
Unit 6. Additional Topics

6A. Indeterminate forms; L’Hospital’s rule

6A-1 a) lim
x→0

sin 3x

x
= lim

x→0

3 cos 3x

1
= 3

b) lim
x→0

cos(x/2) − 1

x2
= lim

x→0

(−1/2) sin(x/2)

2x
= lim

x→0

(−1/4) cos(x/2)

2
= −1/8

c) lim
x→∞

lnx

x
= lim

x→∞

1/x

1
= 0

d) lim
x→0

x2 − 3x − 4

x + 1
= −4. Can’t use L’Hospital’s rule.

e) lim
x→0

tan−1 x

5x
= lim

x→0

1/(1 + x2)

5
= 1/5

f) lim
x→0

x − sin x

x3
= lim

x→0

1 − cosx

3x2
= lim

x→0

sin x

6x
= lim

x→0

cosx

6
= 1/6

g) lim
x→1

xa − 1

xb − 1
= lim

x→1

axa−1

bxb−1
= a/b

h) lim
x→1

tan(x)

sin(3x)
=

tan 1

sin 3
. Can’t use L’Hospital’s rule.

i) lim
x→π

ln sin(x/2)

x − π
= lim

x→π

(1/2) cot(x/2)

1
= 0

j) lim
x→π

ln sin(x/2)

(x − π)2
= lim

x→π

(1/2) cot(x/2)

2(x − π)
= lim

x→π

(−1/4) csc2(x/2)

2
= −1/8

6A-2 a) xx = ex ln x → e0 = 1 as x → 0+ because

lim
x→0+

x ln x = lim
x→0+

lnx

1/x
= lim

x→0+

1/x

−1/x2
= lim

x→0+
−x = 0

b) x1/x → 0 as x → 0+ because x → 0 and 1/x → ∞.

Slow way using logs:

x1/x = e
ln x

x → e−∞ = 0 as x → 0+ because

lim
x→0+

lnx

x
=

−∞
0+

= −∞. (Can’t use L’Hospital’s rule.)

c) Can’t use L’Hospital’s rule. Here are two ways:

(1/x)lnx → (∞)−∞ = 0 or (1/x)ln x = elnx ln(1/x) = e−(ln x)2 → e−∞ = 0

d) (cos x)1/x = e
ln cos x

x → e0 = 1 as x → 0+ because

lim
x→0+

ln cosx

x
= lim

x→0+

− tanx

1
= 0

e) x1/x = e
ln x

x → e0 = 1 as x → ∞ because

lim
x→∞

lnx

x
= lim

x→∞

1/x

1
= 0
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f) (1 + x2)1/x = e
ln(1+x2)

x → e0 = 1 as x → 0+ because

lim
x→0+

ln(1 + x2)

x
= lim

x→0+

2x/(1 + x2)

1
= 0

g) (1 + 3x)10/x = e
10 ln(1+3x)

x → e30 as x → 0+ because

lim
x→0+

10 ln(1 + 3x)

x
= lim

x→0+

10 · 3/(1 + 3x)

1
= 30

h) lim
x→∞

x + cosx

x
= (?) lim

x→∞

1 − sin x

1
But the second limit does not exist, so L’Hospital’s

rule is inconclusive. But the first limit does exist after all:

lim
x→∞

x + cosx

x
= lim

x→∞
1 +

cosx

x
= 1

because
| cosx|

x
≤ 1

x
→ 0 as x → ∞

Commentary: L’Hospital’s rule does a poor job with oscillatory functions.

i) Fast way: Substitute u = 1/x.

lim
x→∞

x sin
1

x
= lim

u→0

sin u

u
= lim

u→0

cosu

1
= 1

Slower way:

lim
x→∞

x sin
1

x
= lim

x→∞

sin(1/x)

1/x
= lim

x→∞

(−1/x2) cos(1/x)

