing.
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The graph is given below.
This system has a (practical) resonant frequency = ωr =

√
13/2.

b) Characteristic polynomial: p(s) = r2 + 8r + 7
Complex and real gain: g̃(ω) = 1/p(iω) = 1/(7 − ω2 + i8ω), g(ω) = 1/|p(iω)| =
1/

√
(7−ω2)2 + 64ω2.

For graphing we analyze the term under the square root: f (ω) = (7−ω2)2 + 64ω2.
Critical points: f ′(ω) = −4ω(7−ω2) + 128ω = 0 ⇒ ω = 0.
Since there are no positive critical points the graph is strictly decreasing.
Graph below.

ω

g

1 2 3 4

.1

.2

.3

.4

ωr

ωr =
√

13/2

ω

g

1 2 3 4

.1

.2

.3

.4

Graphs for 8B-1a and 8B-1b.

8C. Pole Diagrams

8C-1.

a) All poles have negative real part: a, b, c, h.

b) All poles have nonzero imaginary part: b, d, e, f, h.

c) All poles are real: a, g.

d) Poles are real or complex conjugate pairs: a, b, c, g, h.

e) b, because the pole farthest to the right in b, is more negative than the one in c.

f) This is just the number of poles: a) 2, b) 2, c) 4, d) 2, e) 2, f) 4, g) 3, h) 2.

g) a) Making up a scale, the poles are -1 and -3 ⇒ P(s) = (s + 1)(s + 3) ⇒ P(D) = D2 + 4D + 3.
b) Possible poles are −3± 2i ⇒ P(s) = (s + 3− 2i)(s + 3 + 2i) ⇒ P(D) = D2 + 6D + 13.
c) Possible poles are −1,−3,−2 ± 2i ⇒ P(s) = (s + 1)(s + 3)(s + 2 − 2i)(s + 2 + 2i)
⇒ P(D) = (D + 1)(D + 3)(D2 + 4D + 8) = D4 + 8D3 + 27D2 + 44D + 24.

h) System (h). The amplitude of the reponse is 1/|P(iω)|. In the pole diagram iω
is on the imaginary axis. The poles represent values of s where 1/P(s) is infinite. The
poles in system (h) are closer to the imaginary axis than those in system (b), so the biggest
1/|P(iω)| is bigger in (h) than (b).



9. 18.03 Linear Algebra Exercises Solutions

9A. Matrix Multiplication, Rank, Echelon Form

9A-1. (i) No. The pivots have to occur in descending rows.
(ii) Yes. There’s only one pivotal column, and it’s as required.
(iii) Yes. There’s only one pivotal column, and it’s as required.
(iv) No. The pivots have to occur in consecutive rows.
(v) Yes.

9A-2 (i)
[
4
]
∼
[
1
]
.

(ii) This is reduced echelon already.

(iii)

[
1 1
1 1

]
∼
[
1 1
0 0

]
.

(iv)

−2 1 0
1 −2 1
0 1 −2

 ∼
1 −1

2
0

1 −2 1
0 1 −2

 ∼
1 −1

2
0

0 −3
2

1
0 1 −2

 ∼
1 −1

2
0

0 1 −2
3

0 1 −2

∼
1 0 1

3

0 1 2
3

0 0 8
3

 ∼1 0 0
0 1 0
0 0 1

. (We’ll soon see that this is not a surprise.)

9A-3 There are many answers. For example,
[
1
]

or
[
−1
]

work fine. Or [ cos θ sin θ ];
etc.

9A-4 Here’s several answers:


1
−1
0
0

,


1
1
1
−3

,


1
2
−2
−1


The interesting thing to say is that the answer is any vector in the nullspace of

[
1 1 1 1

]
. The simplest solution is


0
0
0
0

.

9A-5 (a) The obvious answer to this question is v =


0
0
1
0

; for any matrix A with

four columns, A


0
0
1
0

 is the third column of A.

But there are other answers: Remember, the general solution is any particular solution
plus the general solution to the homogeneous problem. The reduced echelon form of
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A may be obtained by subracting the last row from the first row: R =

1 0 0 3
0 1 0 2
0 0 1 1

.

