5. Triple Integrals

5A. Triple integrals in rectangular and cylindrical coordinates

5A-1 Evaluate: a) \(\int_{0}^{2} \int_{-1}^{1} \int_{0}^{1} (x + y + z) \, dx \, dy \, dz \) \[\text{b) } \int_{0}^{2} \int_{0}^{\sqrt[4]{y}} \int_{0}^{1} 2xy^2z \, dz \, dx \, dy \]

5A-2. Follow the three steps in the notes to supply limits for the triple integrals over the following regions of 3-space.

a) The rectangular prism having as its two bases the triangle in the \(yz \)-plane cut out by the two axes and the line \(y + z = 1 \), and the corresponding triangle in the plane \(x = 1 \) obtained by adding 1 to the \(x \)-coordinate of each point in the first triangle. Supply limits for three different orders of integration:

(i) \(\iiint dxdydz \)
(ii) \(\iiint dydzdx \)
(iii) \(\iiint dzdydx \)

b)* The tetrahedron having with vertices \((0,0,0), (1,0,0), (0,2,0)\), and \((0,0,2)\). Use the order \(\iiint dzdydx \).

c) The quarter of a solid circular cylinder of radius 1 and height 2 lying in the first octant, with its central axis the interval \(0 \leq y \leq 2 \) on the \(y \)-axis, and base the quarter circle in the \(xz \)-plane with center at the origin, radius 1, and lying in the first quadrant. Integrate with respect to \(y \) first; use suitable cylindrical coordinates.

d) The region bounded below by the cone \(z^2 = x^2 + y^2 \), and above by the sphere of radius \(\sqrt{2} \) and center at the origin. Use cylindrical coordinates.

5A-3 Find the center of mass of the tetrahedron \(D \) in the first octant formed by the coordinate planes and the plane \(x + y + z = 1 \). Assume \(\delta = 1 \).

5A-4 A solid right circular cone of height \(h \) with 90° vertex angle has density at point \(P \) numerically equal to the distance from \(P \) to the central axis. Choosing the placement of the cone which will give the easiest integral, find

a) its mass \[\text{b) its center of mass} \]

5A-5 An engine part is a solid \(S \) in the shape of an Egyptian-type pyramid having height 2 and a square base with diagonal \(D \) of length 2. Inside the engine it rotates about \(D \). Set up (but do not evaluate) an iterated integral giving its moment of inertia about \(D \). Assume \(\delta = 1 \). (Place \(S \) so the positive \(z \) axis is its central axis.)

5A-6 Using cylindrical coordinates, find the moment of inertia of a solid hemisphere \(D \) of radius \(a \) about the central axis perpendicular to the base of \(D \). Assume \(\delta = 1 \).

5A-7 The paraboloid \(z = x^2 + y^2 \) is shaped like a wine-glass, and the plane \(z = 2x \) slices off a finite piece \(D \) of the region above the paraboloid (i.e., inside the wine-glass). Find the moment of inertia of \(D \) about the \(z \)-axis, assuming \(\delta = 1 \).
5B. Triple Integrals in Spherical Coordinates

5B-1 Supply limits for iterated integrals in spherical coordinates \(\iiid \) for each of the following regions. (No integrand is specified; \(d\rho \, d\phi \, d\theta \) is given so as to determine the order of integration.)

a) The region of 5A-2d: bounded below by the cone \(z^2 = x^2 + y^2 \), and above by the sphere of radius \(\sqrt{2} \) and center at the origin.

b) The first octant.

c) That part of the sphere of radius 1 and center at \(z = 1 \) on the \(z \)-axis which lies above the plane \(z = 1 \).

5B-2 Find the center of mass of a hemisphere of radius \(a \), using spherical coordinates. Assume the density \(\delta = 1 \).

5B-3 A solid \(D \) is bounded below by a right circular cone whose generators have length \(a \) and make an angle \(\pi/6 \) with the central axis. It is bounded above by a portion of the sphere of radius \(a \) centered at the vertex of the cone. Find its moment of inertia about its central axis, assuming the density \(\delta \) at a point is numerically equal to the distance of the point from a plane through the vertex perpendicular to the central axis.

5B-4 Find the average distance of a point in a solid sphere of radius \(a \) from

a) the center b) a fixed diameter c) a fixed plane through the center

5C. Gravitational Attraction

5C-1.* Consider the solid \(V \) bounded by a right circular cone of vertex angle 60° and slant height \(a \), surmounted by the cap of a sphere of radius \(a \) centered at the vertex of the cone. Find the gravitational attraction of \(V \) on a unit test mass placed at the vertex of \(V \). Take the density to be

\[
\begin{align*}
\text{(a) } 1 & \quad \text{(b) the distance from the vertex.} \\
\text{Ans.: a) } \pi Ga/4 & \quad \text{b) } \pi Ga^2/8
\end{align*}
\]

5C-2. Find the gravitational attraction of the region bounded above by the plane \(z = 2 \) and below by the cone \(z^2 = 4(x^2 + y^2) \), on a unit mass at the origin; take \(\delta = 1 \).

5C-3. Find the gravitational attraction of a solid sphere of radius 1 on a unit point mass \(Q \) on its surface, if the density of the sphere at \(P(x, y, z) \) is \(|PQ|^{-1/2} \).

5C-4. Find the gravitational attraction of the region which is bounded above by the sphere \(x^2 + y^2 + z^2 = 1 \) and below by the sphere \(x^2 + y^2 + z^2 = 2z \), on a unit mass at the origin. (Take \(\delta = 1 \).)

5C-5.* Find the gravitational attraction of a solid hemisphere of radius \(a \) and density 1 on a unit point mass placed at its pole.

\[
\text{Ans: } 2\pi Ga(1 - \sqrt{2}/3)
\]
5C-6.* Let \(V \) be a uniform solid sphere of mass \(M \) and radius \(a \). Place a unit point mass a distance \(b \) from the center of \(V \). Show that the gravitational attraction of \(V \) on the point mass is

\[
a) \quad \frac{GM}{b^2}, \quad \text{if} \quad b \geq a; \quad \text{b) } \quad \frac{GM'}{b^2}, \quad \text{if} \quad b \leq a, \quad \text{where} \quad M' = \frac{b^3}{a^3} M.
\]

Part (a) is Newton’s theorem, described in the Remark. Part (b) says that the outer portion of the sphere—the spherical shell of inner radius \(b \) and outer radius \(a \)—exerts no force on the test mass: all of it comes from the inner sphere of radius \(b \), which has total mass \(\frac{b^3}{a^3} M \).

5C-7.* Use Problem 6b to show that if we dig a straight hole through the earth, it takes a point mass \(m \) a total of \(\pi \sqrt{\frac{R}{g}} \approx 42 \) minutes to fall from one end to the other, no matter what the length of the hole is.

(Write \(F = ma \), letting \(x \) be the distance from the middle of the hole, and obtain an equation of simple harmonic motion for \(x(t) \). Here
\[
R = \text{earth’s radius}, \quad M = \text{earth’s mass}, \quad g = \frac{GM}{R^2} .
\]