−1/x2
= cos 0 = 1

j)
( x

sin x

)1/x2

= e
ln(x/ sin x)

x2 → e
1
6 because

lim
x→0+

ln(x/ sin x)

x2
= 1/6

This is a difficult limit. Although it can be done by L’Hospital’s rule the easiest way to
work it out is with quadratic (and even cubic!) approximations:

x

sin x
≈ x

x − x3/6
=

1

1 − x2/6
≈ 1 + x2/6

Hence,
ln(x/ sinx) ≈ ln(1 + x2/6) ≈ x2/6

Therefore,
1

x2
ln(x/ sin x) → 1/6 as x → 0

k) Obvious cases: If the exponents are positive (or one 0 and the other positive) then
the limit is infinite. If the exponents are both negative (or one 0 and the other negative)
then the limit is 0. Also if both exponents are 0 the limit is 1. (continued →)
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The remaining cases are the ones where a and b have opposite sign. In both cases a wins.
In other words, a < 0 implies the limit is 0 and a > 0 implies the limit is ∞. To show this
requires only one use of L’Hospital’s rule. For α > 0,

lim
x→∞

xα

lnx
= lim

x→∞

αxα−1

1/x
= lim

x→∞
αxα = ∞

If a > 0 and b < 0, let c = −b > 0. Then

xa(ln x)b =

(

xa/c

lnx

)c

→ ∞ as x → ∞

using α = a/c > 0. The case a < 0 and b > 0 is the reciprocal so it tends to 0.

6A-3 Using L’Hospital’s rule and
d

da
xa+1 = xa+1 lnx,

lim
a→−1

(
xa+1

a + 1
− 1

a + 1
) = lim

a→−1

xa+1 − 1

a + 1
= lim

a→−1

xa+1 lnx

1
= lnx

6A-4
∫ x

1

ta ln tdt =
xa+1 lnx

a + 1
− xa+1

(a + 1)2
+

1

(a + 1)2

Therefore, using L’Hospital’s rule and
d

da
xa+1 = xa+1 lnx,

lim
a→−1

∫ x

1

ta ln tdt = lim
a→−1

(a + 1)xa+1 lnx − xa+1 + 1

(a + 1)2

= lim
a→−1

(a + 1)xa+1(lnx)2

2(a + 1)

= (lnx)2/2 =

∫ x

1

t−1 ln tdt

6A-5 You can’t use L’Hospital’s rule for lim
x→0

6x − 4

2 − 2x
because the nominator and denom-

inator are not going to zero as x → 0. The first equality is true, but the second one is
false.

6A-6 a) y = xe−x is defined on −∞ < x < ∞.

y′ = (1 − x)e−x and y′′ = (−2 + x)e−x

Therefore, y′ > 0 for x < 1 and y′ < 0 for x > 1; y′′ > 0 for x > 2 and y′′ < 0 for x < 2.

Endpoint values: y → −∞ as x → −∞, because e−x → ∞ as x → −∞. By L’Hospital’s
rule,

lim
x→∞

y = lim
x→∞

x

ex
= lim

x→∞

1

ex
= 0

Critical value: y(1) = 1/e.

Graph: (−∞,−∞) ր (1, 1/e) ց (∞, 0).
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Concave up on: 2 < x < ∞, concave down on: −∞ < x < 2.

1 2

1/e

y = xe-x

b) y = x lnx is defined on 0 < x < ∞.

y′ = lnx + 1, y′′ = 1/x

Therefore, y′ > 0 for x > 1/e and y′ < 0 for x < 1/e; y′′ > 0 for all x > 0.

Endpoint values: As x → ∞, both x and lnx tend to infinity, so y → ∞. By L’Hospital’s
rule,

lim
x→0+

x lnx = lim
x→0+

lnx

x
= lim

x→0+

1/x

1
= 0

Critical value: y(1/e) = −1/e.

1/e

1/e
y = x ln x

1

Graph: (0, 0) ց (1/e,−1/e) ր (∞,∞), crossing zero at x = e. Concave up for all x > 0.

c) y = x/ lnx is defined on 0 < x < ∞, except for x = 1.

y′ =
lnx − 1

(lnx)2

Thus, y′ < 0 for 0 < x < 1 and for 1 < x < e and y′ > 0 for x > e;

Endpoint values: y → 0 as x → 0+ because x → 0 and 1/ lnx → 0. L’Hôpital’s rule
implies

lim
x→∞

x

lnx
= lim

x→∞

1

1/x
= ∞

Singular values: y(1+) = ∞ and y(1−) = −∞.