Rv = 0 has solutions which are multiples of


−3
−2
−1
1

. So for any t, A


1− 3t
1− 2t
1− t
1 + t

 =

1
0
1

.

(b) For any matrix with three rows, the product [ 0 0 1 ]A is its third row. In this
case, the rows are linearly independent—the only row vector u such that uA = 0 is
u = 0—so there are no other solutions.

9A-6 (a)

1
1
1

 [1 0 −1
]

=

1 0 −1
1 0 −1
1 0 −1

. Rank 1, as always for row × column with

both nonzero.

(b)
[
1 2 −1

] 1
1
1

 = [2] Rank 1 just because it’s nonzero!

(c)

[
1 2 0
0 1 1

]1 2
0 1
2 3

 =

[
1 4
2 4

]
Rank 2: the columns are linearly independent (as are

the rows).

9B. Column Space, Null Space, Independence, Basis, Dimension

9B-1 First of all, any four vectors in R3 are linearly dependent. The question here is
how. The first thing to do is to make the 3× 4 matrix with these vectors as columns.
Now linear relations among the columns are given by the null space of this matrix,
so we want to find a nonzero element in this null space. To find one, row reduce:1 1 1 2

0 1 1 3
0 0 1 4

 ∼
1 0 0 −1

0 1 1 3
0 0 1 4

 ∼
1 0 0 −1

0 1 0 −1
0 0 1 4


The null space does’t change under these row operations, and the null space is the
space of linear relations among the columns. In the reduced echelon form it’s clear
that the first three columns are linearly independent. (This is clear from the original
matrix, too, because the first three columns form an upper triangular matrix with
nonzero entries down the diagonal.) The first three variables are pivotal, and the last
is free. Set the last one equal to 1 and solve for the first two to get a basis vector for
the null space: 1 1 1 2

0 1 1 3
0 0 1 4




1
1
−4
1

 =


0
0
0
0


2



Check: the sum of the first, second, and fourth columns is 4 times the third.

9B-2 (a) Reduction steps: row exchange the top two rows, to get a pivot at upper
right; then subtract twice the new top row from the bottom row.

A =

0 1 2 3
1 2 3 4
2 3 4 5

 ∼
1 2 3 4

0 1 2 3
0 −1 −2 −3

 ∼
1 0 −1 −2

0 1 2 3
0 0 0 0


The last transformation uses the pivot in the second row to eliminate other entries in
the second column. This is now reduced echelon.

Stop and observe: The third column is twice the second minus the first. That’s true
in the original matrix as well! The fourth column is the 3 times the second minus
twice the first. That’s also true in the original matrix!

Those linear relations can be expressed as matrix multiplications. The first two
variables are pivot variables and the last two are free variables. Setting x3 = 1 and

x4 = 0 and then the other way around gives the two vectors


1
−2
1
0

 and


2
−3
0
1

, and

they form a basis for the null space of A. Any linearly independent pair of linear
combinations of them is another basis for the null space.

Similarly for AT :

AT =


0 1 2
1 2 3
2 3 4
3 4 5

 ∼


1 2 3
0 1 2
0 −1 −2
0 −2 −4

 ∼


1 0 −1
0 1 2
0 0 0
0 0 0


The first two variables are again pivotal, and the third is free. Set it equal to 1 and

solve for the pivotal variables to find the basis vector

 1
−2
1

. Any nonzero multiple

of this vector is another basis for the null space.

(b) We need a particular solution to

0 1 2 3
1 2 3 4
2 3 4 5

x =

1
1
1

. You could form the

augmented matrix, by adjoining

1
1
1

 as a fifth column, and row reduce the result.

Maybe it’s easier to just look and see what’s there. For example the difference of the

first two columns is

1
1
1

: so xp =


−1
1
0
0

 works fine. Then the general solution is
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x = xp + xh =


−1
1
0
0

+ c1


1
−2
1
0

+ c2


2
−3
0
1

.

Then we need a particular solution to


0 1 2
1 2 3
2 3 4
3 4 5

x =


1
1
1
1

. Again, the difference of

the first two columns works; so the general solution is x = xp+xh =

−1
1
0

+c

 1
−2
1

.