Critical value: y(e) = e.

Graph: (0, 0) ց (1,−∞) ↑ (1,∞) ց (e, e) ր (∞,∞).

To determine where it is convex and concave:

y′′ =
2 − lnx

x(lnx)3

We have y′′ = 0 when lnx = 2, i.e., when x = e2. From this,

y′′ < 0 for 0 < x < 1 and for x > e2 and y′′ > 0 for 1 < x < e2.

Concave (down) on: 0 < x < 1 and x > e2

Convex (concave up) on: 1 < x < e2

Inflection point: (e2, e2/2) (too far to the right to show on the
graph)

e

e

y = x
ln x

1
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6B. Improper integrals

6B-1
dx√

x3 + 5
<

1√
x3

for x > 0

∫ ∞

1

dx√
x3 + 5

<

∫ ∞

1

dx

x3/2
which converges, by INT (4)

Answer: converges

6B-2
x2dx

x3 + 2
≃ 1

x
if x >> 1, so we guess divergence.

x2dx

x3 + 2
>

1

2x
if 2x3 > x3 + 2 or x3 > 2 or x > 21/3

∫ ∞

2

x2dx

x3 + 2
>

1

2

∫ ∞

2

dx

x
, which diverges by INT (4).

∫ ∞

2

x2dx

x3 + 2
diverges, by comp.test, and so does

∫ ∞

0

x2dx

x3 + 2
by INT (3).

6B-3

∫ 1

0

dx

x3 + x2
integrand blows up at x = 0

1

x3 + x2
=

1

x2(x + 1)
∼ 1

x2
when x ≃ 0

So we guess divergence.

1

x3 + x2
>

1

2x2
if 2x2 > x3 + x2 or x2 > x3; true if 0 < x < 1.

=⇒
∫ 1

0

dx

x3 + x2
>

1

2

∫ 1

0

dx

x2
which diverges by INT (6)

6B-4

∫ 1

0

dx√
1 − x3

blows up at x = 1

1√
1 − x3

=
1

√

(1 − x)(1 + x + x2)
∼ 1√

3
√

1 − x
for x ≃ 1

So we guess convergence.

1√
1 − x3

<
1√

1 − x
if x3 < x OK if 0 < x < 1

1√
1 − x

converges by INT (6), so
1√

1 − x3
also converges by comp.test.

6B-5

∫ ∞

0

e−xdx

x
is improper at both ends.

At the ∞ end it converges, since

e−xdx

x
< e−x if x > 1 and

∫ ∞

0

e−xconverges.
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At the 0 end: trouble!
e−xdx

x
∼ 1

x
. So we guess divergence.

e−xdx

x
>

1

4x
on 0 < x < 1 =⇒

∫ ∞

0

e−xdx

x
>

1

4

∫ ∞

0

dx

x
divergent.

=⇒
∫ ∞

0

e−xdx

x
diverges —one end is infinite (the 0 end!)

6B-6

∫ ∞

1

lnxdx

x2

Here ln x grows so slowly, that we suspect convergence.

lnx

x2
<

x

x2
is not convergent.

How about
lnx

x2
<

1

x3/2
? if x >> 1. This says

lnx√
x

< 1 if x >> 1 and this is true, since

lim
x→∞

lnx√
x

= lim
x→∞

1/x

1/2
√

x
= lim

x→∞

2√
x

= 0

=⇒
∫ ∞

1

lnxdx

x2
<

x

x3/2
converges, by INT (4).

So

∫ ∞

1

lnxdx

x2
converges by comp.test.

These have been written out in detail, to review the reasoning. Your own solutions don’t
have to be so detailed.

6B-7 a)

∫ ∞

0

e−8xdx = −(1/8)e−8x
∣

∣

∞

0
= 1/8 convergent

b)

∫ ∞

1

x−ndx =
x−n+1

−n + 1

∣

∣

∣

∣

∞

1

=
1

n − 1
convergent (n > 1)

c) divergent

d)

∫ 2

0

xdx√
4 − x2

= −(4 − x2)1/2
∣

∣

∣

2

0
= 2 convergent

e)

∫ 2

0

dx√
2 − x

= −2(2 − x)1/2
∣

∣

∣

2

0
= 2

√
2 convergent

f)

∫ ∞

e

dx

x(ln x)2
= −(lnx)−1

∣

∣

∞

e
= 1 convergent

g)

∫ 1

0

dx

x1/3
= (3/2)x2/3

∣

∣

∣

1

0
=

3

2
convergent

h) divergent (at x = 0)

i) divergent (at x = 0)

j) Convergent because lnx tends to −∞ more slowly than any power as x → 0+.
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Integrate by parts
∫ 1

0

lnxdx = x lnx − x|10 = −1

(Need L’Hospital’s rule to check that x ln x → 0 as x → 0+.)

k) Convergent because |e−2x cosx| < e−2x. Evaluate by integrating by parts twice (as
in E30/4).

∫ ∞

0

e−2x cosxdx =
1

5
e−2x sin x − 2

5
e−2x cosx

∣

∣

∣

∣

∞

0

= 2/5

l) divergent (

∫ ∞

e

dx

x lnx
= ln ln x|∞e = ∞)

m)

∫ ∞

0

dx

(x + 2)3
= (−1/2)(x + 2)−2

∣

∣

∞

0
= 1/8 convergent

n) divergent (at x = 2)

o) divergent (at x = 0)

p) divergent (at x = π/2)

6B-8 a) lim
x→∞

∫ x

0
et2dt

ex2 = lim
x→∞

ex2

2xex2 = lim
x→∞

1

2x
= 0 (L’Hospital and FT2)

b) lim
x→∞

∫ x

0
et2dt

ex2/x
= lim

x→∞

ex2

2x2ex2 − ex2/x2
= lim

x→∞

1

2 − (1/x2)
=

1

2

c) lim
x→∞

∫ x

0

e−t2dt = A a finite number > 0 because the integral is convergent. But

ex2 → ∞, so the whole limit tends to infinity.

d) = lim
a→0+

∫ 1

a x−1/2dx

1/
√

a
= lim

a→0+

−1/
√

a

(−1/2)a−3/2
= lim

a→0+
2a = 0 (L’Hospital and FT2)

e) = lim
a→0+

∫ 1

a x−3/2dx

1/
√

a
= lim

a→0+

−a−3/2

(−1/2)a−3/2
= 2 (L’Hospital and FT2)

lim
b→(π/2)+

(b − π/2)

∫ b

0

dx

1 − sin x
= lim

b→(π/2)+

∫ b

0
dx

1−sin x

1/(b − π/2)
( f)

= lim
b→(π/2)+

1/(1 − sin b)

−1/(b − π/2)2

= lim
b→(π/2)+

(b − π/2)2

sin b − 1

= lim
b→(π/2)+

2(b − π/2)

cos b

= lim
b→(π/2)+

2

− sin b
= −2
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6C. Infinite Series

6C-1 a) 1 +
1

5
+

1

25
+ · · · = 1 +

1

5
+

1

52
+ · · · =

1

1 − 1
5

=
5

4

b) 8 + 2 +
1

2
+ · · · = 8(1 +

1

4
+

1

42
+ · · · ) = 8(

1

1 − 1
4

) =
6B

3

c)
1

4
+

1

5
+ · · · =

1

4
(1 +

4

5
+ (

4

5
)2 + ·) =

1

4
(

1

1 − 4
5

) =
5

4

d) 0.4444 · · · = 0.4(1 + 0.1 + 0.12 + 0.13 + · · · ) = 0.4(
1

1 − 0.1
) = 0.4(

1

0.9
) =

4

9

e)0.0602602602 · · · = 0.0602(1 + 0.001 + 0.000001 + · · · ) = 0.0602(
1

1− 0.001
)

=
0.0602

0.999
=

301

4995

6C-2 a) 1 + 1/2 + 1/3 + 1/4 + · · ·

clearly, we have 1 >

∫ 2

1

1

x
dx,

1

2
>

∫ 3

2

1

x
dx, · · ·

so we will have 1 +
1

2
+

1

3
+

1

4
+ · · · >

∫ 2

1

1

x
dx +

∫ 3

2

1

x
dx +

∫ 4

3

1

x
dx +

∫ 5

4

1

x
dx + · · · =

∫ ∞

1

1

x
dx, which is divergent, so the infinite series is divergent.

b)

∞
∑

n=1

1

np

Case 1: p ≤ 1.
1

np
>

∫ n+1

n

dx

xp

=⇒
∞
∑

n=1

1

np
>

∫ ∞

1

dx

xp
, which is divergent, so the infinite series is divergent.