9B-3 (a) This is easy to do directly: all such vectors are multiples of


1
1
1
1

, so that by

itself forms a basis of this subspace. But we can do this as directed as well. One way
to express the conditions is to say that x1 = x2, and x2 = x3, and x3 = x4. These
three equations can be represented by the matrix1 −1 0 0

0 1 −1 0
0 0 1 −1

 ∼
1 0 −1 0

0 1 −1 0
0 0 1 −1

 ∼
1 0 0 −1

0 1 0 −1
0 0 1 −1


The fourth variable is free, and if we set it equal to 1 we find that the other three are
1 as well.

(b) A matrix representation of this relation is
[
1 1 1 1

]
x = 0. This is already in

reduced echelon form! The first variable is pivotal, the last three are free. We find
−1
1
0
0

 ,


−1
0
1
0

 ,


−1
0
0
1

.

(c) Now there are two equations, represented by the matrix

[
1 1 0 0
1 0 1 1

]
∼
[
1 1 0 0
0 −1 1 1

]
∼[

1 0 1 1
0 1 −1 −1

]
. The first two variables are pivotal and the last two are free. A ba-

sis:


−1
1
1
0

 ,

−1
1
0
1

. Looking back at the original equations, this makes sense, doesn’t

it?

9B-4 (a) If c 6= 0, there are pivots on three rows and the rank is 3. So c = 0. The
rank will still be 3 unless the third row is a linear combination of the first two. The
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first column can’t occur (because of the nonzero entries on the left), so we must have
d = 2

(b) The answer is the same, since dim(Null space)+dim(Column space)=width.

9C. Determinants and Inverses

9C-1 (a) R(α)R(β) =

[
cosα − sinα
sinα cosα

] [
cos β − sin β
sin β cos β

]
=

[
cosα cos β − sinα sin β −(cosα sin β + sinα cos β)
cosα sin β + sinα cos β cosα cos β − sinα sin β

]
=

[
cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

]
= R(α + β).

Geometrically, R(θ) rotates vectors in the plane by θ radians counterclockwise.

(b) detR(θ) = (cos θ)2 + (sin θ)2 = 1. R(θ)−1 =

[
cos θ sin θ
− sin θ cos θ

]
= R(−θ).

9C-2 (a) det

[
1 a
0 1

]
= 1;

[
1 a
0 1

]−1

=

[
1 −a
0 1

]
.

(b) det

1 a b
0 1 c
0 0 1

 = 1 (by cross-hatch, or because the determinant of an upper-

triangular matrix is the product of the diagonal entries). To find the inverse, row
reduce1 a b 1 0 0

0 1 c 0 1 0
0 0 1 0 0 1

 ∼
1 0 b− ac 1 −a 0

0 1 c 0 1 0
0 0 1 0 0 1

 ∼
1 0 0 1 −a ac− b

0 1 0 0 1 −c
0 0 1 0 0 1


so the inverse is

1 −a ac− b
0 1 −c
0 0 1

.

(c) det

0 1 1
1 0 1
1 1 0

 = 2 by crosshatch. So we expect a 2 in the denominator of the

inverse.0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

 ∼
1 0 1 0 1 0

0 1 1 1 0 0
1 1 0 0 0 1

 ∼
1 0 1 0 1 0

0 1 1 1 0 0
0 1 −1 0 −1 1


∼

1 0 1 0 1 0
0 1 1 1 0 0
0 0 −2 −1 −1 1

 ∼
1 0 0 −1

2
1
2

1
2

0 1 0 1
2
−1

2
1
2

0 0 1 1
2

1
2
−1

2


so the inverse is 1

2

−1 1 1
1 −1 1
1 1 −1

.
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The original matrix was symmetric. Is it an accident that the inverse is also symmet-
ric?

(d) det


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 = 1 · 2 · 3 · 4 = 24. The inverse is


1 0 0 0
0 1

2
0 0

0 0 1
3

0
0 0 0 1

4

.

9D. Eigenvalues and Eigenvectors

9D-1 (a) The eigenvalues of upper or lower triangular matrices are the diagonal

entries: so for A we get 1 and 2.

[
1
0

]
is clearly an eigenvector for value 1, as is any

multiple. For λ = 2, we want a vector in the null space of A− λI =

[
−1 1
0 0

]
.

[
1
1

]
or

any multiple will do nicely.

For B, the eigenvalues are 3 and 4.

[
0
1

]
is clearly an eigenvector for λ = 4, as is any

multiple. For λ = 3, we want a vector in the null space of A− λI =

[
0 0
1 1

]
.

[
1
−1

]
or

any multiple will do nicely.

(b) AB =

[
4 4
2 8

]
has characteristic polynomial pA(λ) = λ2 − (trA)λ + detA =

λ2 − 12λ+ 24 = (λ− 6)2 − (36− 24) has roots λ1,2 = 6±
√

12.

(c) If Ax = λx, then (cA)x = cAx = cλx, so cλ is an eigenvalue of cA. If c = 0
then cA = 0 and its only eigenvalue is 0; otherwise, this argument is reversible, so
the eigenvalues of cA are exactly c times the eigenvalues of A.

(d) A+B =

[
4 1
1 6

]
has characteristic polynomial pA(λ) = λ2−10λ+ 23 = (λ−5)2−

(25− 23) and so λ1,2 = 5±
√

2.

9D-2 (a) λ2 − 2λ+ 1 = (1− λ)2.

(b) (1− λ)3.

(c) det

−λ 1 1
1 −λ 1
1 1 −λ

 = (−λ)3 + 1 + 1− (−λ)− (−λ)− (−λ) = −λ3 + 3λ+ 2.

(d) (1− λ)(2− λ)(3− λ)(4− λ).

9D-3 The eigenvalue equation is

[
A 0
0 B

]
v = λv. Let’s write v =

[
x
y

]
, where x has

m components and y has n components. Then the eigenvalue equation is equivalent
to the two equation Ax = λx and By = λy, for the same λ. λ is an eigenvalue if there
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is nonzero vector satisfying this equation. This means that either x or y must be
nonzero. So one possiblity is that λ is an eigenvalue of A, x is a nonzero eigenvector
for A and this eigenvalue, and y = 0. Another possibility is that λ is an eigenvalue
of B, x = 0, and y is a nonzero eigenvector for B with this eigenvalue. Conclusion:

The eigenvalues of

[
A 0
0 B

]
are λ1, . . . , λm, µ1, . . . , µn.

9D-4 The eigenvalue equation is

[
0 A
B 0

] [
x
y

]
= λ

[
x
y

]
. This expands to Ay = λx

and Bx = λy. We want either x or y to be nonzero. We compute ABx = A(λy) =
λAy = λ2x and BAy = Bλx) = λBx = λ2y. So if x 6= 0, then λ2 is an eigenvalue of
AB, and if y 6= 0 then λ2 is an eigenvalue of BA. Enough said.

9E. Two Dimensional Linear Dynamics

9E-1 (a) Write u =

[
v
w

]
, so u̇ = Au with A =

[
−1 1
1 −1

]
. (Attention to signs!)

(b) A is singular (columns are proportional) so one eigenvalue is 0. The other must
be −2 because the trace is −2.

(c) 0 has eigenvectors given by the multiples of

[
1
1

]
, so one normal mode solution is

the constant solution u1 =

[
1
1

]
or any multiple. This is the steady state, with the

same number of people in both rooms. To find an eigenvector for the eigenvalue −2,

form A−λI =

[
1 1
1 1

]
; so we have

[
1
−1

]
or any nonzero multiple. The corresponding

normal mode is u2 = e−2t

[
1
−1

]
, and the general solution is u = a

[
1
1

]
+ be−2t

[
1
−1

]
.

With u(0) =

[
30
10

]
, this gives the equations a+ b = 30, a− b = 10, or a = 20, b = 10:

so u = 20

[
1
1

]
+ 10e−2t

[
1
−1

]
. The first term is the steady state; the second is a

transient, and it decays rapidly to zero.

When t = 1 we have v(1) = 20 + 10e−2 ∼ 21.36 and w(1) = 20− 10e−2 ∼ 18.64.

(d) When t = ∞ (so to speak), the transient has died away and the rooms have
equalized at 20 each.