Case 2: p > 1

1

np
<

∫ n

n−1

dx

xp
=⇒

∞
∑

n=1

1

np
< 1 +

∫ ∞

1

dx

xp
, which is convergent. So the infinite series is

convergent.

c) 1/2 + 1/4 + 1/6 + 1/8 + · · · = (1/2)(1 + 1/2 + 1/3 + 1/4 + · · · ). So from a), the
series is divergent.

d) 1 + 1/3 + 1/5 + 1/7 + · · ·
1 > 1/2, 1/3 > 1/4, 1/5 > 1/6, 1/7 > 1/8, · · ·
So 1+1/3+1/5+1/7+ · · ·> 1/2+1/4+1/6+1/8+ · · ·which is divergent from c) Thus

the series diverges.
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1 − 1

2
+

1

3
− 1

4
+

1

5
− · · · = (1 − 1

2
) + (

1

3
− 1

4
) + (

1

5
− 1

6
) + · · ·

=
1

1 · 2 +
1

3 · 4 +
1

5 · 6 + · · ·( e)

<
1

12
+

1

32
+

1

52
+ · · ·

<
1

12
+

1

22
+

1

32
+

1

42
+

1

52
+ · · ·

which is convergent by b). So the infinite series is convergent.

f) n/n! = 1/(n − 1)! < 1/(n − 1)(n − 2) ≃ 1/n2 for n >> 1. So convergent by
comparison with b).

g) Geometric series with ratio (
√

5 − 1)/2 < 1, so the series is convergent.

h) Geometric series with ratio (
√

5 + 1)(2
√

5) < 1, so the series is convergent.

i) Larger than
∑

1/n for n ≥ 3, so divergent by part b).

j) lnn grows more slowly than any power. For instance,

lnn < n1/2 =⇒ lnn

n2
< n−3/2 for n >> 1

The series
∑

n−3/2 converges by part b), so this series also converges.

k) Converges because
n + 2

n4 − 5
≃ 1

n3
, and

∑

n−3 converges by part b).

l)
(n + 2)1/3

(n4 + 5)1/3
≃ n1/3

n4/3
≃ 1

n
. Therefore this series diverges by comparison with

∑

1/n.

m) Quadratic approximation implies cos(1/n) ≈ 1 − 1/2n2 and hence

ln(cos
1

n
) ≃ −1/2n2 as n → ∞

Hence the series converges by comparison with
∑

1/n2 from part b).

n) e−n beats n2 by a large margin. For example, L’Hospital’s rule implies

e−n/2n2 → 0 as n → ∞

Therefore for large n, n2e−n = n2e−n/2e−n/2 < e−n/2 and
∑

e−n/2 is a convergent geo-

metric series. Therefore the original series converges by comparison.

o) Just as in part (n), e−
√

n beats n2 by a large margin. L’Hospital’s rule implies

e−m/2m4 → 0 as m → ∞

Put m =
√

n to get

e−
√

n/2n2 → 0 as n → ∞
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Therefore for large n, n2e−
√

n = n2e−
√

n/2e−
√

n/2 < e−
√

n/2. Moreover, we also have

e−
√

n < 1/n2 n large

Thus the sum is dominated by
∑

e−
√

n/2 <
∑

1/n2 and is convergent by comparison with

part b).

6C-3 a)

lnn =

∫ n

1

dx

x
< Upper sum = 1 +

1

2
+ · · · 1

n − 1
< 1 +

1

2
+ · · · 1

n

In other words,

lnn < 1 +
1

2
+ · · · 1

n

On the other hand,

lnn =

∫ n

1

dx

x
> Lower sum =

1

2
+ · · · 1

n

Adding 1 to both sides,

1 + lnn > 1 +
1

2
+ · · · 1

n

b) Need at least ln n = 999

Time > 10−10e999 ≈ 7 × 10423 seconds

This is far, far longer than the estimated time from the “big bang.”