9E-2 (a) This is the companion matrix for the harmonic oscillator, as explained in

LA.7, with ω = 1. The basic solutions are u1(t) =

[
cos t
− sin t

]
and u2(t) =

[
sin t
cos t

]
, and

the general solution is a linear combination of them. A good way to think of this is to
remember that the second entry is the derivative of the first, and the first can be any
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sinusoidal function of angular frequency 1: so let’s write it as u =

[
A cos(t− φ)
−A sin(t− φ)

]
=

A

[
cos(t− φ)
sin(t− φ)

]
.

For these to lie on the unit circle we should take A = 1. That’s it: u =

[
cos(t− φ)
sin(t− φ)

]
for any φ. φ is both phase lag and time lag, since ω = 1. The solution goes through[
1
0

]
at t = φ.

(b) Now the characteristic polynomial is pA(λ) = λ2 − 1, so there are two real eigen-
values, 1 and −1. [The phase portrait is a saddle.] Eigenvectors for 1 are killed by[
−1 1
1 −1

]
:

[
1
1

]
and multiples. The matrix is symmetric, so the eigenvectors for −1

are

[
1
−1

]
and multiples. So the normal modes are u1 = et

[
1
1

]
and u2 = e−t

[
1
−1

]
.

The general solution is u = aet
[
1
1

]
+ be−t

[
1
−1

]
.

In order for u(t0) =

[
1
1

]
for some t0, you must have aet0 = 1 and be−t0 = 0, because

the two eigenvectors are linearly independent. So b = 0, and a can be any positive

number (because you can then solve for t0): aet
[
1
1

]
for a > 0. These are “ray”

solutions.

9F. Normal Modes

9F-1 The characteristic polynomial is p(s) = s4 − c. Its roots are the fourth roots
of c. Write r for the real positive fourth root of |c|. If c > 0, the fourth roots
of c are ±r and ±ir. There are four exponential solutions, but only the ones with
imaginary exponent give rise to sinusoidal solutions. They are the sinusoidal functions
of angular frequency r. If c < 0, the fourth roots of c are r±1±i√

2
. None of these is

purely imaginary, so there are no (nonzero) sinusoidal solutions. When c = 0 the
equation is d4x

dt4
= 0. The solutions are the polynomials of degree at most 3. The

constant solutions are sinusoidal.

9G. Diagonalization, Orthogonal Matrices

9G-1 The null space is (width)-(rank)=9 dimensional, so there are 9 linearly inde-
pendent eigenvectors for the eigenvalue 0. There’s just one more eigenvalue, which
can’t be zero because the sum of the eigenvalues is the trace, 5. It has to be 5.
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9G-2 (a) A =

[
1 2
0 3

]
has eigenvalues 1 and 3. 1 has nonzero eigenvector

[
1
0

]
(or any

nonzero multiple; by inspection or computation). For 3, A−3I =

[
−2 2
0 0

]
so we have

nonzero eigenvector

[
1
1

]
(or any nonzero multiple). With these choices, Λ =

[
1 0
0 3

]
,

S =

[
1 1
0 1

]
.

B =

[
1 1
3 3

]
has eigenvectors 0 (because it’s singular) and 4 (because its trace is 4; or

by computation). An eigenvector for 0 is a vector in the null space, so e.g.

[
1
−1

]
or any

nonzero multiple will do. For 4, A− 4I =

[
−3 1
3 −1

]
so we have nonzero eigenvector[

1
3

]
(or any nonzero multiple). With these choices, Λ =

[
0 0
0 4

]
, S =

[
1 1
−1 3

]
.

(b) A3 = SΛ3S−1; to be explicit, Λ3 =

[
1 0
0 27

]
.

A−1 = SΛ−1S−1; to be explicit, Λ−1 =

[
1 0
0 1

3

]
.

9G-3 [The (i, j) entry in ATA is the dot product of the ith and jth columns of A.
The columns form an orthonormal set exactly when this matrix of dot products is
the identity matrix.]

A =

[
−2 1
1 −2

]
has characteristic polynomial pA(λ) = λ2 + 4λ + 3 = (λ + 1)(λ + 3),

so eigenvalues −1 and −3 and Λ =

[
−1 0
0 −3

]
. Eigenvectors for 1 are killed by

A− I =

[
−1 1
1 −1

]
; so

[
1
1

]
or any nonzero multiple. We could find an eigenvector for

3 similarly, or just remember that eigenvectors for distinct eigenvalues of a symmetric

matrix are orthogonal, and write down

[
1
−1

]
. Each of these vectors has length

√
2,

so an orthogonal S is given by S = 1√
2

[
1 1
1 −1

]
.

(There are seven other correct answers; one could list the eigenvalues in the opposite
order, and change the signs of the eigenvectors.)

9H. Decoupling

9H-1 The rabbit matrix is A =

[
3 1
2 4

]
. We found eigenvalues 2, 5 and eigenvector
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matrix S =

[
1 1
−1 2

]
, with inverse S−1 = 1

3

[
2 −1
1 1

]
. The decoupling coordinates are

the entries in y such that Sy = x, or y = S−1x = 1
3

[
2x1 − x2

x1 + x2

]
: y1 = 2x1 − x2 (for

eigenvalue 2) and y2 = x1 + x2 (for eigenvalue 5), or any nonzero multiples of these,
do the trick. y1(t) = e2ty1(0), y2(t) = e5ty2(0). y2(t) is the sum of the populations,
and it grows exponentially with rate 5, just as if there was no hedge.

9I. Matrix Exponential

9I-1 By time invariance the answer will be the same for any t0; for example we could

take t0 = 0; so

[
x(t0 + 1)
y(t0 + 1)

]
= eA

[
x(t0)
y(t0)

]
. Then we need to compute the exponential

matrix. We recalled the diagonalization of the rabbit matrix above, so eAt = SeΛtS−1,

and eA =

[
3 1
2 4

] [
e2 0
0 e5

]
1

3

[
2 −1
1 1

]
.

9I-2 pA(λ) = λ2 + 2λ+ 2 = (λ+ 1)2 + 1 has roots −1± i. Eigenvectors for λ = −1 + i

are killed by A− (−1 + i)I =

[
1− i 1
−2 −1− i

]
; for example

[
−1

1− i

]
. The exponential

solutions are e(−1+i)t

[
−1

1− i

]
and its complex conjugate, so we get real solutions as

real and imaginary parts, which we put into the columns in a fundamental matrix:

Φ(t) = e−t
[
− cos t − sin t

cos t+ sin t − cos t+ sin t

]

Φ(0) =

[
−1 0
1 −1

]
, Φ(0)−1 = −

[
1 0
1 1

]
,

eAt = Φ(t)Φ(0)−1 = e−t
[
cos t+ sin t sin t
−2 sin t cos t− sin t

]

9J. Inhomogeneous Solutions

9J-1

(a) As always, substitution of up = e2tv gives the exponential response formula

v =

[
−4 −5
−1 0

]−1 [
1
2

]
= −1

5

[
10
−7

]
⇒ up = −1

5
e2t

[
10
−7

]
.
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(b) Complex replacement and the trial solution zp = e2itv gives

v =

[
2i− 1 0
−1 2i− 2

]−1 [
1
0

]
=

1

−2− 6i

[
2i− 2

1

]
=

1

20

[
−4− 8i
−1 + 3i

]
So

zp =
1

20
(cos(2t) + i sin(2t))

[
−4− 8i
−1 + 3i

]
=

1

20

([
−4 cos(2t) + 8 sin(2t)
− cos(2t)− 3 sin(2t)

]
+ i

[
−4 sin(2t)− 8 cos(2t)
− sin(2t) + 3 cos(2t)

])
Therefore

up = Re (zp) =
1

20

[
−4 cos(2t) + 8 sin(2t)
− cos(2t)− 3 sin(2t)

]

9J-2 We want to compute a particular solution to ẋ = Ax+

[
−et
0

]
, using x(t) = Φ(t)

∫
Φ(t)−1

[
−et
0

]
dt.

Φ(t) = SeΛt, so Φ(t)−1 = e−ΛtS−1. S−1

[
−et
0

]
= −1

3
et
[
2
1

]
.

Φ(t)−1

[
−et
0

]
= e−ΛtS−1

[
−et
0

]
= −1

3

[
e−2t 0

0 e−5t

]
et
[
2
1

]
= −1

3

[
2e−t

e−4t

]
.∫

Φ(t)−1

[
−et
0

]
dt =

1

3

[
2e−t
1
4
e−4t

]
.

x(t) = Φ(t)
1

3

[
2e−t
1
4
e−4t

]
=

1

3
S

[
e2t 0
0 e5t

] [
2e−t
1
4
e−4t

]
=

1

12
etS

[
8
1

]
=
et

12

[
1 1
−1 2

] [
8
1

]
=
et

4

[
3
−2

]
.

We still need to get the initial condition right. We need a solution to the homogeneous

equation with inital value
1

4

[
1
2

]
. Luckily, this is an eigenvector, for value 5, so the

relevant solution is
e5t

4

[
1
2

]
, and the solution we seek is

et

4

[
3
−2

]
+
e5t

4

[
1
2

]
.
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10. 18.03 PDE Exercises Solutions

10A. Heat Equation; Separation of Variables

10A-1 (i) Trying a solution u(x, t) = v(x)w(t) leads to separated solutions uk(x, t) =
vk(x)wk(t) where vk(x) = sin(πkx), and wk(t) = e−2π

2k2t, and k = 0, 1, 2, . . ..

(ii) u(x, 0) = 2
π

∑∞
k=1

(−1)k+1

k
sin(πkx)

(iii) u(x, t) = 2
π

∑∞
k=1

(−1)k+1

k
sin(πkx)e−π

2k2t

(iv) u(1
2
, 1) ≈ .00032

10A-2 (i) Separated solutions uk(x, t) = vk(x)wk(t) where vk(x) = sin(πkx), and
wk(t) = e−2π

2k2t (Note factor of 2 from (10A-2.1)) and k = 0, 1, 2, . . .

(ii) u(x, 0) = 4
π

∑
k odd

sin(πkx)
k

(iii) u(x, t) = 4
π

∑
k odd

sin(πkx)
k

e−2π
2k2t

10A-3 (a) ust(x, t) = U(x) = 1 − x

(b) Since the heat equation is linear ũ satisfies the PDE (10A-3.1). At the boundary
(x = 0 and x = 1) we have ũ(0, t) = u(0, 1) − ust(0, t) = 1 − 1 = 0. Likewise
ũ(1, t) = 0. That is, ũ is a solution to the heat equation with homogeneous boundary
conditions in 10A-1. The initial condition is ũ(x, 0) = x. We found the coefficients
for this in 10A-1.

ũ(x, t) =
2

π

∞∑
k=1

(−1)k+1

k
sin(πkx)e−2π

2k2t.

(c)

u(x, t) = U(x) + ũ(x, t) = 1 − x+
2

π

∞∑
k=1

(−1)k+1

k
sin(πkx)e−2π

2k2t.

(d) u(x, t)−U(x) = ũ(x, t) The term in the sum for ũ that decays the slowest is when
k = 1. Therefore we need 2

π
e−2π

2T = .01U(1/2) = .005. Solving we get T = .246

10B. Wave Equation

10B-1 (a) Separating variables, we look for a solutions of the form u(x, t) = v(x)w(t),
which leads to v′′(x) = λv(x) with v(0) = v(π/2) = 0, and hence

vk(x) = sin(2kx)

Consequently, ẅk = −(2k)2c2wk, whic implies

wk(t) = A cos(2ckt) +B sin(2ckt)

1



The normal modes are

uk(x, t) = sin(2kx)(A cos(2ckt) +B sin(2ckt)),

where A and B must be specified by an initial position and velocity of the string.

(b) The main note (from the mode u1) has frequency
2c

2π
=
c

π
. You will also hear the

higher harmonics at the frequencies
ck

π
, k = 2, 3, . . . . (The sound waves induced by

the vibrating string depend on the frequency in t of the modes.)

(c) Longer strings have lower frequencies, lower notes, and shorter strings have higher
frequencies, higher notes. If the length of the string is L, then the equations v′′(x) =
λv(x), v(0) = v(L) = 0 lead to solutions vk(x) = sin(kπx/L). (In part (a), L = π/2.)
The associated angular frequencies in the t variable are kcπ/L, so the larger L, the
smaller kcπ/L and the lower the note. Thus c is inversely proportional to the length
of the string.

(d) When you tighten the string, the notes get higher, and the frequency you hear is
increased. (Tightening the string increases the tension in the string and increases the
spring constant, which corresponds to c. The frequencies of the sounds are directly
proportional to c.)
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